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Abstract. Improving the accuracy of sub-seasonal to seasonal (S2S) extremes
can significantly impact society. Providing S2S forecasts in the form of risk or
extreme indices can aid in disaster response, especially for drought and flood
events. Additionally, it can provide updates on disease outbreaks and aid in
predicting the occurrence, duration, and decline of heatwaves. This work uses a
transformer model to predict the daily temperature distributions in the S2S scale.
We analyze how the model performs in extreme temperatures by comparing its
output distributions with those obtained from ECMWF forecasts across different
metrics. Our model produces better responses for temperatures in average and
extreme regions. Also, we show how our model better captures the heatwave
that hit Europe in the summer of 2019.

1. Introduction
In 2010, there were 874 disasters related to weather and climate, which caused 68,000
deaths and $99 billion in damage worldwide [Robertson and Vitart 2018]. The 2019 Eu-
ropean heatwave caused over 4,000 deaths, with record-breaking temperatures in France,
Belgium, Germany, and the Netherlands. Better prediction models for extreme weather
will improve early warning systems for preparedness.

Sub-Seasonal to Seasonal climate prediction has long been a gap in operational
weather forecasts [Robertson and Vitart 2018]. Its timescale varies from two weeks to
an entire season, although some authors have recently used the term S2S more broadly
to include seasonal forecasts up to 12 months ahead [Board et al. 2016]. Although S2S
forecasts offer many benefits, they are considered more challenging than both numerical
weather prediction (NWP) (1-15 days) and seasonal forecasts (2-6 months) due to limi-
ted predictive information from land and ocean and a weak predictive signal from the
atmosphere [Board et al. 2016].

One way to simplify the problem is to compute indices that aggregate the forecasts
in quantiles and compute the probability that a climate variable will be in a specific quan-
tile in the forthcoming weeks, fortnights, or months. It is possible to use the hindcast dis-
tribution to establish quantile boundaries. A common way to communicate S2S extreme
weather events predictions is by showing how the frequency of an event has changed over
a sufficiently large area and period compared to climatology [Robertson and Vitart 2018].

In this work, we use the temporal fusion transformer (TFT) architecture to fore-
cast daily 2-meter temperature quantiles up to 46 days ahead. The TFT encodes a multi-
horizon sequence of historical information and forecast outlooks and can handle static
data such as spatiotemporal features (e.g., location, climate modes, and land characteris-
tics). Thus, it is a ready-to-use architecture for hybrid ”statistical-dynamical”modeling.
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2. Related work
[Civitarese et al. 2021] propose using a TFT model to forecast maximum daily precipita-
tion quantiles up to 6 months in advance. Results show that TFT outperforms a calibra-
ted ECMWF SEAS5 ensemble forecast in quantile risk, but it is hard to link to extreme
weather events. Here we use a similar TFT model but generalize it through an overall
methodology that includes post-processing to generate extreme indices.

[Akram Zaytar et al. 2022] proposes an ML-based daily forecast model that pre-
dicts global 2-meter temperature and total precipitation. It combines multimodal data into
feature vectors given as inputs to three ML models: XGBoost, U-Net, and NGBoosting.
The method consistently outperforms both ECMWF forecasts and climatology regarding
the Ranked Probability Skill Score (RPSS), but no assessment of specific extreme weather
events prediction accuracy is done.

[Patel et al. 2022] identified extreme weather indices for improved communica-
tion of climate risk in S2S scales. These indices can be calculated from probabilistic
daily forecasts or trained ML-models. We apply the first approach of directly calculating
extreme weather indices from a Probabilistic TFT model.

3. Methodology
We developed a pipeline to preprocess forecasts (Figure 1), train and run probabilistic
TFT models, calculate output distributions, and validate results using means and speci-
fic indices. The Dataset box (yellow) includes time-dependent data and static covariates.
The light blue Preprocessing Featurization box includes all the steps for generating em-
beddings to feed into predictive models. The Probabilistic TFT box (green) represents
the model that predicts climate variables, including temperature. This model is shown in
more detail on the right panel of the Figure and will be described in the next paragraph.
The light blue boxes calculate extreme indices or event likelihood based on our model’s
forecasts. It depends on an accurate probabilistic distribution. Red boxes evaluate mo-
del performance by measuring the skill of probabilistic forecasters in predicting extreme
weather using quantifiable methods. In this work, we focus specifically on extreme tem-
peratures above the 90th percentile.

The right panel of Figure 1 shows the architecture of our Probabilistic TFT in de-
tail. The input structure is similar to the one presented in [Lim et al. 2021], where the
authors consider three kinds of input: (a) static s ∈ Rms , (b) known future x ∈ Rmx , and
(c) historical z ∈ Rmz (Figure 1 – yellow, blue, and red, respectively). Static informa-
tion, such as location, land cover or altitude, does not change through time, so we repeat
these values for all time steps for the encoder and the decoder. We use TFT’s “known
inputs” to embed actual known future variables, such as day-of-the-year and external fo-
recasts. Some examples of the latter are geopotential and column of water. Although
these forecasts are not “known information” and may have errors, their use follows the
same procedure as future inputs. Historical inputs refer to past observations for the target
series or other exogenous factors, such as surface pressure or soil moisture.

We produce daily forecasts for each location in the form ŷlat,lon(q, t, τ), where
each time-step t ∈ [0, T ] refers to a specific day in the time series, and τ ∈ [1, 46] is the
lead time in days. The index (lat, lon) = i refers to the location in the globe, and it is
associated with a set of static inputs si, as well as the time-dependent inputs zi,t and xi,t.
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Figura 1. System pipeline overview.

In our experiments, we predict the quantiles 0.02, 0.1, 0.25, 0.5, 0.75, 0.9, and
0.98 of the 2-meter temperature for each day up to 46 days ahead. Each quantile is
represented by ŷi(q, t, τ) = fq(τ, yi,t−k:t, zi,t−k:t, xi,t−k:t+τ , si). Finally, we approximate a
normal distribution using the produced quantiles, i.e, ŷi(q, t, τ)

g−→ Ni,t(µi,t, σ
2
i,t), where

g is the fitting function.

As in [Lim et al. 2021], we train the TFT model by jointly minimizing the quantile
loss, summed across all quantile outputs:

L(Ω,W) =
∑

yt∈Ω

∑

q∈Q

τmax∑

τ=1

QL (yt, ŷ(q, t− τ, τ), q)

Mτmax

(1)

QL(y, ŷ, q) = q(y − ŷ)+ + (1− q)(ŷ − y)+ (2)

where Ω is the domain of the training data, which contains M samples, W refers to the
TFT weights, Q is the set of output quantiles, and (.)+ = max(0, .). The normalized
quantile loss (q-risk) is used for validation and testing:

q-risk =
2
∑

yt∈Ω̃
∑τmax

τ=1 QL (yt, ŷ(q, t− τ, τ), q)∑
yt∈Ω̃

∑τmax

τ=1 |tt|
(3)

where Ω̃ is the domain of the validation or test samples.

4. Experiments and discussions

4.1. Data

Our experiments use six data sources: GMTED, C3S-LC, CPC, ECMWF extended-range,
ENSO 3.4, and MJO. The Global Multi-resolution Terrain Elevation Data (GMTED 2010)
is a global elevation model [Poppenga et al. 2010]. It has a global accuracy of 6 m RMSE
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and an RMSE range of 25 to 42 meters depending on the resolution. The C3S land cover
provides global land surface maps with 22 classes [Store 2019]. CPC1 provides global ob-
servation data for 2-meter temperature and total precipitation, gridded using the Shepard
Algorithm. ECMWF extended-range forecasts provide a 46-day outlook on forthcoming
weather conditions. The forecasts are based on data available at a resolution of 1.5º from
the S2S challenge2. ENSO 3.4 index refers to the sea surface temperature anomaly in
Niño 3.4 region (5ºN-5ºS, 120º-170ºW). The Madden-Julian Oscillation (MJO) is a major
source of variability in the tropical atmosphere, moving west to east in 30-60 days and
impacting weather across various latitudes. We downloaded both ENSO and MJO from
the NOAA website. These are the variable that we use in our experiments:

• historical: 2-meter temperature (target), total precipitation from CPC;
• known: day-of-year (sin/cos), 2-meter temperature, precipitation, geopotential,

surface pressure, soil temperature top 20 and 100 cm, soil moisture top 20 and
100 cm, total cloud cover, total column water, and time integrated top net ther-
mal radiation from ECMWF, ENSO 3.4, and MJO components amplitude, phase,
RMM1, and RMM2;

• static: latitude, longitude (sin/cos), topography, and land cover.

The final dataset includes 2.7 TB of global data from 2010 to 2020, stored in Zarr
format for parallel reading. Xarray and Dask Python libraries are used to preprocess the
files. Finally, we store the training, validation, and testing datasets in Feather format using
Pandas.

4.2. Training
We used PyTorch Forecasting, PyTorch, Lightning, and Optuna for HPO and final trai-
ning. We ran them on a 32-CPU machine with 128 GB and an NVIDIA A100 with 80
GB. Over 50 candidates were generated in 24 hours. The final training took less than 20
minutes over five epochs. Inference time was under two seconds for 46 days per site.

The hyper-parameter optimization selects the best architecture settings, inclu-
ding the input length (28, 35, 42, 84), the number of attention heads [1, 8], dropout rate
[0.1, 0.3], learning rate [10−4, 0.1], gradient clipping [10−2, 1.0], and channels for catego-
rical and continuous encoders [30, 128]. The best configuration has the following para-
meters: input 42, 1 attention head, learning rate of 8.7 × 10−3, clipping of 2.4 × 10−2,
encoder size 56. After selecting the optimal topology and training configuration, we train
the model for 50 epochs with early stopping, allowing for five epochs of patience.

4.3. Results
We evaluate our model based on the expected forecast value (µi,j) and extreme tempe-
ratures (above the 90th percentile). In the former, we compute the anomaly correlation
coefficient (ACC), the Continuous Ranked Probability Score (CRPS), and the mean ab-
solute error (MAE), whereas in the latter, we compute the reliability and sharpness.

On average, our model outperformed climatology and the current ECMWF fore-
casts in all metrics across all locations, forecast times, and lead times. Table 1 shows the

1CPC Global Unified Temperature data provided by the NOAA PSL, Boulder, Colorado, USA, from
their website at https://psl.noaa.gov

2https://s2s-ai-challenge.github.io
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Tabela 1. Averaged results over all dates, lead times and locations

Climo ECMWF TFT
ACC - 0.067 0.074
CRPS 2.140 2.539 2.024
MAE 4.782 3.360 2.692

results for ACC, CRPS, and MAE. Notice that our CRPS is lower than the climatology,
indicating a positive skill score.
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Figura 2. Anomaly correlation coefficient (left), sharpness (center), reliability
over quantile 0.9. (right).

In Figure 2, we see the ACC, the sharpness, and the reliability from left to right.
The TFT produces a better ACC than the ECMWF for all lead times, but it depends
highly on the forecasts. However, this is not a problem since our goal is to improve
the forecasts, not replace them. The sharpness and reliability plots demonstrate that the
model’s predictions closely match the observations and produce distributions centered on
lower and higher values, which is highly desirable.

Figure 3 compares the ECMWF and TFT forecasts with the European heatwave
that struck the region in 2019. In the plots, the blue dots represent observations from CPC,
while the red, green, and purple lines show the minimum, mean, and maximum values of
the ECMWF ensemble. The orange line and shades represent the TFT output quantiles.
In France, Germany, and England, we notice that the TFT assigns higher probabilities for
observations above the limits of ECMWF ensemble members, i.e., the original forecasts
did not capture these values. Conversely, Moldova experienced a colder season, and the
TFT captured the lower values the original forecasts did not.

5. Conclusion
In this study, the TFT model shows potential in predicting daily temperature distributi-
ons on the S2S scale. It outperformed both climatology and current ECMWF forecasts,
demonstrating its ability to improve weather forecasting accuracy. Providing risk or ex-
treme indices as S2S forecasts can aid in disaster response. The model’s ability to capture
extreme temperatures, as seen in the 2019 European heatwave and colder season in Mol-
dova, highlights its usefulness in predicting unusual weather events. Future work aims to
investigate how surface variables from various global regions, such as sea level and sea
surface temperature, would impact the model’s performance.
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France 2019-06-11 | 49.0º N 2.5º E

Moldova 2019-06-11 | 47.5º N 26.5º E England 2019-06-04 | 42.0º N 1.0º E

Germany 2019-06-11 | 49.0º N 10.0º E

Figura 3. Four locations that were affected by the temperature extremes in 2019.
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