
Rel2Doc: Migrating Data from Relational to
Document-Oriented Databases

Tainam Spagnollo Garbin1, Denio Duarte1, Geomar A. Schreiner1

1Universidade Federal da Fronteira Sul (UFFS)
Campus Chapecó

Chapecó – SC – Brazil

tainamgbn@gmail.com, {duarte,gschreiner}@uffs.edu.br

Abstract. This paper presents Rel2Doc, a tool to migrate data from relational to
document-oriented databases. From normalized concepts, Rel2Doc implements
aggregation on the document side using foreign keys and join tables to avoid
references in the document-oriented database. We build an interface where the
user can choose the relational database source and some parameters to define
how primary and foreign keys are implemented on the document-oriented side.
We conducted experiments using PostgreSQL and MongoDB, and Rel2Doc mi-
grates all data regarding correctness and completeness, ensuring that queries
have the same answers in both databases.

1. Introduction
Relational databases (RDB) and SQL have been the preferred technologies for decades for
storing and managing data. However, over the last years, we have witnessed tremendous
growth in the size and variety of data sets in several application domains. This growth
brings other challenges in data management, and NoSQL DBs have been proposed to
deal with volume, variety, and velocity of data (aka, the 3 V’s) [Abadi 2009].

In this scenario, some legacy data-centric applications must be modernized to meet
new user’s demands like availability and scalability. Modernizing legacy applications
is complex and challenging, especially when it involves moving data across platforms
[Thalheim and Wang 2013]. This complexity should be acknowledged and factored into
the planning and execution of the modernization process. Data can be lost or partially
moved, causing inconsistency in the new application.

Migrating data from a relational model to any NoSQL model can be costly in terms
of computational resources and manual effort because it involves mapping the source
database structure to the target database structure [Thalheim and Wang 2013]. Relational
data are generally normalized and spread across tables. On the other hand, NoSQL data
models often store denormalized data and specific models (e.g., document-oriented and
column-oriented) aggregate data.

The most used NoSQL model is document-oriented1, and it is generally imple-
mented using JSON data structure. When migrating relational data to a document-
oriented model, a problem arises: how to model relationships into collections. The in-
tuition is keeping all related data in the same collections to avoid joining collections.

1db-engines.com/en/ranking

Companion Proceedings of the 39th Brazilian Symposium on Data Bases October 2024 – Florianópolis, SC, Brazil

107

This feature, called aggregation, means related information stays together without being
joined, as in the relational model. An essential question in this scenario is: When does a
table become an aggregation? That is, a table T1 encompasses another correlated table T2

generating a collection where T2 tuples are inserted as documents inside T1 tuples. More
precisely, a collection built from T1 encompasses a collection built from T2.

This demo (Rel2Doc23) intends to migrate relational data into document-
oriented data trying to create the minimum collections as possible. We consider all types
of relationships and their associated tables to accomplish this. All the keys (K) and foreign
keys (FK) of the database are used to identify whether or not a table becomes a collection
or is encompassed into another collection. We run our experiments using PostgreSQL
and MongoDB, and the results show that Rel2Doc is effective migrating data, and the
new document-oriented database is complete and correct. Regarding the computational
performance, we note that the number of FK in the relational databases directly influences
the processing time since FK is used to check if a table becomes a new collection or is
aggregated to another collection.

2. Theoretical Background
This section presents the theoretical foundations supporting this study on the migration
from Relational Databases (RDB) to document-oriented NoSQL databases. It briefly re-
views the relational model, the concepts of normal forms and (de)normalization, and then
the document-oriented data model.

The relational model is composed by relations, commonly known as tables. Each
table comprises rows and columns, where columns represent attributes and rows represent
tuples. A primary key uniquely identifies each row/tuple within a table. Crucially, tables
can establish relationships with one another through foreign keys, which are attributes
that create links between tables.

The relationship has a cardinality that indicates the number of elements that are
related/linked between the tables. There are three types of relationships: (i) one-to-one
(1:1), (ii) one-to-many (1:N), and (iii) many-to-many (N:N) . One-to-one relationships
indicate that one element is exclusively related to one element of the second table, com-
monly implemented by a foreign key with a unique constraint. The one-to-many indicates
that one element is related to many elements in the second table. On the other hand, the
many-to-many needs to have an extra table, called a join table, to implement the rela-
tion. In the join table, each row typically contains foreign keys that reference the primary
keys of the tables to be linked, thus enabling the creation of connections between the data
entries in these tables.

The relational data model minimizes data redundancy and dependency through
normalization using normal forms. These forms are rules based on the functional depen-
dency (FD) between a table’s attributes.

An FD is described as α → β, where the set of attributes β functionally depends
on the set of attributes α. For example, a dependency rid → name indicates that name
depends on the rid (registration id) value, implying that for every instance of a rid value

2github.com/ttainam/migration_demo
3Demonstration: www.youtube.com/watch?v=YqynxZp_D6w

Companion Proceedings of the 39th Brazilian Symposium on Data Bases October 2024 – Florianópolis, SC, Brazil

108

should have a consistent name attribute. Thus, rid acts as a key for the tuple <rid, name>.

There are five normal forms: 1NF, 2NF, 3NF, 4NF, and 5NF. The Boyce-Codd
Normal Form (BCNF) is a correction of the 3NF. Typically, only the first three forms
(1NF, 2NF, and BCNF) verify if a database is normalized. The First Normal Form (1NF)
ensures that all attributes in a table store only atomic (single) values. The Second Normal
Form (2NF) builds on 1NF and requires that attributes do not partially depend on the
primary key. Last, the Boyce-Codd Normal Form (BCNF) corrects anomalies in 3NF by
ensuring that non-key attributes do not functionally depend directly on the primary key.

An RDB that adheres to BCNF is free from redundancy and is thus considered
normalized. While normalization is crucial for data integrity in RDBs, it can lead to poor
query performance, especially in Big Data scenarios, due to the need for multiple table
joins to retrieve data. This context brings up the concept of denormalization, which aims
to improve query performance by reducing the number of tables and joins required.

Denormalization involves storing the database’s logical design in a weaker normal
form, relaxing compliance with 1NF, 2NF, and BCNF. Maintaining a design in weaker
normal forms ensures faster query execution and more frequent transaction handling.

NoSQL database models, in general, are based on denormalization, as high avail-
ability requires related data to be grouped. The document-oriented model relies heavily
on denormalization for efficient data storage.

A document-oriented database uses the document as its primary data struc-
ture [Abadi 2009]. Documents can be stored and retrieved in formats like XML or JSON
and are self-descriptive and hierarchical, with structures ranging from atomic values (e.g.,
integers, strings) to complex ones (e.g., dates, subdocuments).

Document-oriented DBs are composed of collections of documents. Each docu-
ment of a collection can have a unique structure, a flexibility not found in the uniform
schema requirement of RDBs [Abadi 2009]. This allows for the common occurrence of
subdocuments, such as a user document containing a list of comments.

Document-oriented models, like many NoSQL models, do not support joins. To
avoid joins, document-oriented design encapsulates data from related documents within
a single document, similar to denormalization in RDBs. When exporting an RDB to
a document-oriented database, we denormalize the original database to avoid creating
foreign key-like structures requiring joins.

3. Related Work

Several works from the state of the art based their models on an input metamodel.
For example, [Karnitis and Arnicans 2015] build a tree-like structure that maps all re-
lational objects to a metamodel. From the built metamodel, they execute queries to mi-
grate data to the document-oriented database. However, the author’s lacks to present
how the approach migrates N :N , 1:N , or 1:1 relationships. They claim that the meta-
model can convert data from relational to document-oriented. Using a similar strategy,
[Namdeo and Suman 2021] extracts the schema from relational data and queries to pro-
pose a JSON schema but does not export the data to the new format.

Other works, such as [Chen et al. 2022] and

Companion Proceedings of the 39th Brazilian Symposium on Data Bases October 2024 – Florianópolis, SC, Brazil

109

[de Lima and dos Santos Mello 2015], propose an approach to build document-
oriented schemas from workloads. They do not show the resulting document-oriented
database, and how the relationships were implemented needs to be clarified. As
[Karnitis and Arnicans 2015] states, one business object can be stored in several tables,
and it is hard to tell whether or not a table represents a business object or is a join table.

Zhao et al. [2014] also present an approach to convert NoSQL to Relational
databases. They propose to organize the relational schema into a tree where relation-
ships are represented as parent-child nodes. Still, they lack a discussion of the cardinality
among tables, mainly the N :N type, i.e., join-tables.

Besides the trivial conversions, our work proposes an approach to deal with can-
didate join tables: tables created to represent N :N cardinality.

4. Rel2Doc
Unlike those presented in Section 3, our approach does not extract the relational schema
before starting the migration process. It reads the schema to compute the table of foreign
keys and starts migration. Our approach systematically organizes all tables using a hash-
ing structure based on the number of foreign keys. This systematic organization provides
a clear and structured view of the database, reassuring the audience of its manageability.

Algorithm 1 sketches how join tables are found. First, all two-fk-tables (t2fk) are
retrieved, and if a given t2fk is not referenced by any other tables (Line 5). The number of
no keys attributes (line 4) is less than a threshold (given by the user - MX ATT parameter)
(Line 7), t2fk is a join table. That means it will be aggregated as an object array in one of
the tables with outgoing connections.

Algorithm 1: Get Join Table Candidates
Input: Tables, MX ATT
Output: Join Table List - JTList

1 JTList:={} /* Initialize join table list */
2 Table:=getTables2FK(Tables) /* retrieve tables with only 2 FKs */
3 for each t in Table do
4 nbCols:=|getNoKeysColumns(t)| /* number of no key columns */
5 nbReft:=getNbReferences(t)
6 nbFK:=getNbFK(t)
7 if nbReft=0 ∧ nbFK = 2 ∧ nbCols < MX ATT then
8 JTList:=JTList ∪ t
9 end

10 end

After finding the join tables, the migration process starts. Algorithm 2 presents the
steps. Four parameters are given: information about PostgreSQL (PGPar) and MongoDB
(mongoPAR), the maximum number of no keys attributes to find join-tables (MX ATT),
and whether or not the documents will have MongoDB’s ObjectIDs (insObjID). Line 4
returns the join table list, and from Line 5 to 27, MongoDB collections are created from
the relational database given as a parameter. Two kinds of tables are transformed into
aggregation: join tables (Line 13) and tables referencing only one table (Lines 17 to 22).

We conduct an experiment to verify Rel2Doc’s performance. We use three

Companion Proceedings of the 39th Brazilian Symposium on Data Bases October 2024 – Florianópolis, SC, Brazil

110

Algorithm 2: Migrating Relational to Document-Oriented
Input: PGPar, mongoPAR, MX ATT, insObjID
Output: MongoDB Collection Created

1 ConnectDB(PGPar, mongoPAR)
2 Tables:=getAllTables(PGPar.database name)
3 SortByNumberOfFK(Tables)
4 Run Algorithm 1 with Tables, MX ATT returning JTList
5 for each table in Tables do
6 if (table in JTList ∨ table is already aggregated) then
7 continue
8 end
9 Create MongoDB Collection Col

10 refTables:=getReferencedTables(table)
11 for each r in table do
12 Insert Document D in Col
13 if (refTables in JTList ∧ r.att is a join attribute) then
14 Insert refTables.table.tuple as an aggregation in D
15 continue
16 end
17 while There is a table tr referencing t do
18 nbFK:=GetFK(tr)
19 if nbFK=1 then
20 insert tr.tuple as an aggregation in D
21 end
22 end
23 end
24 if MongoPAR.addObjID is True then
25 Add ObjectID in D
26 end
27 end

databases: Movies Rental (RENTAL) with 15 tables, 31,722 tuples, and 18 FK; Tele-
phone Voicemail Box (TVB) with 28 tables, 2,806,907 tuples, and 18 FK; and Short
Message Service (SMS) with 127 tables, 5,100,409 tuples, and 247 FK. The migration
process took 6.5 minutes for RENTAL, 5.77 minutes for TVB, and 1,620 minutes for
SMS. It’s important to note that the number of foreign keys has a significant impact on
the execution time. For instance, TVB’s size is nine times bigger than the rental, yet it
runs faster. SMS is the largest and most numerous in FKs and the slowest to migrate.

Figure 1 shows an extract how three RENTAL tables are aggregated in the re-
sulting document-oriented schema: language and actor became part of film collection,
besides film actor is also an aggregation built as a join-table inside actor.

The fundamental concept of our migration approach are the foreign keys. Exper-
iments show the effectiveness of the method. However, it is important to notice that the
document dataset generated is generic and does not consider specific details of the origi-
nal application’s workload. Also, the aggregation process creates data redundancy, which
can be a problem in some scenarios. To mitigate redundancy problems, our approach

Companion Proceedings of the 39th Brazilian Symposium on Data Bases October 2024 – Florianópolis, SC, Brazil

111

Figure 1. Extract from the RENTAL schema and the resulting MongoDB schema.

considers the aggregate of a table when the table does not have more than one reference.

5. Conclusion
In this demo, we propose a novel approach for migrating data from RDBs to document-
oriented NoSQL DBs. Our method minimizes the number of collections created by con-
sidering all types of relationships and the tables involved. Keys (K) and foreign keys
(FK) determine whether a table becomes a standalone collection or is embedded within
another. To test our approach, we migrated data from PostgreSQL to MongoDB. The ex-
periments demonstrated that our approach is effective in accurately exporting data, with
performance primarily influenced by the database’s number of FKs.

We intend to explore improving the way we find join tables by considering more
than two tables involved in the join in future work. We also intend to enhance the approach
to considering the application needs when migrating the relational data.

References
Abadi, D. J. (2009). Data management in the cloud: Limitations and opportunities. IEEE

Data Eng. Bull., 32(1):3–12.

Chen, L., Davoudian, A., and Liu, M. (2022). A workload-driven method for designing
aggregate-oriented NoSQL databases. Data & Knowledge Engineering, 142:102089.

de Lima, C. and dos Santos Mello, R. (2015). A workload-driven logical design approach
for NoSQL document databases. In Proceedings of the 17th iiWAS, pages 1–10.

Karnitis, G. and Arnicans, G. (2015). Migration of relational database to document-
oriented database: Structure denormalization and data transformation. In 7th CICN.

Namdeo, B. and Suman, U. (2021). Schema design advisor model for RDBMS to NoSQL
database migration. International Journal of Information Technology, 13(1):277–286.

Thalheim, B. and Wang, Q. (2013). Data migration: A theoretical perspective. Data &
Knowledge Engineering, 87:260–278.

Companion Proceedings of the 39th Brazilian Symposium on Data Bases October 2024 – Florianópolis, SC, Brazil

112

