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Abstract. Privacy-Preserving Record Linkage (PPRL) intends to integrate pri-
vate/sensitive data from several data sources held by different parties. It aims
to identify records (e.g., persons or objects) representing the same real-world
entity over private data sources held by different custodians. Due to recent laws
and regulations (e.g., General Data Protection Regulation), PPRL approaches
are increasingly demanded in real-world application areas such as health care,
credit analysis, public policy evaluation, and national security. As a result, the
PPRL process needs to deal with efficacy (linkage quality), and privacy prob-
lems. For instance, the PPRL process needs to be executed over data sources
(e.g., a database containing personal information of governmental income dis-
tribution and assistance programs), with an accurate linkage of the entities,
and, at the same time, protect the privacy of the information. In this context, our
work presents contributions to improve the privacy and quality capabalities of
the PPRL. Moreover, we propose improvement to the linkage quality and sim-
plify the process by employing Machine Learning techniques to decide whether
two records represent the same entity, or not; and enable the auditability the
computations performed during PPRL.

1. Introduction
In recent times the companies and government significantly increased the amount of
the collected data. Much of this data is about personal information, such as shop-
ping transactions, browsing history, telecommunication records, financial information,
or electronic health records. This data has been employed in data mining and ana-
lytic techniques that can provide relevant information for several areas of knowledge.
For instance, personal data can i) be employed to perform crime and fraud detection
[Vatsalan et al. 2013a], ii) lead to better patient outcomes or to detect a disease out-
break in the health sector [Batini and Scannapieco 2016], iii) be of vital importance to
national security [Vatsalan et al. 2016] or be a competitive edge to a commercial enter-
prise [Christen et al. 2020].

Data mining and analysis often require information from multiple
data sources to be integrated in order to enable precise and useful analysis
[Batini and Scannapieco 2016]. However, to execute data integration, first, we
have to identify and aggregate records that relate to the same entity (e.g., people,
restaurants, publications, products, among others) from one or more data sources
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[Christen et al. 2020]. This process is known as Record Linkage (RL), Data Matching
(DM), or Entity Resolution (ER) [Christen et al. 2020, Batini and Scannapieco 2016].
Although the process receives several names in the literature, in this work, we will adopt
RL.

The RL process is composed of four major steps. The first one is data pre-
processing, which ensures the data from several data sources are in the same format.
The second step, indexing, intends to reduce the number of comparisons performed by
selecting entity pairs to be matched (compared) in the subsequent step. In the third step,
the actual entity pair comparison occurs. In the comparison step, each entity pairs receives
a similarity value. These pairs are compared using various attributes (for a person, it can
include name, sex, and age) and comparison functions. Finally, in the last step (classifi-
cation), the record pairs are classified into matches, non-matches, and potential matches,
depending on the decision model used [Batini and Scannapieco 2016].

A recurring problem that Record Linkage faces is the absence of attributes capa-
ble of uniquely identifying entities, which refer to the same entity, in the different data
sources. The absence of a unique identifier, such as an ID, makes the use of simple
comparison operations (e.g. SQL joins) impossible, making the linkage to be carried
out with sophisticated comparisons involving a set of common attributes to all entities
in the different data sources. Such a set of attributes is called quasi-identifiers (QIDs)
[Christen et al. 2020].

Currenttly, Record Linkage not only faces computational and operational chal-
lenges intrinsic to the comparison and classification methods, but it also has to address
privacy preservation challenges due to recent laws and regulations such as European Gen-
eral Data Protection Regulation (GDPR), Brazilian General Data Protection Law (LGPD)
and the US HIPAA Privacy Rule. In this context, Privacy-Preserving Record Linkage
(PPRL) emerges, aiming to identify matching entities across private data sources, en-
suring that the data’s privacy and confidentiality are preserved throughout the linkage
process.

In order to address privacy-related issues the basic idea of Privacy-Preserving
Record Linkage (PPRL) is to execute the linkage process in anonymized data (by per-
turbating the original data with the use of encryption, hash functions, and noise addi-
tions), ensuring that the privacy and confidentiality of the data are preserved during the
linkage process. PPRL reveals only a limited amount of information. For instance, a
party only knows which of its own records exist in the other party’s data source or the
number of duplicated entities presented in the datasets used as input to the PPRL process
[Vatsalan et al. 2016].

A PPRL solution needs to address two issues (or characteristics): privacy, and
linkage quality. In the following, we outline the PPRL characteristics.

1. Privacy: in order to fulfill privacy-preserving requirements, PPRL solutions em-
ploy sophisticated anonymization techniques (e.g., homomorphic encryption and
Bloom Filter) to preserve the privacy of the entities at a linkage quality level and
an extra computational cost. However, the use of the anonymization techniques
do not guarantee information privacy, several privacy attacks are able to break
the privacy of anonymized data. Therefore, the use of privacy-preserving proto-
cols along with anonymization techniques is required to ensure privacy during the
PPRL process;

2. Linkage Quality: in general, real-world data sources are ’dirty’
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[Vatsalan et al. 2013a], which means they contain errors, typos, variations
and values that could be missing. For instance, the name ’Anna Estella’ could be
entered as ’Ane Stela’ by a hospital employee, making it hard to link patient data
across different data sources. Therefore, the exact comparison of QID values is
not sufficient to achieve accurate linkage results. Thus, to improve the linkage
quality, the use of approximate comparison techniques1, as well as accurate
classification techniques, are needed to achieve accurate linkage quality in record
linkage applications. These quality problems are exacerbated due to the privacy
requirements, i.e., anonymized QIDS. Thus, every PPRL process needs to address
the linkage quality issues.

For a PPRL solution to be used in real-world applications, it should address
these two characteristics. Furthermore, the PPRL solution needs to provide a comprised
among privacy, and quality according to the needs of the PPRL parties’ requirements.
There have been many different approaches proposed for PPRL [Vatsalan et al. 2019,
Vatsalan et al. 2018, Vatsalan et al. 2016]. However, some approaches attempt to address
the problem of PPRL fall short in providing a reliable solution, either because they do
not provide sufficient privacy capabilities or because they cannot provide high linkage
quality.

2. Limitations of Privacy-Preserving Record Linkage

As previously introduced, PPRL needs to address two issues. However, it is worthwhile
to mention that Efficiency, Quality, and Privacy are conflicting. In other words, if a
PPRL solution prioritizes one of these three characteristics, the other two will suffer.
For instance, if we employ a complex anonymization, such as Homomorphic Encryption
[Nóbrega et al. 2016], technique we add an extra computational cost in every comparison.
Furthermore, we force the linkage process to be carried based only on exact comparisons
due to encryption limitations [Vatsalan et al. 2013a]. Therefore, the exact comparisons
have an impact on the linkage quality because the QID’s values need to be the same for
a pair of entities to be considered a match; for example, the entities’ ana’ and ’Ana’ are
classified as ”no match” by exact comparisons techniques.

While PPRL techniques help overcome the privacy-preserving linkage of sen-
sitivity data, they present their own problems. Recent surveys [Christen et al. 2020,
Vatsalan et al. 2019, Vatsalan et al. 2018, Vatsalan et al. 2016, Vatsalan et al. 2013a] in-
dicate that the main challenges for the extensive use of PPRL are related to the linkage
quality and privacy issues. In the following, we outline some of the high-level challenges
of the PPRL that are marked as open issues by the literature:

• New adversarial models: the parties PPRL need to make assumptions about the
behavior of the other parties, and this assumption is named as adversarial models.
The currently used adversarial models require that the PPRL parties fully trust
other parties [Christen et al. 2020]. However, this adversarial model is not realis-
tic for real-world applications [Vatsalan et al. 2013a], mainly because it is hard to

1Approximate comparison techniques return the degree of similarity among two entities, a number be-
tween 0 and 1, where 0 means dissimilarity and one total similarity. For instance, if we employ an approxi-
mate comparison technique over the ’Anna’ and ’Ane’ example, it will return a value of .75, indicating that
the names are 75% similar, while the exact comparison will indicate that ’Anna’ and ’Ane’ are not similar.
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find PPRL parties that will not try to learn from the exchange information. There-
fore, the need for a more realistic adversarial model is an open issue to the PPRL
community;

• Anonymization techniques: many of the anonymization techniques used in the
PPRL process currently lack evidence that verifies whether these techniques can-
not be attacked by an adversary, such as phonetic encoding and generalization
techniques [Vatsalan et al. 2013a]. On the other hand, those techniques based on
secure multiparty computation and encryption, while probably secure, are cur-
rently less scalable to link large data sources. Thus, in order to improve the
linkage, novel anonymization techniques are required that are more secure than
current approaches while still efficient and accurate, allowing the approximate
comparisons of the QIDs values [Christen et al. 2020];

• PPRL classification: most PPRL solutions employ a simple classifier. In order
to classify the entity pairs, the PPRL parties define a threshold and compare it
against the value that represents the similarity calculated for an entity pair. How-
ever, the threshold value definition is a complex task that requires expert operators
to ”guess” the appropriate value. For instance, if the threshold value is too high
(e.g., 0.9 or 1), PPRL will miss true match entities. On the other hand, if this value
is too low, PPRL will likely classify false positive matches. Therefore, novel clas-
sification techniques are required in order to help the PPRL operators to classify
the entities correctly.

Unless progress is made along with these issues mentioned above, it will not be
easy to employ PPRL in real-world data. Next, we present the aims of our research.

3. Research Objectives and Contributions
Based on the challenges summarized in Section 2, our work intends to address the PPRL
process’s bottlenecks that represent limitations to its extensive use of PPRL. Given the
current demands for improvement to the PPRL process, this work’s main goal covers
improving privacy and the linkage quality of PPRL. The privacy improvements will
be concentrated on the anonymization and comparison steps using a novel anonymiza-
tion technique and auditable data comparison protocols, respectively. The linkage quality
improvements are focused on automatic (Machine Learning-based) classifiers to PPRL.
Each contribution will be employed to tackle a different bottleneck, detailed in the specific
goals section

3.1. Specific goals
Considering the proposed main goal and the fact that the privacy and quality of linkage
issues are the most limiting PPRL characteristics to widespread use of real-world appli-
cations, this work has the following specific goals:

1. Improve the privacy-preserving capabilities of the Bloom Filter anonymization
technique;

2. Propose a novel adversary model that reduces the need of thrust by PPRL parties;
3. Propose a machine learning-based classifier to mitigate the threshold selection

during the PPRL Classification step;
4. Propose a novel encoded/anonymized record pair representation that enables the

use of novel ML-based classifiers (e.g., deep learning-based classifiers) to improve
the linkage of the PPRL process;
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4. Research Contributions
In order to illustrate our contributions to the PPRL process, we plotted Figure 1. It depicts
the PPRL steps, further detailed in Section 1, highlighting the steps directly impacted by
our contributions.

Figure 1. Our contributions within the PPRL process.

Notice that we propose a contribution to the Anonymization step. This
step is critical to the entire PPRL process, impacting the privacy, quality, and ef-
ficiency of the PPRL. The majority of the PPRL processes consider the Bloom
Filter (BF) anonymization technique, further detailed in our thesis. BF is able
to produce an accurate similarity distance between two entities’. However, re-
cent studies [Vidanage et al. 2020, Christen et al. 2017, Ranbaduge and Christen 2018,
Vidanage et al. 2019, Christen et al. 2019, Vidanage et al. 2022] demonstrate that if an
attacker has access to a complete database anonymized with this technique, he/she can
re-identify the entities, breaking the privacy of the information.

Thus, in this context, we propose the Splitting Bloom Filter (SBF). SBF aims
to enable an iterative comparison of the entities’ similarity by breaking the entities’
anonymized representation in splits regarding the BF privacy enhance technique. In other
words, SBF modifies the anonymization step’s output to enable the auditability in the
PPRL comparison step, our second contribution. The SBF address our first specific goal.

In the Comparison step lays our second contribution. A major deficiency in the
PPRL context is that the PPRL party needs to consider an unrealistic adversary model.
The majority of the PPRL solutions assume an honest-but-curious (HBC) adversary
model. This adversary model assumes that all PPRL parties will follow a pre-agreed
protocol and will not try to re-identify the anonymized information exchanged during the
PPRL. Therefore, having such trust in the PPRL context is unrealistic.

To address the issue mentioned above, we propose the Auditable Blockchain-
Based PPRL (ABEL) to provide auditability during the comparison step, eliminating the
need to trust the other PPRL parties fully. Moreover, ABEL enables the auditability of
the entity’s similarity computation using Blockchain technology, with on-chain and off-
chain computations. It is worthwhile to mention that the Blockchain stores all processed
data on-chain to provide a transparent and temper evident computation. However, this
Blockchain characteristic, in a PPRL context, poses a threat to entities’ privacy. The us-
age of off-chain computation by the parties is a fundamental aspect to preserve the privacy
of entities during the PPRL execution. A detailed explanation of the ABEL is presented
in our thesis. The ABEL addresses our second specific goal.

Our third contribution is placed in the Classification step of the PPRL. Due to
privacy limitations, the classification step i) can not be performed or assisted by humans
(oracle), and ii) there is no available label data, making it hard to train Machine Learning
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(ML) classifiers. The majority of the PPRL processes utilize a simple threshold (guessed
by a specialist) to define whether an entity pair is a match, or not. It is worthwhile to
remark that PPRL is used in law enforcement and medical applications, and an erroneous
classification of the PPRL could have a serious outcome to a person. For instance, an
innocent man could be flagged as a criminal, or a physician could prescribe the wrong
treatment to a patient.

In this context, we propose the Auto-Tuned Unsupervised Classification approach
(AT-UC) to provide PPRL with better classifiers; eliminating the need for a specialist to
guess a threshold and improve the linkage quality. AT-UC utilizes a Transfer Learning
technique to employ non-private datasets for training and modifying a classifier to be
executed in a private dataset to tackle the absence of labeled data. Moreover, AT-UC also
has to define a proper feature space, select a related dataset, and modify the classifier.
AT-UC is presented in detail in our thesis. The AT-UC addresses our third specific goal.

In the PPRL context, most of the automatic classifiers employ statisti-
cal learning techniques (e.g., Support Vector Machine and Logistic Classifiers)
[Christen and Vatsalan 2012, Dong and Rekatsinas 2018, Christen et al. 2020]. More-
over, these classifiers often employ the similarity measures of the records as input (fea-
tures). Furthermore, standard similarity measures often do not manage well the hetero-
geneity of the underlying input data. This requires experts to design and configure such
measures manually [Loster et al. 2021]. Therefore, due to the limitation of the similarity
measures employed in PPRL [Christen et al. 2020, Loster et al. 2021], the classifier task
of delineating a suitable separation region (e.g., hyperplane or line) between matching
and non-matching records gets more challenging.

Our fourth contribution seeks to mitigate the problem of the similarity measures
influence over the classifiers employed in PPRL. Our contribution, the Deep Learning
Classifiers (DLC) to identify patterns that indicate whether an anonymized record pair is
a match or not. We also propose a novel representation of the encoded record pair based
on a dynamical system representation of the data (Recurrence Plot, also detailed in our
thesis). It is worth noting that the DLC could improve the linkage quality, mitigating the
problems of miss classification presented in PPRL. The DLC address our last specific
goal.

In summary, this thesis intends to improve the PPRL process in terms of privacy
and linkage quality. Moreover, the contributions introduced in our thesis can be em-
ployed to solve problems beyond the PPRL scope. For example, the contribution can be
employed to: i) create a Federated Data Linkage solution to integrate multiple sensitive
databases (e.g., patient records), providing a tool for epidemiological studies in a country,
and ii) adequate data integration tasks to privacy laws (e.g., Brazilian LGPD).

5. Research Relevance

Data privacy or information privacy has recently gained relevance for individuals, gov-
ernmental institutions, and corporations. The relevance of data privacy is reflected
by the number of laws and regulations presented by different countries worldwide
[Christen et al. 2020]. Due to this regulation, organizations cannot share their data with-
out addressing the privacy of the individuals [Vatsalan et al. 2013a, Vatsalan et al. 2018].
In this context, the PPRL process aims to improve the input quality to data applications,
such as data mining and analytics.
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Identifying duplicated entities across private data sources has an important out-
come for any data application. For instance, in the decision-making context, the low
quality of the data negatively influences the analyses’ interpretation based on these data
and, consequently, compromises the decisions. For example, a production chain planning
process involving the purchase and stock of raw materials, production, and storage of
products. It will most likely be hampered if decisions are made based on reports that do
not include duplicated materials stored in a different warehouse.

The previous example was made considering non-private data. Now imagine the
consequence of duplicated records in health application. For instance, the existence of
duplicated patient records may lead to the wrong conclusion in an investigation if a spe-
cific medication is efficient against a disease. In summary, PPRL is an important step to
analyze, mine, and process private data sources.

PPRL can be employed in different scenarios besides medical and health appli-
cations. As an example, we have anti-terrorist, organized crime, and national security
applications. For instance, consider an investigation against the money laundry and
corruption investigation. Such investigation needs to use and manage various national
databases, from many different sources, including law enforcement agencies, financial
institutions, travel history, phone records, and so on [Christen 2012, Christen et al. 2020].
It is obvious that this database is highly sensitive and therefore need to be protected
[Vatsalan et al. 2013b]. Thus, the PPRL may facilitate linking the information without
all data being given to a criminal investigation unit. In other words, only linked infor-
mation of suspicious individuals is available to the investigation, reducing privacy and
confidentiality breaches [Christen et al. 2020].

The need for PPRL solutions is reflected by the wide demand to link real-world
private databases. Several countries with different privacy frameworks and legislation are
linking some of their sensitive databases. In Brazil, sensitive databases are linking to in-
vestigate the consequences of cash welfare and housing programs for Brazil’s most poor
population concerning their health outcomes [Pita et al. 2015]. In Germany, information
about newborns are linking sensitive to measure the quality of their medical systems.
Switzerland, Canada, and Australia standardized their anonymization techniques and cre-
ated a federal institution to coordinate the linkage of private and sensitive information
[Christen et al. 2020].

Recently laws and regulations (such as the Brazilian LGPD2, European Union
GDPR3, and USA HIPAA4) intend to enhance individuals’ control and rights over their
sensitive information, enforcing the institutions (governments or private companies) to
protect and preserve the privacy of individuals and entities. Moreover, these laws make
the right to privacy a basic human right [Bygrave 1998]. Therefore, privacy violations
are beyond data protection laws and can be characterized as a violation of human rights.
Consequently, the penalty for a violation of privacy is severe. In this context, the PPRL
task is essential to perform data integration in light of existing privacy laws.

A field that can leverage the PPRL techniques is the Federated Data Linkage appli-
cation. Federated Data Linkage is a data integration task that intends to link data of multi-
ple institutions (e.g., a hospital) that integrates a large network/federation (e.g., all federal

2https://www.planalto.gov.br/ccivil 03/ ato2015-2018/2018/lei/l13709.htm
3https://gdpr-info.eu/
4https://www.hhs.gov/hipaa/index.html
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hospitals of a country) [Jarke and Quix 2022]. In the Federated Data Linkage context,
laws (e.g., GDPR and LGPD) and regulations (e.g., HIPAA) require that the privacy of
the individuals are preserved during the task execution [Boyd et al. 2012]. For example,
during the 2019 pandemic, the German university hospitals [Prokosch et al. 2022] made
available for researchers a database with information regarding the diagnostic and thera-
peutic approaches for COVID-19. This database was built over the information available
only in isolated silos (comprising all 36 German university hospitals) and inaccessible to
external researchers by using a Federated Data Linkage solution (the CODEX5 project).
Therefore, PPRL techniques could link records (e.g., patient records), preserving the pri-
vacy of the individual in the Federated Data Linkage applications.

The present work relevance is related to the proposal of methods that attempt to
extend the use of PPRL techniques by eliminating bottlenecks. Specifically, this work
intends to enhance the linkage quality and propose novel privacy assumptions. The
contributions presented in our work can be incorporated into the existing PPRL process
(i.e.,medical application) and/or can be employed in future researches.

6. Related Work
This section provides an overview of the contributions presented in this document com-
pared to the state-of-the-art. Given the wide range of our contributions, this section is
divided into two parts to enhance clarity: Privacy-preserving protocols and auditable
computation in PPRL and Machine Learning applications in PPRL. In the following, we
highlight the contributions and advancements in the related work field.

6.1. Privacy-preserving protocols and auditable computation
Most of the attack methods on the BF technique in the context of PPRL are based on
the fact that plaintext values that frequently occur in the dataset will generate a BF with
the same frequency as the plaintext values. This attack is named as frequent bit pat-
tern attack [Christen et al. 2020, Christen et al. 2017, Kuzu et al. 2012, Kuzu et al. 2011,
Vidanage et al. 2022]. In this context, the work of Christen et al. [Christen et al. 2017,
Vidanage et al. 2022] shows that to reidentify the entities, an adversary needs to generate
the bit pattern using the possible values of the attributes. For instance, to reidentify the
encoded name of a patient thread for a specific pathology, an attacker could generate the
bit pattern attack using a list containing the most common names in a social network.

Recent works [Ranbaduge and Christen 2018, Vidanage et al. 2019] propose a
novel cryptoanalysis attack, a pattern mining-based cryptoanalysis attack. The major
advantage of this attack method over the frequent bit pattern attacks is that it neither re-
quires frequent BF nor frequent plaintext values. For instance, the work of Vidanage et
al. [Vidanage et al. 2019] applies maximal frequent itemset mining [Cryan 2006] (using a
language model) on a BF database to identify sets of frequently co-occurring bit positions
that correspond to encoded frequent sub-string values. The Graph-based cryptoanalysis
attack uses the q-grams encoded into one single BF or the similarities calculated between
BF pairs [Christen et al. 2020] to build a graph and employs the generated graph to rei-
dentify the anonymized data.

To mitigate the aforementioned attacks, we proposed an extension of the BF
(the SBF, detailed in [Nóbrega et al. 2021]) that intends to increase the privacy of
the similarity computations of PPRL.

5https://www.netzwerk-universitaetsmedizin.de/projekte/codex
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In the PPRL context, Vatsalan and Christen’s [Vatsalan 2014,
Vatsalan and Christen 2016] presented Security Multiparty Computations (SMC)6

considering an honest-but-curious adversary model. Vatsalan and Christen’s proposes
a two-party protocol that eliminates the need for a third party by iteratively revealing
selected bits in the BFs between two parties. However, this work is unable to audit the
comparison performed during PPRL.

Hybrid PPRL protocols that combine differential privacy techniques with SMC
techniques have been proposed to reduce the computational cost of PPRL [He et al. 2017,
Inan et al. 2010]. However, such protocols need to disclose all entities stored in their data
sources amongst the parties compromising the privacy capabilities of the anonymization.
To mitigate this issue, Rao et al. [Rao et al. 2019] propose a framework under a HBC
security model that employs a trust-third party to coordinate the record matching be-
tween the parties. The parties send to the trust-third party synopses (with Differential
Privacy guarantees) of the data. Based on the received synopses, the trusty-third party
matches the entities with a distance beyond a threshold specified by the parties. Notice
that the works [He et al. 2017, Inan et al. 2010, Rao et al. 2019] consider an HBC and
trusty third party, which is a hindrance to the wide usage of PPRL in real-world applica-
tions [Christen et al. 2020, Vatsalan et al. 2013b].

In this context, we have identified a research opportunity and proposed
the Auditable Blockchain-Based Record Linkage (ABEL), further explained in
[Nóbrega 2022, Nóbrega et al. 2021]. Unlike previous works, ABEL takes into account
a new adversary model (the covert adversary) by considering a SMC protocol that
is able to audit the computation performed during PPRL.

6.2. Machine Learning usage in PPRL

Record Linkage (RL) researchers started to explore the usage of techniques originated in
machine learning, data mining, artificial intelligence, information retrieval, and database
research to improve the classification of linkage process [Christen and Vatsalan 2012,
Dong and Rekatsinas 2018]. Many of these approaches are based on supervised learning
techniques [Christen 2008, Loster et al. 2021] and assume that training data is available -
i.e., record pairs with labels indicating whether they are a match or not. However, such
datasets with labels are often unavailable in real-world applications or must be prepared
manually (considering a traditional RL context). Furthermore, in the PPRL context, it is
not possible to manually label these datasets due to the privacy constraints imposed by
the PPRL.

The use of ML in the PPRL context is closely related to Privacy-Preserving
Machine Learning (PPML). PPML techniques intend to protect the privacy of the data
(training and testing data), model, and prediction [Al-Rubaie and Chang 2019]. Thus,
our work and PPML share one goal in common, the protection of data privacy. The
works [Chaudhuri and Monteleoni 2009, Brickell and Shmatikov 2009, Tang et al. 2019]
use encryption techniques, i.e., homomorphic encryption, to protect the privacy of
data. The works of Rajkumar et al. [Rajkumar and Agarwal 2012] and Mivule et al.
[Mivule et al. 2012] use the concept of differential privacy to provide privacy-preserving
capabilities to their approaches. The work of Miyajima et al. [Miyajima et al. 2017] uses

6The SMC is a subfield of cryptography that aims to create methods for parties to jointly compute a
function over their inputs while keeping those inputs private [Lindell 2017].
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a SMC protocol, to train a classifier in a federated learning context. It is worthwhile to
mention that all the presented PPML works [Tang et al. 2019, Miyajima et al. 2017] still
need labeled data, which is unavailable within the PPRL context.

Transfer Learning (TL) is another technique that has been explored in
recent years in the RL context. The work of Thirumuruganathan et al.
[Thirumuruganathan et al. 2018] considers a traditional RL scenario to propose the usage
of TL. The authors propose TL usage along with Distributed Representation for Words
(called word embeddings). Distributed Representation for Words [Mikolov et al. 2013,
Peters et al. 2018], recently introduced to deep learning, are learned from the data such
that semantically related words have embeddings that are often close to each other. Typ-
ically, these approaches map each word in a dictionary into a high dimensional vector
(e.g., 300 dimensions [Thirumuruganathan et al. 2018]) where the geometric relation be-
tween the vectors of two words – such as vector difference or cosine similarity – encodes
a semantic relationship between them.

Kirielle et al. [Kirielle et al. 2022] propose a TL method for RL over structured
data. The work assumes homogeneous domains with the same feature space (same at-
tribute types and similarity functions). In other words, it employs the similarities of the
entities’ attributes (e.g., names and addresses) from one domain to train a classifier to be
employed in another domain that shares the exact attributes. It is worthwhile to mention
that the comparison in PPRL is usually performed over the complete record, harming the
linkage quality in a PPRL context.

Several linkage processes employ automatic (ML-based) techniques to iden-
tify matching entities. However, few of them are compatible with PPRL. In
this context, we proposed the novel automatic classification step (AT-UC, de-
tailed in [Nóbrega et al. 2023]) and deep learning-based classifier (DLC, detailed in
[Nóbrega 2022]) for automatic classification in the PPRL context.

Notice that the majority of works do not provide privacy-preserving guarantees.
PPML, which provides privacy guarantees, requires labeled data. As mentioned early in
this section, labeled data is usually unavailable in the PPRL context. The AT-UC and DLC
can provide ML-based classifiers without labeled data to the PPRL process. Furthermore,
DLC refers to a novel method to compare and classify entity pairs that do not rely on
standard similarity measures, addressing the bias introduced by the standard similarity
measures [Koudas et al. 2006, Loster et al. 2021].

7. Conclusions and Future Work

In this section, we summarize the contributions presented in this thesis. Moreover, this
chapter reveals the perspectives of future research topics by commenting on weaknesses
and topics not addressed by the contributions present in this document.

7.1. Contributions

Our work provides the contributions that: i) enable the usage of a novel adversary model
and ii) improve the linkage quality by proposing an automatic classification approach
to the PPRL process. Moreover, besides privacy and quality improvements, our work
impacts the adoption (usability) of PPRL by companies and governments by reducing
the level of trust to execute PPRL and eliminating the need for an expert to define a
classification threshold.
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Our contributions are designed to alleviate the limitations imposed by data privacy
laws such as the Brazilian ”Lei Geral de Proteção de Dados” (LGPD) and the European
”General Data Protection Regulation” (GDPR). These laws restrict the manipulation and
operation of private data, and our efforts are aimed at finding ways to work within these
limitations while still being able to provide valuable contributions. For example, con-
sidering a medical research context, our contributions can be employed to build Privacy-
Preserving Federated Linkage System (such as the CODEX5) to link patients based on
their medical records.

7.2. Results
The products derivate from our contributions are divided into three categories (publica-
tions, datasets, and source code), presented in the following.

Publications

Our research has resulted in publications that contribute to the advancement of this field.
Among the publications, we have three journal articles and one conference paper. More-
over, we are currently in the final stages of preparing an article for publication in a high-
impact journal, which focuses on the application of the DLC (Deep Learning Classifier)
method.

Type Publication

Jorunal Blockchain-based privacy-preserving record linkage: enhancing data privacy in an
untrusted environment - T Nóbrega, CES Pires, DC Nascimento. Information Sys-
tems 102, 101826 - 2021. 10.1016/j.is.2021.101826

Jorunal Limitation of Blockchain-based Privacy-Preserving Record Linkage - T Nóbrega,
CES Pires, DC Nascimento. Information Systems 108, 101935 - 2022.
10.1016/j.is.2021.101935

Jorunal Nóbrega, Thiago, et al. ”Towards automatic Privacy-Preserving Record Linkage: A
Transfer Learning based classification step.” Data & Knowledge Engineering 145
(2023): 102180. 10.1016/j.datak.2023.102180

Conference Towards Auditable and Intelligent Privacy-Preserving Record Linkage - T Nóbrega,
CES Pires, DC Nascimento. Anais Estendidos do XXXVI Simpósio Brasileiro de
Bancos de Dados, 99-105S - 2020. DOI 10.5753/sbbd estendido.2021.18170

Table 1. Publication list.

Datasets

We have curated a comprehensive dataset, named the ”Brazilian Politician dataset for
Record Linkage”7, which is designed for testing our contribution using Brazilian real-
world data. This dataset is a resource for researchers in various domains, such as RL,
PPRL, and population studies. It contains structured and processed data and gold stan-
dards for evaluation.This dataset facilitates the development and evaluation of classifiers
and enables other researchers to test and improve their methods.

Source code with the instruction to re-execute the experiments

Our contributions contain public repositories containing the source code and instructions
for re-executing the experiments. These repositories provide convenient access to the
implementation details and facilitate our work’s replication and further exploration. The
repositories for each contribution are as follows:

1. Splitting Bloom Filter8

2. Auditable Blockchain-Based PPRL9

7doi:/10.5281/zenodo.7957492
8https://github.com/thiagonobrega/auditable_pprl
9https://github.com/thiagonobrega/bcpprl-simplified
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3. Auto-Tuned Unsupervised Classification 10

4. Deep Learning Classifiers 11

These repositories serve as valuable resources for researchers interested in explor-
ing, adapting, or extending our work in privacy-preserving record linkage. They provide
transparency, reproducibility, and a foundation for further advancements in the field.

7.3. Future Work

Future work based on our contributions includes exploring the integration of privacy-
preserving techniques with blockchain technology, such as the Privacy-Preserving
Blockchain approach. Researchers have proposed encrypting data on the blockchain and
utilizing secure enclaves for executing blockchain nodes to enhance transactional privacy
[Dwivedi et al. 2019, Russinovich et al. 2021, Weng et al. 2019].

Another promising direction for future research is the integration of differential
privacy into PPRL. Differential privacy can also be integrated into PPRL for stronger pri-
vacy guarantees [Dwork 2008, Dwork and Roth 2014]. Techniques such as Bloom Filters
and Adaptive Bloom Filters can be enhanced with differential privacy to provide enhanced
privacy guarantees and reduce the privacy risk.

Additionally, privacy-preserving techniques can be applied to non-structured data
domains like Natural Language Processing (NLP). Distributed Representation of Words
(DR) has demonstrated successful utilization in NLP applications, particularly in deep
learning models [James et al. 2021]. Leveraging privacy-preserving techniques to encode
DR can enable the development of PPRL methods that link non-structured data while
maintaining privacy. This opens up possibilities for privacy-preserving NLP solutions,
such as linking medical records or identifying patients with specific conditions, with pri-
vacy guarantees intact [Dong and Rekatsinas 2018].

This section provides a brief list of future work based on our contributions, for
further detail on future work possibilities see our full text [Nóbrega 2022].
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