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Abstract. Differential privacy is the state-of-the-art formal definition for data
release under strong privacy guarantees. We present the local dampening me-
chanism a differentially private mechanism for non-numeric queries. Our ap-
proach is the first to leverage the notion of local sensitivity to reduce noise in-
jected to the output. We develop a theoretical accuracy analysis to show the
conditions that our approach performs accurately and we conduct a experimen-
tal evaluation with competitors on diverse problems. Those contributions were
published on VDLB conference and on the special issue of the VLDB journal.
Non-related contributions were published in SBBD, SBRC, CLOSER and FGCS.
This work was carried out in cooperation with AT&T Labs Research - USA.

1. Introduction
Recent regulations on data privacy, such as General Data Protection Regulation (GPDR)
[Commission 2018] and Lei Geral de Proteção de Dados Pessoais (LGPD) [Brasil 2018],
pose strict privacy requirements when gathering, storing and sharing data. Specifically,
they require that an individual’s information be rendered anonymous so that the individual
is no longer identifiable in the published information.

Differential privacy [Dwork 2011, Dwork et al. 2006b] is the state-of-the-art for-
mal definition for data release under strong privacy guarantees. It imposes near-
indistinguishability on the released information whether an individual belongs to a sensi-
tive database or not. The key intuition is that the original analyst’s query is replaced by a
random algorithm where the output distribution of answers should not change significan-
tly based on the presence or absence of an individual. It provides statistical guarantees
against the inference of private information through the use of auxiliary information.

Algorithms can achieve differential privacy by employing output perturbation,
which releases the true output of a given non-private query f with noise added. The
magnitude of the noise should be large enough to cover the identity of the individuals in
the input database x.

For a numeric query (i.e., query with numeric output) f , the Laplace mechanism
[Dwork et al. 2006b] is a well-known output perturbing private method. It adds numeric
noise to the output of f and calibrates the noise based only on f and not on x. The
noise magnitude is proportional to the concept of global sensitivity, which measures the
worst-case impact on f ’s output of the addition or removal of an individual over the set
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of possible input databases. This may result in an unreasonably high amount of noise
when x is far from the database with the worst-case impact, which is the case for many
realistic databases. To remedy this, Nissim et al. [Nissim et al. 2007] proposed to add
instance-based noise calibrated as a function of x. They introduced the notion of local
sensitivity, which quantifies the impact of addition or removal of an individual for the
database instance x, resulting in a lower bound to the global sensitivity.

For the class of non-numeric queries f , i.e. f has a non-numeric range R, the
exponential mechanism [McSherry and Talwar 2007] ensures differential privacy by sam-
pling elements from R using the exponential distribution. This requires a utility function
u(x, r) that takes as input a database x and an element r ∈ R and outputs a numeric
score that measures the utility of r. The larger u(x, r), the higher the probability of the
exponential mechanism outputting r. The exponential mechanism uses a similar notion of
global sensitivity to that found in [Dwork et al. 2006b] where it measures the worst-case
impact on the utility u(x, r) for all elements r ∈ R by adding or removing an individual
from all databases. However, to the best of our knowledge, the literature lacks generic
mechanisms that apply local sensitivity to the non-numeric setting.

1.1. Problem Statement

In this thesis, we address the problem of releasing the output of a non-numeric function
using differential privacy. Let x be a sensitive database and f a non-numeric function
to be evaluated on x. The database is represented as vector x ∈ Dn where each entry
represents an individual tuple, and D is the set of all possible tuple values. The function
f : Dn → R receives the dataset x ∈ Dn to be evaluated and outputs an element r in its
non-numeric range R.

The task is to release the output f(x) without leaking much information about the
individuals using differential privacy. For that, we need to design a randomized algorithm
(A)(x) that adds noise to f(x) such that it satisfies the formal definition of differential
privacy (Definition 1).
Definition 1. (ϵ-Differential Privacy [Dwork et al. 2006a, Dwork et al. 2006b]). A ran-
domized algorithm M satisfies ϵ-differential privacy, if for any two databases x and y
satisfying d(x, y) ≤ 1 and for any possible output O of M, we have

Pr[M(x) = O] ≤ exp(ϵ)Pr[M(y) = O],

where Pr[·] denotes the probability of an event and d denotes the hamming distance
between the two databases, i.e. the number of tuples of individuals that changed value,
i.e., d(x, y) = |{i | xi ̸= yi}|. We refer to d as the distance between two given databases.

1.2. Contributions

We propose the local dampening mechanism, which adapts the notion of local sensitivity
to the non-numeric setting and uses it to dampen the utility function u in order to increase
the signal-to-noise ratio. Local dampening also employs the exponential distribution as
the exponential mechanism [McSherry and Talwar 2007]. Applications in which local
sensitivity is significantly smaller than global sensitivity can benefit from our approach.
For the scenario where local sensitivity is near the global sensitivity, the local dampening
mechanism reverts to the exponential mechanism.
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To this end, we present a new version of the local sensitivity, called element local
sensitivity. Traditional local sensitivity measures the largest impact of the addition or
deletion of an individual to the input database over all outputs r ∈ R. Element local
sensitivity computes this impact, but only for some given element r ∈ R. This allows us
to explore local measurements of the sensitivity of f even if traditional local sensitivity
is near the global sensitivity, but, for most elements in R, the element local sensitivity is
low.

We illustrate the effectiveness of the local dampening mechanism by applying it
to three diverse problems: (i) Influential Node analysis, which searches for central nodes
in a graph database. Given a centrality/influence metric, we release the label of the top-
k most central nodes while preserving the privacy of the relationships between nodes in
the graph; (ii) We also provide an application on tabular data that is a private adaptation
to the ID3 algorithm to build a decision tree from a given tabular dataset based on the
information gain for each attribute and; (iii) Percentile selection problem, where the task
is to release the label of the p-th percentile element.

Our contributions are summarized as follows:

• We adapt the local sensitivity definition to the non-numeric setting and we intro-
duce a new definition of local sensitivity that measures sensitivity per element.

• We introduce the Local Dampening mechanism, a novel differentially private me-
chanism to answer non-numeric queries that applies local sensitivity to attenuate
the utility function to increase the signal-to-sensitivity ratio to reduce noise.

• We present a second version of our approach which we call the Shifted Local
Dampening mechanism, which can effectively use the element local sensitivity to
improve accuracy.

• We develop a theoretical and empirical accuracy analysis where we enumerate
some conditions under which the local dampening mechanism benefits from the
local sensitivity notions. Under those conditions, we show that the exponential
mechanism is an instance of the local dampening mechanism, and it is the worst
instance of the local dampening mechanism in terms of accuracy. Also, we discuss
the scenario where those conditions are not met and how we can still have good
accuracy.

• We apply the local dampening mechanism to construct differentially private al-
gorithms for a graph problem called Influential Node Analysis using Egocentric
Betweenness Centrality as the influence metric, and we show how to compute lo-
cal sensitivity for this application. Experimental results show that our approach
could be as accurate as global sensitivity-based mechanisms using 2 to 4 orders of
magnitude less privacy budget than global sensitivity-based approaches. Additio-
nally, we perform a empirical scalability analysis of the proposed algorithm and
show a sub-quadratic runtime behavior.

• We address the application of building private algorithms for decision tree induc-
tion as an example data-mining application for tabular data. We present a dif-
ferentially private adaptation of the entropy-based ID3 algorithm using the local
dampening mechanism, and we provide a way to compute the local sensitivity
efficiently. We improve accuracy up to 12% compared to previous works.

• We tackle the Percentile Selection problem where a private mechanism should
report the label of the p-th percentile element. Empirical results show that the
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local dampening mechanism can improve up to 73% over global sensitivity based
approaches.

The main results of this thesis were published in [de Farias et al. 2020]
(PVLDB) and [Farias et al. 2023] (VLDB Journal). Additionally, side contributions
on cloud computing were developed and published in [Farias et al. 2017] (SBBD),
[Paula et al. 2017] (SBRC), [Cavalcante et al. 2018] (CLOSER), [Farias et al. 2018]
(FGCS) and [Lima et al. 2018] (SBBD).

In this paper, we summarize the main contributions of the thesis. We omit the
percentile selection problem, the scalability analysis and the comparison to the Priva-
teSQL approach in the node influential selection. All the proofs are deferred to the thesis
[Farias 2021].

Section 2 surveys related work. The local dampening mechanism is presented in
Section 3. Section 4 addresses the influential node analysis problem and the Section 5
discuss the decision tree induction problem. Section 6 concludes the paper.

2. Related Work

There is a vast literature on differential privacy for numeric queries, and we refer the
interested reader to [Machanavajjhala et al. 2017] for a recent survey. In this section, we
discuss the two available differential privacy approaches for the non-numeric, also known
as the selection problem, setting in the literature, the exponential mechanism and the
permute-and-flip mechanism.

2.1. Exponential Mechanism

The exponential mechanism [McSherry and Talwar 2007] privately answers a function
f : Dn → R applied to database x by sampling an element r ∈ R with probability
proportional to its utility score u(x, r). It uses the exponential distribution to assign pro-
babilities for each r ∈ R. The exponential mechanism is stated as follows:
Definition 2. (Exponential Mechanism [McSherry and Talwar 2007]). The exponential
mechanism MEM(x, ϵ, u,R) selects and outputs an element r ∈ R with probability pro-
portional to exp

( ϵ u(x,r)
2∆u

)
.

2.2. Permute-and-Flip

The permute-and-flip mechanism,MPF , [McKenna and Sheldon 2020] is recent work that
also addresses differential privacy for the non-numeric setting. It is defined as an itera-
tive algorithm that employs the exponential distribution to assign probabilities for each
element r. Algorithm 1 defines permute-and-flip approach.

3. Local Dampening Mechanism

We present the local dampening mechanism, an output perturbing differentially private
mechanism for the non-numeric setting that uses local sensitivity to reduce the noise in-
jected to the true answer. Our approach uses the global and local sensitivity notions:
Definition 3. (Global Sensitivity ∆u [McSherry and Talwar 2007]). Given a utility func-
tion u : Dn × R → R that takes as input a database x ∈ Dn, where n is the size of
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Algorithm 1: Permute-and-Flip
1 Procedure MPF(Database x, Privacy Budget B, utility

function u, Range set R)
2 u∗ = maxr∈R u(x, r)
3 for r ∈ RandomPermutation(R) do
4 pr = exp

(
ϵ

2∆u
(u(x, r)− u∗)

)

5 if Bernoulli(pr) then
6 return r
7 end
8 end

the database, and an element r ∈ R and outputs a numeric score for r in x. The global
sensitivity of u is defined as:

∆u = max
r∈R

max
x,y|d(x,y)≤1

|u(x, r)− u(y, r)|.

Definition 4. (Local Sensitivity, adapted from [Nissim et al. 2007]). Given a utility func-
tion u(x, r) that takes as input a database x and an element r and outputs a numeric
score, the local sensitivity of u is defined as

LSu(x) = max
r∈R

max
y|d(x,y)≤1

|u(x, r)− u(y, r)|

Definition 5. (Local Sensitivity at distance t, adapted from [Nissim et al. 2007]). Given
a utility function u : Dn ×R → R that takes as input a database x ∈ Dn and an element
r ∈ R and outputs a numeric score for r in x, the local sensitivity at distance t of u is
defined as

LSu(x, t) = max
y|d(x,y)≤t

LSu(y).

Additionally, we introduce a new notion of sensitivity called element local sensi-
tivity. It measures the worst impact on the sensitivity for a given element r ∈ R when
adding or removing an individual from the input database x, i.e., the largest difference
|u(x, r)− u(y, r)| for all neighbors y of x.

More broadly, we coin the notion of sensitivity function that generalizes local
sensitivity definitions. A sensitivity function is a function that computes one of the notions
of sensitivity or an upper bound on it.

The local dampening mechanism employs a sensitivity function to dampen the
utility function u and construct its dampened version, referred to Du,δu . Specifically,
we attenuate u such that the signal-to-sensitivity ratio (i.e. u/sensitivity) is larger which
results in higher accuracy.

3.1. Element Local Sensitivity

The local sensitivity at distance t, LSu(x, t), quantifies the maximum sensitivity of u over
all elements r ∈ R for an input database x with t modifications (Definition 5). That gives
a high-level description of the variation of u in neighboring databases. However, if just
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one element in R has a high value of sensitivity (close to ∆u), LSu(x, t) will be equally
large. That is ineffective in a scenario where most of the elements have low sensitivity
and just few have high sensitivity, which makes LSu(x, t) large and consequently hurts
accuracy.
Definition 6. (Element Local Sensitivity at distance t). Given a utility function u(x, r)
that takes as input a database x and an element r and outputs a numeric score for x, the
element local sensitivity at distance t of u is defined as

LSu(x, t, r) = max
y∈Dn|d(x,y)≤t,z∈Dn|d(y,z)≤1

|u(y, r)− u(z, r)|,

where d(x, y) denotes the distance between two databases.

Note that we can obtain LSu(x, t) from this definition: LSu(x, t) =
maxr∈R LSu(y, t, r) as LSu(x, t, r) = maxy|d(x,y)≤t LS

u(y, 0, r).

3.2. Sensitivity Functions
Computing local sensitivity LSu(x, t) or element local sensitivity LSu(x, t, r) is not
always feasible, as it can be NP-hard [Nissim et al. 2007, Zhang et al. 2015]. To navi-
gate this problem, we can relax the need for the computation of LSu(x, t) or LSu(x, t, r)
and build a computationally efficient function δu(x, t, r) that computes an upper bound for
LSu(x, t) or LSu(x, t, r) that is still smaller than ∆u. We refer to δu as a sensitivity func-
tion that has the following signature δu : Dn ×N0 ×R → R. Note that δu(x, t, r) = ∆u,
δu(x, t, r) = LSu(x, t) or δu(x, t, r) = LSu(x, t, r) are sensitivity functions.

We define a classification of sensitivity functions based on four properties: admis-
sibility, boundedness, monotonicity and stability.

Admissibility. The sensitivity function δu needs to have some properties to be
admissible in the local dampening mechanism to guarantee differential privacy:
Definition 7. (Admissibility). A sensitivity function δu(x, t, r) is admissible if:

1. δu(x, 0, r) ≥ LSu(x, 0, r), for all x ∈ Dn and all r ∈ R
2. δu(x, t+ 1, r) ≥ δu(y, t, r), for all x, y such that d(x, y) ≤ 1 and all t ≥ 0

The global sensitivity ∆u is admissible as ∆u ≥ LSu(x, 0, r), for all x and a
constant value would satisfy the second requirement of Definition 7. We also show that
the sensitivity functions LSu(x, t) LSu(x, t, r) are admissible.

Boundedness. Some sensitivity functions, such as LSu(x, t) and LSu(x, t, r),
converge to ∆u, by design, as t grows. This follows from the fact that the maximum
distance of two databases is at most n by the hamming distance definition. Thus when
t = n, LSu(x, t) and LSu(x, t, r) measure sensitivity in all possible databases. We refer
to those functions as bounded functions.
Definition 8. (Boundedness) A sensitivity function δu(x, t, r) is said to be bounded if
δu(x, t, r) = ∆u for all t ≥ n.

Monotonicity. We introduce the notion of monotonicity in our context. When
the utility score u(x, r) is a monotonic function of δu(x, t, r) over r ∈ R, we say that
δu(x, t, r) is monotonic. We have two classifications for monotonicity: i) Non-decreasing
Monotonicity, presented below, and; ii) Non-increasing Monotonicity which is the sym-
metric version of the Non-decreasing Monotonicity. The definition of the latter is not
provided because of space constraints.
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b(x,−1, r)b(x,−2, r)· · ·

Figura 1. Dampening function Du,δu

Definition 9. (Non-decreasing Monotonicity) Let u(x, r) be a utility function and
δu(x, t, r) be a sensitivity function. δu(x, t, r) is said to be monotonically non-decreasing
if δu(x, t, r) ≥ δu(x, t, r′) for all x ∈ Dn, r, r′ ∈ R, t ≥ 0 such that u(x, r) ≥ u(x, r′).

Stability. Satisfying all three requirements (admissibility, boundedness and mo-
notonicity) for designing a stable function may sound very restrictive. However, for all
definitions of sensitivity, two of them are naturally stable: global sensitivity ∆u and
local sensitivity LSu(x, t). Only the element local sensitivity LSu(x, t, r) can be non-
monotonic and, consequently, non-stable.
Definition 10. (Stability) A sensitivity function δu(x, t, r) is stable if δu is admissible,
bounded and monotonic.

3.3. Local Dampening Mechanism
A crucial part of our mechanism is the dampening function. We now define the dampening
function Du,δu(x, r), which uses an admissible sensitivity function δu(x, t, r) to return a
dampened and scaled version of the original utility function.
Definition 11. (Dampening function). Given a utility function u(x, r) and an admissible
function δu(x, t, r), the dampening function Du,δu(x, r) is defined as a piecewise linear
interpolation over the points:

< . . . , (b(x,−1, r),−1), (b(x, 0, r), 0), (b(x, 1, r), 1), . . . >

where b(x, i, r) is given by:

b(x, i, r) :=





∑i−1
j=0 δ

u(x, j, r) if i > 0

0 if i = 0

−b(x,−i, r) otherwise

Therefore,

Du,δu(x, r) =
u(x, r)− b(x, i, r)

b(x, i+ 1, r)− b(x, i, r)
+ i

where i is defined as the smallest integer such that u(x, r) ∈ [b(x, i, r), b(x, i+ 1, r)).

Thus, the local dampening mechanism is defined as:
Definition 12. (Local dampening mechanism). The local dampening mechanism
MLD(x, ϵ, u, δ

u,R) selects and outputs an element r ∈ R with probability proportional
to exp

( ϵ Du,δu (x,r)

2

)
.
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3.4. Shifted Dampening Mechanism

We present a second version of the local dampening mechanism name shifted local dam-
pening mechanism MSLD. This version is designed for non-flat monotonic sensitivity
functions which is the most usual case in our experiments.

The key idea for this version is the use of shifting in the utility score to take ad-
vantage of non-flat monotonic sensitivity functions δu. The discussion in this section
is focused on non-flat monotonic sensitivity functions. However, we show in the expe-
riments that the shifted local dampening also performs well for non strictly monotonic
functions.

We propose to replace the original utility function u with its shifted version us =
u(x, r)− s. where s is the utility score shift.

In what follows, the shifted local dampening mechanism is stated as follows:
Definition 13. (Shifted Local Dampening Mechanism for non-decreasing sensitivity func-
tion). The shifted local dampening mechanism MSLD(x, ϵ, u, δ

u,R) outputs an element
r ∈ R with probability equals to

lim
s→∞




exp
(

ϵDus,δu (x,r)

2

)

∑
r′∈R exp

(
ϵDus,δu (x,r′)

2

)


 .

The Shifted Local Dampening Mechanism for non-decreasing sensitivity function
is symmetric to the Definition 13.

3.5. Accuracy Analysis

In this section, we provide theoretical analysis on the accuracy. We aim to answer to
the following questions: i) How to compare two instances of the local dampening with
two different admissible functions?; ii) Under which conditions does the local dampening
performs more accurately than the exponential mechanism?; iii) If those conditions are
not met, how to build good admissible functions? and iv) How does local dampening
compare to the exponential mechanism in terms of accuracy?.

We evaluate the accuracy of a given mechanism M by studying the error random
variable E = u∗−u(x,M(x)) where u∗ is the optimal utility score, u∗ = maxr∈R u(x, r)
where u∗ is the optimal utility score, u∗ = maxr∈R u(x, r).

To compare two instances of the local dampening for the same problem, we need
to analyse the features of the function δu. We develop a discussion on accuracy guarantees
for stable functions.

3.5.1. Accuracy Analysis for Stable Sensitivity Functions

Two instances of the local dampening mechanism can be compared by their stable sensi-
tivity functions. As lower sensitivity means higher accuracy, a stable sensitivity function
that produces lower values implies in higher accuracy. For that analysis we establish a
relation of dominance between two stable sensitivity functions:
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Definition 14. (Dominance) Let δu(x, t, r) and δ̄u(x, t, r) be two stable sensitivity functi-
ons and x be a database. Let α(x, t, r) refer to the gap between δu(x, t, r) and δ̄u(x, t, r):
α(x, t, r) = δ̄u(x, t, r) − δu(x, t, r). Assume that R = {r1, ..., rq} is ordered such that
u(x, r1) ≥ · · · ≥ u(x, rq). If α(x, t, r1) ≥ α(x, t, r2) ≥ · · · ≥ α(x, t, rq) ≥ 0 for all
t ≥ 0, then δu(x, t, r) dominates δ̄u(x, t, r).

Given that, we can affirm that an instance of the local dampening mechanism using
δu(x, t, r) is never worse than an instance using the dominated δ̄u(x, t, r):
Lemma 1. (Shifted Local Dampening Accuracy) Let δu(x, t, r) and δ̄u(x, t, r) be two
stable functions and x be a database. If δu(x, t, r) dominates δ̄u(x, t, r) then:

1. Pr[E(MSLD, x) ≥ θ] ≤ Pr[E(MSLD, x) ≥ t] for all θ ≥ 0,
2. E[E(MSLD, x)] ≤ E[E(MSLD, x)],

where MSLD represents an instance of the shifted local dampening mechanism using δu

as the sensitivity function while MSLD is an instance using δ̄u.

Strict monotonicity may be not be satisfy for given LSu(x, t, r) or any δu(x, t, r).
However, we argue that if δu(x, t, r) exhibit a correlation of u(x, r) and δu(x, t, r) with
respect to r, the shifted local dampening stills yield good results.

Our empirical results corroborates with this argument. In the applications and
datasets analyzed in our experimental section, none of them satisfy the strict monotonicity
requirement. Yet, the shifted local dampening mechanism outperforms the exponential
mechanism in our experiments.

3.5.2. Comparison to the Exponential Mechanism

A very useful property of both versions of the local dampening mechanism is that the
exponential mechanism is an instance of the local dampening mechanism. The exponen-
tial mechanism is obtained by setting δu(x, t, r) = ∆u in an instance of the shifted local
dampening.

Thus we can use Lemma 1 to compare any instance of the exponential mechanism
using a given stable function δu(x, t, r) against the exponential mechanism. Note by
the assumption of boundedness of the stable sensitivity function δu(x, t, r) we have that
δu(x, t, r) ≤ ∆u, for all x, t ≥ 0 and r ∈ R. It implies that δu(x, t, r) dominates ∆u.
Thus the following corollary holds:
Corollary 1. Let δu be a stable function. The shifted local dampening mechanism
MSLD(x, ϵ, u, δ

u,R) is never worse than the exponential mechanism MEM(x, ϵ, u,R).
That is:

1. Pr[E(MSLD, x) ≥ t] ≤ Pr[E(MEM , x) ≥ t] for all t ≥ 0,
2. E[E(MSLD, x)] ≤ E[E(MEM , x)].

This result suggests that using the ∆u as a sensitivity function is the worst-case
stable function. Given that, what would be the best stable function? The element lo-
cal sensitivity LSu(x, t, r) function is a good candidate. As shown before, LSu(x, t, r)
is admissable and bounded. However, LSu(x, t, r) is not necessarily monotonic. We
demonstrate that LSu(x, t, r) is minimum admissable, i.e. it dominates all admissable
functions:
Lemma 2. LSu(x, t, r) is minimum admissable, i.e. LSu(x, t, r) dominates any admissi-
ble sensitivity function δu(x, t, r).
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4. Application 1: Influential Node Analysis
Identifying influential nodes in a network is an important task for social network marke-
ting [Ma et al. 2008]. This analysis has great value for making a more effective marke-
ting campaign since influential nodes have great capacity to diffuse a message through
the network.

4.1. Problem statement

The influential node analysis problem is a query over an input graph database G = (V,E)
that releases the labels of k nodes that maximize a given influence metric. In this work,
we use the Egocentric Betweenness Centrality metric (EBC, Definition 15).
Definition 15. (Egocentric Betweenness Centrality (EBC))

EBC(c) =
∑

u,v∈Nc|u̸=v

puv(c)

quv(c)
,

where Nc = {v ∈ V |{c, v} ∈ E} is the set of neighbors of the central node
c, quv(c) is the number of geodesic paths connecting u and v on the induced subgraph
G[Nc ∪ {c}] and puv(c) is the number of those paths that include c.

4.2. Private Mechanism

We propose PrivTopk, a top-k algorithm template that chooses iteratively k nodes that ma-
ximize EBC. In each iteration, the algorithm makes a call to a non-numeric mechanism
that returns a node that maximizes EBC that was not previously chosen. We experiment
with four instances of this algorithm template: i) EMPrivTopk, where the non-numeric
mechanism is the exponential mechanism; ii) PFPrivTopk, where the non-numeric me-
chanism is the permute-and-flip mechanism; iii) LDPrivTopk where the non-numeric me-
chanism is the local dampening mechanism; iv) SLDPrivTopk where the non-numeric
mechanism is the shifted local dampening mechanism.

4.3. Sensitivity Analysis

Global Sensitivity. We need to provide the global sensitivity for EBC to the Exponential
Mechanism and the permute-and-flip mechanism:
Lemma 3. (EBC global sensitivity). The global sensitivity ∆EBC for EBC is given by

∆EBC = max

(
∆(G)(∆(G)− 1)

4
,∆(G)

)
,

where ∆(G) is the maximum degree of the input graph G.

Element Local Sensitivity. For the local dampening call, we provide an upper
bound to the element local sensitivity using the sensitivity function δEBC :
Definition 16. (Sensitivity function δEBC(G, t, v)). The sensitivity function δEBC for
EBC is defined as

δEBC(G, t, v) = max
(

(dG(v)+t)(dG(v)+t−1)
4

, dG(v) + t
)
,

where dG(v) denotes the degree of v in G, i.e., dG(v) = |NG
v |.
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4.4. Experimental Evaluation

Datasets. We use three real-world graph datasets: 1) Enron is a network of email com-
munication obtained from around half million emails. Each node is an email address
and an edge connects a pair of email addresses that exchanges emails (|V | = 36, 692
, |E| = 183, 831 and ∆(G) = 1, 383); 2) DBLP is a co-authorship network where
two authors (nodes) are connected if they published at least one paper together (|V | =
317, 080, |E| = 1, 049, 866 and ∆(G) = 343); 3) Github is a network of developers
with at least 10 stars on the platform. Developers are represented as nodes and an edge
indicates that two developers follow each other (|V | = 37, 700, |E| = 289, 003 and
∆(G) = 9, 458). V is the set of vertices, E is the set of edges and ∆(G) is the maximum
degree of a graph G. All datasets can be found on Stanford Network Dataset Collection
[Leskovec and Krevl 2014].

Evaluation. We evaluate the accuracy by the percentage of common nodes to the
retrieved top-k set and the true top-k set, i.e., (|retrieved_topk∩ true_topk|)/k. We report
the mean accuracy in 100 simulations. We set k ∈ {5, 10, 20} and a range for privacy
budget ϵ ∈ [10−3, 104].

SLDPrivTopk (k=5) SLDPrivTopk (k=10) SLDPrivTopk (k=20)
LDPrivTopk (k=5) LDPrivTopk (k=10) LDPrivTopk (k=20)
EMPrivTopk (k=5) EMPrivTopk (k=10) EMPrivTopk (k=20)
PFPrivTopk (k=5) PFPrivTopk (k=10) PFPrivTopk (k=20)

10−3 10−2 10−1 100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

ϵ

A
cc

ur
ac

y

(a) Enron Dataset

10−3 10−2 10−1 100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

ϵ

A
cc

ur
ac

y

(b) DBLP Dataset

10−3 10−2 10−1 100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

ϵ

A
cc

ur
ac

y

(c) Github Dataset

Figura 2. Accuracy for PrivTopk algorithm for k ∈ {5, 10, 20} and B ∈ [10−3, 104].

We observe a pattern where the methods perform worse as k grows. This is ex-
plained by the fact that each call to the non-numeric mechanism uses ϵ/k of the total
privacy budget ϵ. Thus, larger k implies that less of the privacy budget is used in each
non-numeric mechanism call which hurts accuracy.

Our approach SLDPrivTopk achieves the same level of accuracy with privacy va-
lues 3 to 4 orders of magnitude less than EMPrivTopk and 2 to 3 orders of magnitude less
than PFPrivTopk.

5. Application 2: ID3 Decision Tree Induction
Classification based on decision tree is an important tool for data mining
[Kotsiantis et al. 2007]. Creating a decision tree manually is a burden. Thus many appro-
aches for automatically building decision trees were proposed. One of the most known
tree induction algorithms is the ID3 algorithm [Quinlan 1986].
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The ID3 algorithm [Quinlan 1986] starts with the root node containing the original
set. Then the algorithm greedly chooses an unused attribute to split the set and generate
child nodes. The selection criterion is Information Gain (IG), given by the entropy before
splitting minus the entropy after splitting. It expresses how much entropy was gained
after the split. This process continues recursively for the child node until splitting does
not reduce entropy or the maximum depth is reached.

5.1. Problem Statement
A decision tree induction algorithm takes as input a dataset T with attributes A =
{A1, . . . , Ad} and a class attribute C and produces a decision tree. The task is to build a
decision tree in a differentially private manner. Specifically, we base our approach in one
of the most known tree induction algorithms, the ID3 algorithm.

5.2. Private Mechanism
We use the algorithm DiffPID3 [Friedman and Schuster 2010] (referred as GlobalDiff-
PID3) as a template. We aim to adapt it for the use of the local dampening mechanism
and to the shifted local dampening mechanism producing the LocalDiffPID3 and Shifte-
dLocalDiffPID3, respectively. In the following, we need to provide the global sensitivity
of the split criterion (Information Gain IG) for the exponential mechanism and the ele-
ment local sensitivity for the local dampening. The global sensitivity for IG is given by
∆IG = log(N + 1) + 1/ ln 2 [Friedman and Schuster 2010] where N is the size of the
dataset T . First, we show that the element local sensitivity at distance 0 is given by:

LSIG(T , 0, A) = max
j∈A,c∈C

h(τA,T
j , τAj,cT ),

where

h(a, b) = max(f(a)− f(b), g(b)− g(a)),

g(x) = x.log((x− 1)/x)− log(x− 1),

f(x) = x.log((x+ 1)/x) + log(x+ 1).

Then, element local sensitivity at distance t is:

LSIG(T , t, A) = max
c∈C,j∈A

max
T ′|d(T ,T ′)≤t

h(τA,T ′
j , τA,T ′

j,c ).

5.3. Experimental Evaluation
Datasets. We use of three tabular datasets: 1) National Long Term Care Survey (NLTCS)
[Manton 2010] is a dataset that contains 16 binary attributes of 21, 574 individuals that
participated in the survey, 2) American Community Surveys (ACS) dataset [Series 2015]
includes the information of 47, 461 rows with 23 binary attributes obtained from 2013
and 2014 ACS sample sets in IPUMS-USA and 3) Adult dataset [Blake and Merz 1998]
contains 45, 222 records (excluding records with missing values) with 12 attributes where
8 are discrete and 4 are continuous.
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Evaluation. We evaluate the accuracy of the approach by reporting the mean
accuracy across the 10 runs of a 10-fold cross validation. We set typical values for depth
and ϵ: depth ∈ {2, 5} and ϵ ∈ {0.01, 0.05, 0.1, 0.5, 1.0, 2.0}.
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Figura 3. Accuracy for DiffID3 algorithm

Figure 3 presents the results. We observe that the LocalDiffPID3 improves on
the GlobalDiffPID3 in almost every privacy budget value, up to 5%. While ShiftedLo-
calDiffPID3 improves a little more in relation to the LocalDiffPID3, up to 1%. Fot the
Adult Dataset, the LocalDiffPID3 improves a little over the GlobalDiffPID3. However,
ShiftedLocalDiffPID3 improves over GlobalDiffPID3 up to 4%.

6. Conclusion
In this paper, we introduced the Local Dampening mechanism, a novel framework to
provide Differential Privacy for non-numeric queries using local sensitivity. We have
shown that using local sensitivity on non-numeric queries reduces the magnitude of the
noise added to achieve Differential Privacy which makes the answer of those queries more
useful. We evaluated our approach on three applications: 1) Influential node analysis; 2)
Decision Tree induction and; 3) Percentile Selection (omitted).

The thesis results described in this paper have laid the foundations for providing
DP for non-numeric queries using local sensitivity. We have achieved a deeper theoretical
understanding of the Local Dampening mechanism to understand the class of problems for
which it can provide significant gains over the Exponential mechanism. There are many
stimulating directions for future work. First, any problem in the literature that has used the
Exponential mechanism for non-numeric queries to guarantee DP is a candidate problem
that could benefit from using our local dampening mechanism instead and is worthy of
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future work. Second, tackling other graph influence/centrality metrics for Influential Node
analysis, such as PageRank, would be interesting. Third, applying the local dampening
mechanism for private evolutionary algorithms is a promising future direction.
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