Companion Proceedings of the 38t" Brazilian Symposium on Databases

Main Memory Database Instant Recovery

Arlino Magalhies', José Maria Monteiro?, Angelo Brayner>

!Curso de Gestdo de Dados
Universidade Federal do Piaui (UFPI)
Campus Ministro Petronio Portella — Teresina — PI

?Departamento de Computacdo
Universidade Federal do Ceara (UFC)
Campus do Pici — Fortalza — CE

arlino@Qufpi.edu.br, {brayner,monteiro}@dc.ufc.br

Abstract. Main Memory Databases (MMDBs) technology handles the primary
database in Random Access Memory (RAM) to provide high throughput and low
latency. However, volatile memory makes MMDBs much more sensitive to sys-
tem failures. The contents of the database are lost in these failures. As a result,
systems may be unavailable for a long time until the database recovery process
has been finished. Therefore, novel recovery techniques are needed to repair
crashed MMDBs as quickly as possible. This thesis presents MM-DIRECT, a
recovery technique that enables MMDBs to schedule transactions immediately
after the system startup. The approach also implements a tuple-level consistent
checkpoint to reduce the recovery time. To validate the proposed approach, ex-
periments were performed in a prototype implemented on the Redis database.
The results show that the proposed instant recovery technique effectively pro-
vides high transaction throughput rates even during the recovery process and
normal database processing.

1. Introduction

Several current application scenarios, such as trading, real-time bidding, advertising,
weather forecasting, social gaming, etc., require massive real-time data processing.
MMDBs have proved to be an efficient alternative to such applications. MMDBs keep the
database in RAM to achieve very high IOPS (Input/Output Operations Per Second) rates.
Such a feature makes MMDBs much more sensitive to system failures since it causes loss
of main memory content [Magalhaes et al. 2021a, Wu et al. 2017, Faerber et al. 2017].

In most MMDBs, the recovery process is performed offline. Thus, the database
system becomes available to service new transactions only after the full recovery process
is completed. One may claim that MMDBs may keep database replicas to ensure high
availability. Nevertheless, the replication mechanism is not immune to errors and unpre-
dictable defects in software and firmware. Besides, adding high availability infrastruc-
ture to a system can become expensive to deploy and maintain [Magalhdes et al. 2021b,
Magalhaes 2021, Wu et al. 2017, Faerber et al. 2017].

This thesis presents an instant recovery mechanism for MMDBs, denoted MM-
DIRECT (Main Memory Database Instant RECovery with Tuple consistent check-
point). MM-DIRECT implements a generic recovery approach, which can be embedded

255

Companion Proceedings of the 38t" Brazilian Symposium on Databases

in any main memory database system. Such an approach is able to schedule new transac-
tions immediately after the system startup.

Figure 1 emphasizes the benefits of instant recovery (described in this thesis) con-
cerning MMDB standard recovery (implemented by most existing MMDBs). Figure 1
represents the average transaction throughput over small time intervals. Looking more
closely at Figure 1, one may observe that the standard recovery approach (represented by
the orange line) has downtime after a failure while the database is recovering. On the other
hand, the instant recovery approach (blue line) schedules transactions immediately after
the system startup during the recovery process. Thus, applications and users do not notice
the recovery process, giving the impression that the system was instantly restored. Since
the proposed instant recovery approach schedules transactions as quickly as possible, it
delivers higher IOPS rates, i.e., it executes workloads faster [Magalhaes 2022].

System Failure

25000 +
20000 -

15000 .
IR workload runtime

--- §
10000
SR workload runtime
5000 - el e, —— >

Average Transaction Throughput

SR - Standard recovery
—— IR - Instant recovery

0 1000 2000 3000 4000 5000 6000
Time (seconds)

Figure 1. Instant Recovery vs. Default Recovery [Magalhaes 2022].

1.1. Thesis contributions

The main contributions of this thesis are the following:

* An instant recovery mechanism for MMDBs that can restore database tuples in-
crementally and on-demand.

* A very lightweight logging technique that can efficiently read/write log records in
order to restore tuples individually without degrading transaction processing, or
as little as possible.

* Two checkpoint techniques to reduce recovery time whose actions persist even if
the checkpoint process does not complete (for a failure, for example).

* An analysis of the behavior of the proposed instant recovery mechanism through
experiments in an OLTP workload.

2. Background

Most MMDBs implement a logical logging which records higher-level operations on
secondary memory. Logical logging tends to be faster than physical logging (com-
monly used by disk-resident databases) during transaction processing since fewer items
are recorded on the log file. MMDBs produce only Redo log records of modified
data to reduce the amount of data written to secondary storage. The commit process-
ing uses group commit, i.e., it tries to group multiple log records into one large 1/0O
[Magalhdes et al. 2021a, Stonebraker and Weisberg 2013, Faerber et al. 2017].

256

Companion Proceedings of the 38t" Brazilian Symposium on Databases

Most MMDBs produces a consistent checkpoint file equivalent to a materialized
database state in an instant of time, commonly called snapshot. Whenever a system fail-
ure occurs in an MMDB, the primary copy of the database is lost. Thus, the recov-
ery manager should load the last snapshot into memory and redo log records. The sys-
tem can process new transactions only after complete recovery [Magalhaes et al. 2021a,
Stonebraker and Weisberg 2013, Faerber et al. 2017].

3. Related Work

Hekaton [Diaconu et al. 2013], VoltDB [Stonebraker and Weisberg 2013], HyPer
[Funke et al. 2014], SAP HANA [Férber et al. 2012], and SiloR [Zheng et al. 2014] are
examples of modern MMDBs that handle the recovery techniques described in Section 2.

PACMAN [Wu et al. 2017] and Adaptive Logging [Yao et al. 2016] utilize a de-
pendency graph between transactions performed to identify opportunities for database
recovery in parallel. Those systems must wait for the full database recovery to service
new transactions.

Fineline [Sauer et al. 2018] implements a partitioned B-tree as a log file structure
to provide persistence and instant recovery. During transaction processing, Fineline stores
physical log records at commitment, i.e., transactions must wait writes in the tree. Phys-
ical records are not appropriated to MMDBs. After a crash, the system may search for
multiple partitions to retrieve a page. Checkpoints are not implemented.

4. MM-DIRECT: An Instant Recovery Mechanism

Although modern hardware has offered promising alternatives for MMDBs to reach their
full potential, this work does not require many technology improvements. In fact, the
MM-DIRECT recovery requires a simple system with a memory hierarchy composed of
two levels: main memory (for the database) and a persistent-memory level (for log files).
Figure 2 shows the main components of MM-DIRECT. The next subsections discuss the
main components of the architecture and their interactions.

Checkpointer
(Main Memory
p 9 ~
] Restored
)

I Restorer ‘

Secondary
Memory

Scheduler

Figure 2. Architecture of the instant recovery mechanism.

4.1. The Logging Mechanism

MM-DIRECT works with a sequential log file and an indexed log file. Figure 3 depicts
the structure of both files. During the execution of a given transaction 7'x, log records are
generated for each update action belonging to 7'z and kept in a local thread, i.e., T'x per-
forms updates locally in main memory, other transactions can see its updates only when
T'x commits. During a transaction commit, the log records are flushed to the sequential

257

Companion Proceedings of the 38t" Brazilian Symposium on Databases

£ £ £ Tuples - Tp3
£ £ £
Tuples > Tp3 S S Tp3 S 11:Tx1 12:Tx3 10: Tx1
LsNs > 10 11 12 13 14 15 16 17 18 19 20 13: T "”Ixz 18:/1:)(1
Transactions > Tx1 Tx1 Tx3 Tx1 Txt Tx2 Tx3 Tx3 Tx2 Tx2 Tx2 16:Tx3
19:Tx2
A
LSN : Transaction
(@) (b}

Figure 3. Sequential log (a), and indexed log (b).

log file. The Log Sequence Number (LSN) represents the order in which a record was
stored. This scheme ensures log consistency to recover the database.

A sequential log does not provide the necessary support for on-demand recovery.
Accordingly, after a failure, new transactions should wait for full database recovery to be
executed. In order to overcome such a limitation, MM-DIRECT utilizes an indexed log
file, which is structured as a B*-tree. The database’s tuple IDs are used as search keys.
This way, log records for a given tuple T'p are stored in a list pointed by a single entry of a
leaf node. Thus, a leaf node search key value K (a tuple ID) points to a list of log records
for a tuple T'p with I D = K. The records are copied to the indexed log in the same format
that they were stored in the sequential log. A single index seek operation in the B -tree
can locate all the records required to restore 7'p. LSN is responsible for representing the
temporal order of log records belonging to a tuple 7T'p. The indexed log loses the global
LSN order, but it maintains a local LSN order in each B*-tree leaf node. Log records for
a tuple in a leaf node are still sorted by LSN. This log organization ensures the consistent
recovery of each tuple. In this way, the B*-tree allows to recovery each tuple individually.
In addition, MM-DIRECT supports other index structures, such as a hash table.

During normal transaction processing, transaction update records are appended to
the sequential log file at the commitment. The Indexer component monitors entries in the
sequential log file and inserts them into the indexed log. This process is asynchronous to
the transaction commit. Such an asynchronous indexing process avoids a negative impact
on transaction throughput.

To illustrate how both log files are built, consider Figure 3. In Figure 3 (a), log
records generated by transactions 7'x1, T'x2, and T'x3 are stored in the sequential log file.
Figure 3 (b) illustrates the assemblage of the indexed log file. Log records for transactions
Tx1, Tx2, and Tx3 are grouped in the BT -tree leaf nodes by tuple IDs. For instance,
log records with LSN 12 and 15 belonging to 7'z3 and 7T'x2, respectively, contain write
operations executed on tuple 7'p2.

Writing records to a sequential log file is potentially faster than doing so to an
indexed log file. This is because the sequential access pattern in a sequential file can write
records faster than the random pattern in a B*-tree. Thus, the indexed log implements
an in-memory buffering mechanism to deliver write bandwidth similar to the sequential
log. These buffering mechanism is responsible for mitigating the log record writing rate
difference between the indexed log file and the sequential log file. As a consequence, the
log tail does not increase smoothly. In this work, we refer to the log tail as the number of
records in the sequential log that have not yet been stored in the indexed log.

258

Companion Proceedings of the 38t" Brazilian Symposium on Databases

4.2. The Recovery Process

Whenever a system failure occurs, the recovery manager is initialized at system restart.
Initially, the recovery manager checks if all records in the sequential log have been in-
serted into the indexed log file. This check is necessary because some records might not
have been inserted into the B*-tree before a failure. This is because the indexed log file
insertion process runs asynchronously to the sequential log file insertion process. Thus,
before starting the recovery process, the Indexer component must insert those records
into the indexed log file to ensure recovery consistency. Due to the buffering mechanism
implemented in the indexed log, the log tail does not grow very large. Thus, the num-
ber of records in the sequential log to be inserted into the indexed log before starting the
recovery should not be too large.

Immediately after the aforementioned recovery action, the Restorer component
triggers incremental recovery by traversing the BT -tree. Each visit to an entry in the B*-
tree leaf node retrieves the log records to redo a tuple completely. As soon as a tuple is
restored into memory, it is set as restored in the Restored Tuple Log component. Restored
Tuple Log is an in-memory data structure (see Figure 2).

Recovery by an indexed log supports availability naturally since tuples can be
accessed by transactions immediately after being restored to memory. However, trans-
actions can request tuples that have not yet been restored to memory. Thus, in parallel
to the recovery process, the Scheduler component schedules read and write operations.
Such an ability is supported by the following process. As soon as the Scheduler receives
an operation on a tuple 7'p, it reads the Restored Tuple Log to identify if 7'p has been
already restored. If the answer is affirmative, the database operation on 7'p is scheduled.
Otherwise, the Scheduler requests the Restorer to redo 7'p on-demand. This can be done
by an index seek operation to look up for a search key value in the indexed log file equal
to the T'p’s ID.

4.3. The Tuple Consistent Checkpoint

The indexed log is a growing file. The more records stored in the log the more records to
redo during database recovery, consequently increasing database recovery time. MM-
DIRECT implements a novel checkpoint strategy - the Tuple Consistent Checkpoint
(TuCC) - to overcome such a negative side-effect. The TuCC generation process scans
the entire database at system runtime to obtain all the database tuples. For each tuple, the
TuCC generates a new log record using the tuple contents and then flushes the record into
the sequential log. Such a record is similar to the one generated by an update operation.
Nonetheless, a log record generated by the checkpoint is not identified as a normal update
record. It is marked with a different log record type attribute. This record is called tuple
checkpoint record.

Observe that records inserted into the log before a tuple checkpoint record are no
longer needed. Therefore, whenever the Indexer finds a tuple checkpoint record r for a
tuple T'p in the sequential file, all records in B*-tree node N related to T'p are removed
before the Indexer inserts in /V since r reflects the state of T'p at the time it was entered
into the sequential log.

In contrast to other checkpoint techniques (such as Fuzzy and Snapshot), TuCC
does not lose any changes made if the checkpoint process is interrupted. This is possible

259

Companion Proceedings of the 38t" Brazilian Symposium on Databases

since this technique handles each leaf node individually, i.e., the checkpoint of one tuple
does not interfere with the others. After all tuple checkpoint records are generated, the
indexed log file reflects a database snapshot.

In TuCC algorithm, the entire database should be read to generate a checkpoint,
even non-updated tuples. Such an technique may cause an unnecessary effort to perform a
checkpoint in several non-updated or low-frequency updated tuples. Thus, MM-DIRECT
implements another checkpoint technique, which is only applied for the most frequently
used (MFU) tuples, denoted Tuple Consistent Checkpoint for MFU tuples (TuCC-MFU).
During normal transaction processing, the system stores tuple access information. TuCC-
MFU uses tuple access information to know the MFU tuples and performs an algorithm
similar to TuCC, but only for MFU tuples instead of the entire database.

5. Experimental Evaluation

This section presents the main experiments conducted in order to assess the potential
presented by MM-DIRECT. All experiments have been executed in 4-worker threads on
an Intel Core 17-9700k CPU 3.60GHz x 8 machine, with 64GB RAM and 400GB SSD.
The operating system was Ubuntu Linux 18.04.2 LTS.

The key goal was to compare the MM-DIRECTrecovery to the traditional MMDB
recovery. However, we also tested our instant recovery scheme in different scenarios to
confirm the following expectations: (1) an indexed log must be employed to incrementally
and on-demand recover the database, and (2) the asynchronous indexing of log records
must be adopted to avoid transaction processing overhead. Thus, the experiments have
been conducted in the three following scenarios: (i) Standard recovery using sequen-
tial log (SRSL); (ii) Instant recovery using asynchronous indexed log record insertion
(IRAIL); and (iii) Instant recovery using synchronous indexed log record insertion (IR-
SIL).

In SRSL (traditional recovery), log records are written to a sequential log file dur-
ing transaction processing. After a failure, the system must scan the entire log file. In
IRAIL (our approach), log records are written to a sequential log during transaction pro-
cessing, and stored in an indexed log asynchronously to the transaction commit. In IRSIL
(scenario derived from IRAIL), log records are written directly to an indexed log during
transaction processing. After a failure, for both scenarios ii (IRAIL) and iii (IRSIL), the
system must traverse the BT -tree. The IRSIL scenario was created to measure the log
indexing overhead during transaction processing and instant recovery processing.

The workloads was simulated using the Memtier Benchmark
[Memtier Benchmark 2020] which operated 4 worker threads, with each thread
driving 50 clients. Each client submits 500,000 requests. The requests randomly
accessed 20% of the database in the 5:5 ratio between read and write operations. The
database has been yielded through 20 runs of that workload. The resulting database
contains 5210° tuples, with a 62.7GB sequential log file, which corresponds to 1.8210°
log records. The indexed log file has been constructed from the sequential log by the
Indexer component of MM-DIRECT. Memtier is a high-throughput benchmarking tool
for Redis.

The evaluation prototype has been implemented in Redis 5.0.7 and can be down-

260

Companion Proceedings of the 38t" Brazilian Symposium on Databases

loaded'. Redis ensures database persistence similar to the one implemented by modern
MMDBs. The logging technique is logical and implements a sequential log file (AOF).
Periodically, database snapshots are flushed to the secondary storage. However, snapshot
generation have been disabled to capture the scenario of the recovery process on very
large log files. The implemented prototype utilizes Redis” AOF to represent the sequen-
tial log file required by MM-DIRECT. To build the indexed log file, MM-DIRECT utilizes
the Berkeley DB B -tree library [Olson et al. 1999].

5.1. Recovery Experiments

The experiments were focused on measuring the transaction throughput, database recov-
ery time, and logging overhead. In this sense, for each scenario, the same workload is
submitted to the prototype using the same initial database during normal system process-
ing. After 10 minutes (600 seconds) the database system has been shut down to simulate
a system failure. At database restart, the workload is submitted again.

Figure 4 depicts the results of recovery experiments. The vertical dashed red line
indicates the crash time. The other vertical dashed lines indicate the final recovery time
of the three scenarios: SRSL (orange line), IRAIL (blue line), and IRSIL (green line).

System Failure

35000 +

1342.265 4330.15s 5709.165

30000 § : (Recovery Time) (Recovery Time) (Recovery Time)
: 4 H $

25000 +

15000 -

10000 -

Transaction Throughput

5000 -

inde: sertion
=" IRSIL - Instant recovery using synchronous indexed los cord insertion

T T T T
0 1000 2000 3000
Time (seconds)

Figure 4. Transaction throughput during the recovery process.

In Figure 4, one may observe that MM-DIRECT (IRAIL scenario) has executed
the submitted workload faster than the conventional main memory recovery approach
(SRSL scenario). Such a result shows that MM-DIRECT provides high data availability
during the database recovery. On the other hand, although in SRSL the database was
restored before the IRAIL, SRSL presented long downtime after failures. This result
was already expected because recovery in SRSL deals with a sequential log, which is
potentially faster than manipulating an indexed log (in IRAIL).

The experiments also reveal that the MM-DIRECT approach does not overload
transaction processing. Notice that in Figure 4 transaction throughput in IRAIL is similar
to the one provided by the MMDB standard recovery (SRSL). This result was expected
as well because the MM-DIRECT and standard recovery strategy flush log records to sec-
ondary memory in a similar manner. One may claim that MM-DIRECT needs to insert
additional records into the indexed log, which could negatively impact MMDB through-
put. However, record insertion into the indexed log file occurs asynchronously to trans-
action commit. Observe that in IRSIL, insertion into the indexed log file is executed

Thttps://drive.google.com/drive/folders/1 LTbtY 3600k WIpxZBM-hc 1 BPvIjICuy2F?usp=sharing

261

Companion Proceedings of the 38t" Brazilian Symposium on Databases

synchronously to transaction commit, which overloaded transaction processing. In such a
case, a transaction must wait for indexed log insertion to commit.

There are additional data on the experiments, which are not depicted in Figure
4. MM-DIRECT recovered 411, 750 tuples incrementally and 88, 250 tuples on demand.
Tuples restored in an on-demand way represent 88% of data accessed by the workload
during the database recovery. Before starting the recovery process, MM-DIRECT pre-
sented a very short downtime of 0.0079 seconds to insert 3,022 records into the indexed
log file. These records were not inserted before the crash since inserts to the indexed
log are performed asynchronously to transaction commit. In fact, there were few records
to be inserted into the indexed log file. This is due to the fact that the log tail does not
grow much due to the indexed log buffer mechanism implemented by MM-DIRECT (see
Sections 4.1 and 4.2).

Transaction latency is the time delay between the request of a read/write operation
and its effect on the database. MM-DIRECT implements on-demand recovery. For that
reason, the latency of a transaction that requests on-demand recovery can be increased by
an additional time A, denoted restore latency. Recall that during on-demand recovery,
the Scheduler requests the Restorer to redo a given tuple 7'p, which demands an index
seek operation for looking up a search key value equal to 7'p’s ID in the indexed log file.
Thus, restore latency only affects transactions with on-demand recovery requests. The
next experiments investigate the impact of restore latency during database recovery.We
have measured recovery latency in MM-DIRECT (IRAIL scenario) and default recovery
(SRSL).

Figure 5 depicts the time series of average transaction latency before, during, and
after the recovery process. Analyzing Figure 5, one may notice that before the failure,
the average transaction latency is quite similar (close to zero) for both scenarios. After
ten minutes of normal transaction processing, the database system has been shut down
to simulate a system failure. The immediate effect is that the average transaction latency
spikes up in the scenario using MM-DIRECT (blue lines). The average transaction latency
before failure and after database recovery were 0.0898 and 0.0867 microseconds, respec-
tively. The latency during the recovery was 0.9908 microseconds. The highest average
latency was 2.4151 microseconds.

System Failure

SRSL - Standard recovery

— IRAIL - Instant recovery i
1342.26s5 4330.15s
{Recovery Time) (Recovery Time)
- .

= = N
o wn o
L L L

Average latency (microseconds)
=4
w
|

B — 1 I " i —

e
=]
L

T T T T T T T
0 1000 2000 3000 4000 5000 6000
Time (seconds)

Figure 5. Average transaction latency.

The highest average transaction latencies are concentrated at the beginning of the
recovery process. This delay occurs because data used by those transactions had to be re-
covered on-demand, i.e., it was necessary to access the indexed log in secondary memory.

262

Companion Proceedings of the 38t" Brazilian Symposium on Databases

Once those data have been restored, subsequent accesses to them occur directly on the
main memory. Therefore, average latency gradually decreases until the database recovery
process finishes when average latency becomes similar to before the failure.

There is no transaction latency measurement during recovery in the standard re-
covery scenario (orange lines) because there is no transaction processing. Recovery time
could be considered as part of the latency time of transactions executed after the failure,
as these transactions must wait for the database downtime to start executing. In this ex-
periment, the database recovery time (1342.26 seconds) corresponded to a very long wait
time for transactions to start executing. The average transaction latency throughout the
default recovery scenario was 0.0957 microseconds. Besides, transaction latency before
failure and after database recovery were 0.0952 and 0.0958 microseconds, respectively.

5.2. Checkpoint Experiments

The experiments presented in this section measured checkpoint efficiency and overhead
(provoked by checkpoint generation). Thus, the following experiments have been exe-
cuted: TuCC, TuCC-MFU, and no checkpoint. For each of these experiments, a workload
has been submitted to the database system. After 4,500 seconds, the system is shut down.
This timeframe was chosen to assure that at least one checkpoint had been produced be-
fore the failure. At the database restart, the workload is submitted again, as soon as the
recovery process is triggered.

Figure 6 compares the TuCC checkpoint, TuCC-MFU checkpoint, and no-
checkpoint. The transaction throughput rates are similar in the three experiments due
to the checkpoint generation process does not interfere with transaction throughput rates.
As expected, the database recovery process is faster with the proposed checkpoint tech-
niques. TuCC-MFU was the most efficient checkpoint (faster database recovery) since
it only checkpoints the most frequently updated tuples, whereas TuCC checkpoints all
tuples in the database, including tuples that were not updated.

System Failure

35000 7246.46s 8629.53s
(Recovery Time) : (Recovery Time)
[[

86.16:
3500‘05H42}56‘165 ;

0 7486.265
TuCC checkpoint period . (Recovery Time)

4450.165

‘ No checkpoint
—— TuCcC checkpoint
04 —— TuCC-MFU checkpoint

TuCC-MFU checkpmr:‘: period

30000 4

I-
25000 - 0.05 14450.165
20000
15000

10000 4

Transaction Throughput

5000 -

T T T m T T
0 2000 4000 6000 8000
Time (seconds)

Figure 6. Checkpoint experiments.

5.3. Log Files’ Write Bandwidth Experiments

Asynchronous insertion of records in the indexed log is the key to MM-DIRECT achieving
high transaction throughput rates even during database recovery, as it is shown in Section
5.1. The sequential log write operation is potentially faster than indexed log write, as
discussed in Section 4.1. Thus, the number of write operations executed per second (write

263

Companion Proceedings of the 38t" Brazilian Symposium on Databases

bandwidth) in a sequential log file is much higher than in the indexed log file (with a
BT -tree structure). In this sense, the experiments presented in this section measure and
compare write bandwidth in the sequential log file and the indexed log file.

In Figure 7, the orange and blue lines represent the write bandwidth in the sequen-
tial log and the indexed log, respectively. Observe that both bandwidths are quite similar.
Such a result is a consequence of the buffer mechanism implemented by MM-DIRECT
(see Section 4.1). Thus, the proposed buffer mechanism mitigates the problem of a poten-
tial low write bandwidth in the indexed log file. The two lines tend downwards, i.e., the
number of writes decreases with time. This is due to the behavior of the benchmark that
performed more writes at the beginning of the experiments.

11200 A

‘Average write rate in sequential log

___-—___‘/\ —— Average indexing rate in indexed log

11100 4

11000

| \JX
10900 | /\\\//\ \
N

10800 +

Average of records written

10700 A

T T T T
1000 2000 3000 4000
Time (seconds)

Figure 7. Write bandwidth in sequential and indexed log files.

It is important to note that the indexed log behavior shown in this section avoids a
long log tail and, consequently, a downtime after a system failure. A short log tail means
that a few records must be inserted into the indexed log before the recovery process begins,
as discussed in Section 4.2. Thus, a short time is spent before the instant recovery begins,
i.e., downtime is insignificant, as shown in Section 5.1.

5.4. Scalability Experiments

We ran further experiments to observe the behavior and performance of MM-DIRECT
by increasing the number of threads (4, 5, 6, and 8). As the number of worker threads
increases, the number of clients increases and consequently the number of requests also
increases. In this way, the workload increases as the number of threads grow. In these ex-
periments, we measured the transaction throughput, recovery time, and CPU and memory
usage to analyze the scalability of MM-DIRECT.

Figure 8 (a) presents the average transaction throughput obtained during the full
test in each experiment. The results show that the transaction throughput grows with the
number of threads used, i.e., the system does not overload even if the workload increases.
Figure 8 (b) presents the average latency obtained during the recovery process in each
experiment. The results show that the average latency values are close in all experiments.
These experiments show that MM-DIRECT can effectively provide low latency and high
transaction throughput rates.

Figures 8 (c¢) and 8 (d) results show that the recovery time and full workload
execution time in the experiments are close. These results were already expected because
the system transaction throughput increased in each experiment, as shown in Figure 8 (a)

264

Companion Proceedings of the 38t" Brazilian Symposium on Databases

experiments. Besides, the increase in worker threads did not influence the latency of the
system, as shown in Figure 8 (b) experiments.

Figures 8 (e) and 8 (f) show the average CPU and memory usage of the database
system, respectively, obtained during the full test in each experiment. One may observe
that the proposed recovery approach does not overload the CPU and memory of the system

in any of the experiments.

40000

30000

10000

Average transaction
throughput
N
o
S
o
o

o

4 5 6 7
Number of worker threads

(a)

8

>
o
(=]
o

N
o
(=]
o

Workload execution
time (seconds)

(=]

=
=}
S

©
o
w

Average latency
(microseconds)
o o
N w
w o

o°
=]
o

CPU usage (%)
& o
o o

N
=]

o

4 5 6 7
Number of worker threads

(b)

8

4000

w
o
s}
o

2000

Recovery time
(seconds)

1000

100

50

Memory usage (MB)

4 5 6 7
Number of worker threads

(c)

8

4 5 6 7 8 4 5 6 7 8 4 5 6 7 8
Number of worker threads Number of worker threads Number of worker threads
(d) (e) (U]

Figure 8. Scalability experiments: transaction throughput (a), latency (b), recov-
ery time (c), workload execution time (d), CPU (e) and memory (f) usage.

6. Discussion

This section does a qualitative comparative analysis between MM-DIRECT and the re-
lated works discussed in Section 3. The related works need to recover the database com-
pletely so that new transactions can be executed, except Fineline which uses an instant
recovery mechanism. For this reason, we will only compare Fineline with MM-DIRECT.

MM-DIRECT implements a logical logging technique in which logical records
are flushed to a sequential log file at commitment. Besides, it implements an indexed
log, through a B -tree, in which record writes are asynchronous to commit time, i.e.,
updates to the indexed log does not interfere in the transaction processing. In contrast,
Fineline only implements a log file through a partitioned B-tree (indexed log). In Fineline,
physical log records are flushed to the indexed log at commit time, i.e., a transaction must
wait for updates to the indexed log to commit its writes. As discussed in Section 2, logical
logging tends to be faster than physical logging during transaction processing. Moreover,
as discussed in Section 4.1, record writes to a sequential log file is potentially faster than
doing so to an indexed log file. Thus, the MM-DIRECT logging mechanism is much
more lightweight than the Fineline logging technique. In addition, Fineline is limited to
a partitioned B-tree as indexed log structure, while MM-DIRECT can use different index
structures in the log, such as B*-tree and Hash table.

MM-DIRECT is enable to retrieve all log records to restore a given tuple by only
one search in the indexed log BT -tree. A B*-tree leaf node points to a list that contains
only log records to restore a tuple completely. In Fineline, a indexed log B -tree node
points to all partitions that contains the log records that updated a given page. Each

265

Companion Proceedings of the 38t" Brazilian Symposium on Databases

partition can contains update records of several pages. A partition is implemented as a
flat-file. Thus, Fineline must traverse multiple partitions to restore a page, i.e., it must
access multiple files. Besides, in each partition, the log records to restore that page must
be probed by a flat-file index. In this way, accessing log records in MM-DIRECT is much
simpler and potentially much faster than in Fineline.

The MM-DIRECT checkpoint technique reduces the number of log records in the
indexed log in order to accelerate the recovery process. On the other hand, Fineline im-
plements only a technique to merge partitions to provide acceptable read performance
during recovery. However, recovery time tends to increase as the number of log records
increases. Thus, MM-DIRECT checkpoint technique is effectively enable to reduce the
recovery time, while the Fineline does not implement checkpoints. A checkpoint in Fine-
line would be a very expensive process, as the system would have to update multiple
partitions for each page.

7. Thesis by-products

Database recovery is a critical task in any database system since it guarantees database
consistency in the presence of failures. Nonetheless, in-memory database systems are
not taught sufficiently in database courses or addressed in database textbooks. Thus, we
produced a survey entitled Main Memory Database Recovery: a Survey to elucidate the
main issues regarding in-memory database recovery. The survey was published in ACM
Computing Surveys (CSUR, Qualis A1, Impact Factor: 14.324) [Magalhaes et al. 2021a].
Link: https://doi.org/10.1145/3442197

The first version of our in-memeory-database recovery mechanism has been pub-
lished in the paper Indexed Log File: Towards Main Memory Database Instant Recovery
in the 24th International Conference on Extending Database Technology (EDBT 2021,
Qualis A1) [Magalhaes et al. 2021b].

Link: https://doi.org/10.5441/002/edbt.2021.34

We presented our Ph.D. work in the paper Main Memory Databases Instant Re-
covery at the VLDB Ph.D. Workshop in the 47th International Conference on Very Large
Data Bases (VLDB 2021, Qualis A1) [Magalhaes 2021].

Link: http://ceur-ws.org/Vol-2971/paperl0.pdf

We presented the work Main Memory Database Recovery: a Survey that we pub-
lished in ACM Computing Surveys as Distinguished Published Paper at the 36th Brazilian
Symposium on Databases (SBBD 2021, Qualis A4).

Link: https://sbbd.org.br/2021/full-papers-ts/

We have the tutorial Main memory database recovery strategies accepted to be
presented at the 48th ACM SIGMOD/PODS International Conference on Management of
Data (SIGMOD 2023, Qualis A1) in June 2023 [Magalhaes et al. 2023].

Link: https://doi.org/10.1145/3555041.3589402

We presented the tutorial Main memory database recovery strategies at the 37th
Brazilian Symposium on Databases (SBBD 2022, Qualis A4) [Magalhaes et al. 2022].
Link: https://sol.sbc.org.br/index.php/sbbd_estendido/
article/view/21861

We produced and presented the work Big Data Management and Processing with

266

Companion Proceedings of the 38t" Brazilian Symposium on Databases

In-Memory Databases at the Ist Latin American Computer Update Journey (Jolai 2018)
that was a satellite event of the 44th Latin American Computer Conference (CLEI 2018,

Qualis B1) [Magalhaes et al. 2018a].
Link: https://sol.sbc.org.br/index.php/jolai_clei/

We produced and presented the work In-Memory Database Management
Systems at the 14th Brazilian Symposium on Information Systems (SBSI 2018, Qualis
A4) [Magalhaes et al. 2018b].

Link: https://www.ucs.br/site/midia/arquivos/
topicos—sistema—-informacao.pdf

A prototype has been developed to evaluate the feasibility of the recovery
mechanism proposed in this thesis. The evaluation prototype has been implemented in
Redis (REmote DlIctionary Server) 5.0.7 and can be downloaded. We also produce a
manual in English and Portuguese versions. The manual serves as a guide for operating
the prototype and redoing all the experiments in the thesis.

Link: https://drive.google.com/drive/folders/
1LTbtY3600kWIpxZBM-hclBPvIjICuy2F?usp=sharing

The conferences and the journal in which we published and presented our thesis
are recognized as very relevant in the database area. The best in the world in the area. Very
few Brazilian researchers managed to publish in ACM Computing Surveys and presented
works at the VLDB conference. Furthermore, so far as we know, our group is the first
Brazilian group to have a tutorial accepted at SIGMOD conference tutorial track. Finally,
it is important to highlight that we have relevant citations. We received a citation from a
Huawei research group at the VLDB conference [Lee et al. 2022].

8. Future Works

We intend to evaluate MM-DIRECT performance by submitting different workload pat-
terns on the system during normal database execution and database recovery using differ-
ent indexed log data structures. In this way, perhaps we may be able to identify whether a
particular indexed log data structure is more appropriate for a particular workload pattern.

Another option of future works is partitioning the indexed log file in multiple files
in order to reduce the impact of a log file corruption. By partitioning the log into multiple
files, not all files should be corrupted if a log file corruption event happens.

Implement a parallel recovery technique to speed up the recovery process. The
technique can process different log partitions through different threads, for example.

Implement a machine learning technique to chose the best checkpoint technique,
for a given workload and database cardinality, in order to improve the system perfor-
mance.

9. Conclusion

This document summarizes the contributions of the thesis [Magalhaes 2022], which ad-
dresses the issues of providing main memory database instant recovery. This thesis pre-
sented MM-DIRECT, an instant recovery mechanism for MMDBs. MM-DIRECT allows
new transactions to run concurrently with the recovery process. It implements an indexed
log file to speed up fetch operation to access log records to restore data. Furthermore, the

267

Companion Proceedings of the 38t" Brazilian Symposium on Databases

proposed recovery mechanism restores data in on-demand and incremental ways. MM-
DIRECT implements two novel checkpoints (TuCC and TuCC-MFU). Besides reducing
recovery time, both checkpoint techniques do not interfere with transaction throughput.

The experiment results performed in MM-DIRECT show that the proposed instant
recovery reduces the perceived database repair time, as transactions can be performed as
soon as the moment the system is restarted. The experiments also analyzed the impact
of using an indexed log structure on transaction throughput rates, transaction latency, and
checkpoint efficiency. The experiments reveal that MM-DIRECT does not overload the
database system.

The contributions produced during research have been featured in several pre-
mier venues in the area in terms of scientific publications, short courses, tutorials, and
presentations. In addition, we produced a prototype to evaluate the feasibility of the MM-
DIRECT recovery. The prototype has manuals to guide the reproducibility of the thesis
experiments.

References

Diaconu, C., Freedman, C., Ismert, E., Larson, P.-A., Mittal, P., Stonecipher, R., Verma,
N., and Zwilling, M. (2013). Hekaton: Sql server’s memory-optimized oltp engine. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data.

Faerber, F., Kemper, A., Larson, P.—A., Levandoski, J., Neumann, T., Pavlo, A., et al.
(2017). Main memory database systems. Foundations and Trends® in Databases.

Farber, F., Cha, S. K., Primsch, J., Bornhovd, C., Sigg, S., and Lehner, W. (2012). Sap
hana database: data management for modern business applications. ACM Sigmod
Record.

Funke, F., Kemper, A., Miihlbauer, T., Neumann, T., and Leis, V. (2014). Hyper be-
yond software: Exploiting modern hardware for main-memory database systems.
Datenbank-Spektrum.

Lee, L., Xie, S., Ma, Y., and Chen, S. (2022). Index checkpoints for instant recovery in
in-memory database systems. Proc. VLDB Endow., 15(8):1671-1683.

Magalhdes, A. (2021). Main memory databases instant recovery. In Proceedings of the
VLDB PhD Workshop.

Magalhdes, A. (2022). Main memory database instant recovery. PhD thesis, Federal
University of Ceara, Brazil.

Magalhaes, A., Brayner, A., and Monteiro, J. M. (2022). Main memory database recovery
strategies. In Anais Estendidos do XXXVII Simpdsio Brasileiro de Bancos de Dados,
pages 175-180. SBC.

Magalhaes, A., Brayner, A., and Monteiro, J. M. (2023). Main memory database recovery
strategies. In SIGMOD/PODS ’23: Companion of the 2023 International Conference
on Management of Data, pages 31-35.

Magalhdes, A., Monteiro, J. M., and Brayner, A. (2018a). Gerenciamento e processa-
mento de big data com bancos de dados em memoria. In I Jornada latino-americana
de atualizacdo em informdtica , JOLAI 2018, Sdo Paulo, SP, Brazil, 2018.

268

Companion Proceedings of the 38t" Brazilian Symposium on Databases

Magalhdes, A., Monteiro, J. M., and Brayner, A. (2018b). Sistemas de gerenciamento de
banco de dados em memoria. In X1V Simposio Brasileiro de Sistemas de Informagdo ,
SBSI 2018, Caxias do Sul, RS, Brazil, 2018.

Magalhaes, A., Monteiro, J. M., and Brayner, A. (2021a). Main memory database recov-
ery: A survey. ACM Computing Surveys (CSUR).

Magalhdes, A., Monteiro, J. M., Brayner, A., and Moraes, G. (2021b). Indexed log file:
Towards main memory database instant recovery. In EDBT.

Memtier Benchmark (2020). Github - redislabs.
https://github.com/RedisLabs/memtier_benchmark. Accessed: August 26, 2020.

Olson, M. A., Bostic, K., and Seltzer, M. 1. (1999). Berkeley db. In USENIX Annual
Technical Conference, FREENIX Track, pages 183—191.

Sauer, C., Graefe, G., and Hérder, T. (2018). Fineline: log-structured transactional storage
and recovery. Proceedings of the VLDB Endowment.

Stonebraker, M. and Weisberg, A. (2013). The voltdb main memory dbms. /EEE Data
Eng. Bull.

Wu, Y., Guo, W., Chan, C.-Y., and Tan, K.-L. (2017). Fast failure recovery for main-
memory dbmss on multicores. In Proceedings of the 2017 ACM International Confer-
ence on Management of Data.

Yao, C., Agrawal, D., Chen, G., Ooi, B. C., and Wu, S. (2016). Adaptive logging: Opti-
mizing logging and recovery costs in distributed in-memory databases. In Proceedings
of the 2016 International Conference on Management of Data.

Zheng, W., Tu, S., Kohler, E., and Liskov, B. (2014). Fast databases with fast durability
and recovery through multicore parallelism. In //th {USENIX} Symposium on Oper-
ating Systems Design and Implementation ({OSDI} 14).

269

