
Reconciliação de dados usando MapReduce

Adriano L. Leão da Silva1, Dayse S. de Almeida1

1Universidade Federal de Catalão (UFCAT) – Catalão, GO – Brasil

adrianolls.dev@gmail.com, daysesa@ufcat.edu.br

Abstract. Currently, one of the main challenges in the field of data integration
is the large data generated by several applications. In this paper, we propose
Map and Reduce functions based on policies found in the literature for data inte-
gration using provenance data. These functions were applied in the distributed
context. As a result, we obtained better computational performance with the
Hadoop MapReduce compared to centralized computing of the functions, even
considering a small data in experiments. Furthermore, the functions proved to
be effective according to the policy considered, in both environments.

Resumo. Um dos principais desafios na área de integração de dados é o grande
volume de dados gerado por aplicações atuais. Neste artigo são propostas
funções de Map e Reduce para a integração de dados utilizando de dados de
procedência. Essas funções são baseadas em polı́ticas encontradas na litera-
tura e, aplicadas no contexto distribuı́do. Como resultado, obteve-se um melhor
tempo de execução com o Hadoop MapReduce, em comparação com a execução
centralizada das funções, mesmo considerando um volume pequeno de dados
nos experimentos. Além disso, as funções se mostraram eficazes de acordo com
a polı́tica considerada, em ambos os ambientes.

1. Introdução
Com o crescimento do poder computacional, a evolução dos sistemas de informação e o
aumento da quantidade de serviços disponibilizados ao usuário, surgiram diferentes car-
acterı́sticas nos dados gerados, como a falta de uma estrutura fixa e um grande volume,
havendo necessidade de novas maneiras para manipulá-los. Para soluções de armazena-
mento permanente e gerenciamento de conjuntos de dados heterogêneos, sistemas de ar-
quivos distribuı́dos e bancos de dados Not Only SQL (NoSQL) [Khan et al. 2023] têm
sido usados. O modelo de processamento MapReduce [Dean 2008] se alinha com essas
tecnologias devido à caracterı́stica de atuar sobre dados não estruturados e ser capaz de
operar grandes volumes de dados de maneira distribuı́da. Nesse modelo, o processamento
dos dados é realizado em um cluster computacional pela aplicação de duas funções ad-
vindas do paradigma da linguagem funcional, as funções Map e Reduce.

Um dos passos primordiais para armazenamento, tratamento e análise de dados,
é a integração dos dados, pois esses podem ter origem em fontes heterogêneas e ap-
resentar diferentes formatos e domı́nios [Shrestha and Bhalla 2020, Yousif et al. 2021,
Stojanović et al. 2022]. Um dos desafios da integração de dados, a resolução de conflitos
[Kruse et al. 2020], refere-se ao problema de se decidir sobre inconsistências nos valores
de atributos de uma mesma entidade, quando esses valores vêm de fontes diferentes. O
foco neste trabalho está no problema de resolução de conflitos.

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

35



A resolução de conflitos envolve processos demorados, e normalmente realizados
por um único usuário por meio de intervenção manual [Azuan 2021]. Assim, esses pro-
cessos ficam inviabilizados diante de um grande volume de dados, abrindo uma possibil-
idade de experimentar-se o modelo MapReduce. Sendo assim, a proposta neste trabalho
é utilizar o modelo de programação MapReduce para desenvolver funções de integração
de dados. Especificamente, propõe-se funções Map e funções Reduce para a resolução
de conflitos entre dados vindos de diferentes fontes. Essas funções são embasadas nas
polı́ticas de integração e reconciliação encontradas na literatura [Almeida et al. 2018]
e executadas de forma distribuı́da utilizando o framework da Apache, Hadoop Mapre-
duce [Bhandarkar 2010, Apache Software Foundation 2025]. Os dados utilizados para a
validação das funções desenvolvidas foram dados curriculares provenientes da plataforma
Lattes.

O termo reconciliação de dados será usado no restante deste texto para se referir
aos processos de integração realizados por múltiplos usuários, e o termo integração de
dados será utilizado quando houver referência a processos realizados por único usuário
diretamente sobre as fontes de dados ou cópias destas.

2. Fundamentação Teórica
O enfoque deste trabalho está na reconciliação e no compartilhamento de dados de
maneira distribuı́da utilizando o modelo de programação MapReduce. Para isso, são
propostas funções MapReduce para a reconciliação de dados, utilizando-se como base,
polı́ticas de reconciliação propostas no modelo AcCORD [Almeida et al. 2018].

O AcCORD é um modelo de reconciliação de dados colaborativo e assı́ncrono,
que permite que diversos usuários trabalhem de forma cooperativa em um conjunto de
dados de procedência tomando decisões sobre possı́veis inconsistências. Para resolver in-
consistências nos dados advindos de diferentes fontes, cada usuário pode utilizar uma fer-
ramenta de integração de dados que o auxilie no processo e, armazena em um repositório,
as ações realizadas. Normalmente esses processos, mesmo com uso de uma ferramenta de
auxı́lio, requerem intervenção manual. A ferramenta utilizada para a integração de dados
precisa fornecer as atualizações feitas pelo usuário no formato de dados de procedência
[Cheney et al. 2009, Mahmood et al. 2013, Zheng et al. 2022]. Dados de procedência
consistem no conjunto de metadados que possibilita identificar as fontes de dados e as
transformações aplicadas sobre os dados, desde a criação até o estado atual desses.

O repositório utilizado no modelo AcCORD é formado por um conjunto de
operações que armazenam os dados de procedência das atualizações feitas pelos usuários.
Cada operação no repositório é composta pela sequência de atributos mostrados a seguir:

• usuario: identificador único do usuário que tomou a decisão e criou a operação;
• op: operação que reflete a decisão do usuário no processo de integração, sendo

que as possı́veis operações são edição, cópia, remoção ou inserção;
• usuarioConf: usuários que confiaram na operação em processos de reconciliação

anteriores. Este campo não é utilizado neste trabalho;
• origem: fonte que provê o valor correto do atributo do objeto;
• destino: fonte na qual o valor do atributo foi corrigido pela op;
• objeto: valor da chave que identifica o objeto;
• atributo: nome do atributo no qual a op é realizada;

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

36



• valorOrigem: valor do atributo de Origem;
• valorDestino: valor do atributo de destino antes de ser sobrescrito pelo valorOr-

igem;
• timestamp: momento em que a op foi realizada.

Compartilhar decisões e trabalhar colaborativamente pode ser uma estratégia na
economia de tempo e na confiança no resultado final. Mas, como cada usuário pode
tomar decisões particularmente diferentes sobre as inconsistências nas fontes de dados, os
repositórios individuais podem estar inconsistentes o final do processo de integração. Para
solucionar o problema, foram propostas polı́ticas de reconciliação no modelo AcCORD,
que podem gerar uma visão única e consistente dos dados para todos os usuários, ou
várias visões distintas para cada usuário, dependendo da necessidade particular de cada
um deles. O modelo, no entanto, não se mostra adequado, em termos de eficiência, para
ambientes com grande volume de dados. Isso se deve ao fato do processamento feito pelo
módulo de reconciliação ser realizado localmente na máquina do usuário que solicita a
reconciliação.

3. Funções de MapReduce

São propostas quatro funções de MapReduce para a reconciliação de dados, descritas a
seguir.

1. A primeira função mantém as decisões do usuário que solicitou o processo de
reconciliação. Sendo assim, se quaisquer operações p e o conflitam e p no valor
do atributo é uma operação feita pelo usuário local, a polı́tica mantém p e remove o
e as operações geradas a partir dessa subsequentemente. Essa polı́tica gera várias
visões distintas para cada usuário.

2. A segunda remove todos os conflitos entre operações de atualização feitas por
diferentes usuários. Se quaisquer operações p e o conflitam, a polı́tica remove p e
o e todas as operações geradas subsequentemente a partir delas. Essa polı́tica gera
uma única visão consistente dos dados para todos os usuários.

3. A terceira prioriza a ordem temporal das operações. Se quaisquer operações p
e o conflitam e p é a operação mais recentemente realizada, a polı́tica mantém
p e as operações subsequentes a essa. Atualizações necessárias para manter a
consistência no repositório de dados são realizadas na operação o e nas operações
subsequentes geradas a partir de o . Essa polı́tica gera uma única visão consistente
dos dados.

4. A quarta função prioriza as operações que refletem a maioria das decisões sobre
um valor, ou seja, aquelas operações cujo determinado valor atualizado aparece
na maioria das operações. Se quaisquer operações p e o conflitam e p possui
o valor sobre um atributo que representa a maioria das decisões dos usuários, a
polı́tica mantém a operação p e suas operações subsequentes e remove a operação
o. Atualizações necessárias para manter a consistência entre as operações, são
realizadas nas operações susequentes à operação o . Caso haja empate na votação,
a polı́tica remove as operações p e o e todas as operações subsequentes à elas.
Essa polı́tica gera uma única visão consistente dos dados.

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

37



4. Materiais e Métodos
4.1. Base de Dados
Foram utilizados, neste trabalho, dados curriculares obtidos da plataforma Lattes, uma
base pública de currı́culos de pesquisadores. Os repositórios de dados foram cria-
dos a partir da integração de dados de 4 currı́culos de pesquisadores do Instituto de
Ciências Matemáticas e de Computação da Universidade de São Paulo (ICMC-USP).
Esses currı́culos foram selecionados entre 120 currı́culos de outros pesquisadores do in-
stituto, devido à grande quantidade de publicações em comum, o que gerou um con-
junto de dados com potencial para conflitos. Foram gerados 16 repositórios de dados
com operações de cópia, edição, remoção e inserção, que representam as decisões de
integração dos usuários. Os tamanhos dos repositórios variam de 390 KB com 749
operações a 40 KB com 79 operações.

Esses repositórios foram construı́dos e fornecidos por Almeida et al.
[Almeida et al. 2018] e são os mesmos utilizados em seu trabalho para a avaliação de
suas polı́ticas de reconciliação. Eles foram empregados neste trabalho para a avaliação
das funções de MapReduce desenvolvidas, permitindo assim, a análise da sua eficácia
quando comparadas as polı́ticas originais.

4.2. Ambiente Experimental
Para fins de comparação, as funções MapReduce foram executadas tanto utilizando o
framework Hadoop MapReduce quanto em uma máquina local centralizada. O desem-
penho de cada abordagem foi avaliado com base no tempo de processamento gasto pelas
polı́ticas para tratar as operações conflitantes e na quantidade de operações consideradas
corretas que permaneceram no repositório após a execução.

No primeiro experimento, as funções foram executadas em uma única máquina
virtual, usando a aplicação VMWare para a virtualização. A máquina possui as seguintes
configurações: 2 cores do processador Intel Core i5-9400F CPU de 2.90GHz, 4GB de
memória RAM, 500GB de SSD e utiliza o sistema operacional Ubuntu 20.04.2 LTS 64-
bit.

Na realização do segundo experimento, usou-se adicionalmente o framework
Hadoop (versão 3.2.1) para a simulação do processamento distribuı́do. Essa ferramenta
depende do Java OpenJDK e Javac (versão 1.8.0), que foram devidamente instalados. A
configuração seguiu os padrões do modo pseudo-distributed, permitindo que cada con-
junto de processos executados no Hadoop seja executado em um único processo Java, uti-
lizando o mecanismo de threads disponı́vel na arquitetura da linguagem de programação.
Para a execução no Hadoop, foi utilizado o sistema HDFS do próprio framework para ar-
mazenar tanto o código das funções, quanto os repositórios de operações que constituem
os dados de entrada da aplicação.

As funções de Map e Reduce foram desenvolvidas na linguagem Python
(versão 3.8.5) e estão disponı́veis no Github, no endereço: https://github.com/adriano-
leao/MapreduceAcCORD.

5. Resultados e Discussões
Seguindo a metodologia descrita, o objetivo com os experimentos realizados foi avaliar
a eficácia e a eficiência das funções MapReduce desenvolvidas, bem como o compor-

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

38



tamento das mesmas. Essas funções objetivam a reconciliação de dados em ambientes
nos quais os dados são compartilhados por meio de repositórios. Para isso, é necessário
que a ferramenta de integração utilizada previamente, gere um repositório de dados de
procedência que representem as operações de atualização realizadas nos dados.

Cada uma das quatro funções implementadas, foi submetida a duas execuções
diferentes. No primeiro experimento, as funções foram executadas em uma única
máquina. No segundo, foi utilizado o framework Hadoop MapReduce, simulando o
processamento em um ambiente distribuı́do. Nos dois experimentos considera-se que
o mesmo usuário solicita o processo de reconciliação todas as vezes nas quais ele é apli-
cado. Todos os resultados foram obtidos por meio da média de cinco execuções em cada
cenário, com um intervalo de confiança de 95%, assegurando assim, a sua confiabilidade.

Na Figura 1, são mostrados os tempos de execução gastos por cada polı́tica para
manipular as operações de um número crescente de repositórios. Observa-se tempos
melhores para as execuções de todas as funções no framework Hadoop MapReduce,
em comparação com os tempos obtidos na execução centralizada das mesmas funções
MapReduce, mesmo utilizando repositórios pequenos. Ambientes distribuı́dos tendem a
prejudicar execuções realizadas sobre pequenos volumes de dados pois, muitas vezes, os
tempos para distribuir os dados entre os nós e coletar e combinar os resultados, superam
o tempo de execução em um único nó. Porém, não é isso que ocorre aqui, assegurando o
melhor desempenho de funções MapReduce utilizando o Haddop.

Figure 1. Comparação entre tempos gastos pelas funções MapReduce na
execução centralizada e no Hadoop MapReduce.

Adicionalmente, destaca-se que na execução no Hadoop, as funções baseadas na
visão local e na remoção de todos os conflitos exibiram o melhor desempenho. Isso se
deve ao fato de que uma vez que as operações conflitantes são agrupadas, os conflitos não
são verificados e essas operações não são atualizadas. Com o uso da primeira polı́tica, as
operações realizadas pelo usuário que solicitou o processo de reconciliação são mantidas,
e as operações conflitantes com essas, dos demais usuários, são descartadas. Com o
uso da segunda polı́tica, todas as operações conflitantes são descartadas. Os tempos de
execução confirmam a eficácia das funções, pois os seus comportamentos estão refletidos
nos tempos gastos.

Também foi realizada uma análise do número de operações mantido no repositório
após a conclusão do processo de reconciliação, considerando cada polı́tica e um número

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

39



crescente de repositórios envolvidos no processo, mostrados na Figura 2. Além disso,
é mostrado o número inicial de operações existentes no repositório utilizado como re-
ferência. Ou seja, o número de operações no repositório do usuário que solicita o processo
de reconciliação. Ele importa as operações dos demais repositórios dos demais antes de
se realizar o processo de reconciliação.

Figure 2. Número de operações mantidas no repositório após a aplicação de
cada função de reconciliação.

Os resultados obtidos foram similares àqueles apresentados por Almeida et al.
[Almeida et al. 2018] em relação ao comportamento das funções. A polı́tica que re-
move todas as operações conflitantes foi responsável por remover maior quantidade de
operações do repositório, conforme o esperado. Esse resultado foi seguido de perto pelas
funções baseadas na visão local e na votação. A primeira remove qualquer operação
conflitante com as operações do usuário que solicita o processo de reconciliação. Já a
segunda, apesar de se basear numa votação para decidir quais as operações conflitantes
devem ser mantidas, em caso de empate na votação, ela remove todas as operações con-
flitantes assim como a polı́tica de remoção de todos os conflitos.

No cenário apresentado, a polı́tica baseada no timestamp mostrou-se mais eficaz
em atualizar as operações que aquela baseada na votação, preservando-se assim um maior
número no repositório resultante. Isso é intuitivamente, bem visto pelos usuários, pois
eles não terão que tomar novas decisões para inconsistências que já foram tratadas por
eles anteriormente.

6. Conclusão
Neste trabalho, polı́ticas de reconciliação de dados em nı́vel de instância foram exploradas
no contexto do modelo de processamento MapReduce em um ambiente centralizado e em
um ambiente distribuı́do. Os resultados obtidos revelaram que as estratégias distribuı́das
têm potencial para aprimorar significativamente a eficiência da reconciliação de dados,
tendo em vista que em todos os casos testados, obteve-se um desempenho melhor ao
utilizar-se a abordagem distribuı́da em comparação com a forma centralizada.

Tendo em vista que as principais limitações deste trabalho são, o pequeno volume
de dados utilizado nos experimentos e a sua execução realizada em um único servidor
Hadoop, o que resultou em uma simulação do processamento distribuı́do, recomenda-
se que em pesquisas subsequentes, essas abordagens sejam exploradas em ambiente de

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

40



cluster distribuı́do, com foco na execução de dados em larga escala. O uso de conjun-
tos de dados substanciais é essencial para obter avaliações mais precisas do desempenho
das funções de reconciliação em ambientes distribuı́dos. Essas investigações têm o po-
tencial de preencher as lacunas deixadas por este trabalho e, ampliar a compreensão da
reconciliação de dados em contextos mais desafiadores.

References
Almeida, D. S.; Hara, C. S., Ciferri, R. R., and Ciferri, C. D. A. (2018). An asynchronous

collaborative reconciliation model based on data provenance. Software: Pratice and-
Experience, 48(1):197–232.

Apache Software Foundation (2025). Apache hadoop. https://hadoop.apache.org. Aces-
sado em: 13 jun. 2025.

Azuan, N. A. A. (2021). Exploring Manual Correction as a Source of User Feedback in
Pay-As-You-Go Integration. PhD thesis, The University of Manchester.

Bhandarkar, M. (2010). Mapreduce programming with apache hadoop. In 2010 IEEE
International Symposium on Parallel Distributed Processing (IPDPS), pages 1–1.

Cheney, J., Chiticariu, L., Tan, W.-C., et al. (2009). Provenance in databases: Why, how,
and where. Foundations and Trends® in Databases, 1(4):379–474.

Dean, J.; Ghemawat, S. (2008). Mapreduce: simplified data processing on large clusters.
Communications of the ACM - 50th anniversary issue: 1958 - 2008, 51(1):107–113.

Khan, W., Kumar, T., Zhang, C., Raj, K., Roy, A. M., and Luo, B. (2023). Sql and nosql
database software architecture performance analysis and assessments—a systematic
literature review. Big Data and Cognitive Computing, 7(2).

Kruse, F., Hassan, A. P., Awick, J.-P., Gómez, J. M., and Bui, T. (2020). A qualitative
literature review on linkage techniques for data integration. In HICSS, pages 1–11.

Mahmood, T., Jami, S. I., Shaikh, Z. A., and Mughal, M. H. (2013). Toward the mod-
eling of data provenance in scientific publications. Computer Standards & Interfaces,
35(1):6–29.

Shrestha, S. and Bhalla, S. (2020). Survey on the evolution of models of data integration.
Int. J. Knowl. Based Comput. Syst, 8:11–16.

Stojanović, A., Horvat, M., and Kovačević, Z. (2022). An overview of data integration
principles for heterogeneous databases. In 2022 45th Jubilee International Convention
on Information, Communication and Electronic Technology (MIPRO), pages 1111–
1116.

Yousif, O., Zakaria, R., Aminudin, E., Yahya, K., Sam, A., Singaram, L., Munikanan, V.,
Yahya, M., Wahi, N., and Shamsuddin, S. (2021). Review of big data integration in
construction industry digitalization. Frontiers in Built Environment, 7.

Zheng, L., Pan, J., and Zhang, K. (2022). Power data integration method based
on database-table metadata semantic. Journal of Physics: Conference Series,
2179(1):012028.

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

41


