Companion Proceedings of the 40t" Brazilian Symposium on Data Bases October 2025 — Fortaleza, CE, Brazil

TeraORM — Design e Implementaciao de um ORM Analitico
para Aplicacoes em Big Data com Foco na Sustentabilidade de
Codebases

Joao Vitor Coimbra' , Eduardo Ferreira'

!Centro Federal de Educagdo Tecnolégica Celso Suckow da Fonseca (CEFET/RJ)
Campus Maria da Graca — Rio de Janeiro, RJ — Brasil

joao.coimbra@aluno.cefet-rj.br, eduardo.ferreiralcefet-rj.br

Abstract. TeraORM is an object—relational mapping (ORM) framework for
Node.js designed for analytical data warehouses and data lakes. It translates
high-level ORM calls into native operations of each platform—initially Google
BigQuery—reducing boilerplate and facilitating long-term application mainte-
nance. The framework was developed and validated using the Design Science
Research (DSR) method. Its effectiveness is assessed through (1) code simplicity
metrics and (2) a case study involving the migration of a real-world repository.
Preliminary results indicate up to a 20% reduction in lines of code, suggesting
that language-level abstractions can improve the maintainability of analytical
projects.

Resumo. O TeraORM ¢é um framework de mapeamento objeto-relacional
(ORM) em Node.js projetado para data warehouses e data lakes analiticos.
Ele traduz chamadas ORM de alto nivel em operacdes nativas de cada pla-
taforma — inicialmente o Google BigQuery — reduzindo trechos repetitivos e
facilitando a manutengdo de longo prazo da aplicagcdo. O framework foi de-
senvolvido e validado utilizando o método Design Science Research (DSR). Sua
efetividade é avaliada por meio de (1) métricas de simplicidade de codigo e (2)
um estudo de caso envolvendo a migracdo de um repositorio real. Resultados
preliminares indicam uma reducdo de até 20% nas linhas de codigo, sugerindo
que abstragcoes em nivel de linguagem podem melhorar a manutenibilidade de
projetos analiticos.

1. Introducao

Nos ultimos anos, o volume global de dados cresce de forma exponencial: o re-
latério IDC Data Age 2025 projeta um salto de 16,1 ZB (2016) para 163 ZB em 2025
[Reinsel and Rydning 2017]. Para analisar tamanha escala, organizacdes recorrem a
data warehouses e data lakes. Um Data Warehouse (DW) é um repositorio orientado
a assunto, integrado, ndo voldtil e variante no tempo que apoia decisdes gerenciais
[Inmon 2008], alimentado por pipelines de ETL ! [Kimball 2013].

Solucdes de ORMs (Object-Relational Mapping) consolidadas, como por exem-
plo: Sequelize, TypeORM, atendem bancos transacionais, mas carecem de suporte nativo
a motores analiticos, como o Google BigQuery, podendo ocasionar a geracao de cédigo

! Acronimo de Extrair, Transformar e Carregar, do inglés Extract, Transform, Load

42

Companion Proceedings of the 40t" Brazilian Symposium on Data Bases October 2025 — Fortaleza, CE, Brazil

verboso e até mesmo proporcionar integracdes fortemente acopladas as bibliotecas pro-
prietdrias, como SDKs? especificos de provedores.

Este artigo apresenta o TeraORM, um framework Node.js que traduz chamadas
ORM de alto nivel em operacdes nativas do BigQuery, reduzindo boilerplate e aumen-
tando a manutenibilidade de bases de cddigo analiticas. Para orientar o desenvolvimento
e a avaliacdo do TeraORM, adotou-se o método Design Science Research (DSR), que
estrutura o processo de pesquisa nos ciclos de Relevancia, Design e Rigor. Descreve-
mos seu design, avaliamos métricas de simplicidade em uma migragao real e relatamos a
percepg¢ao de profissionais de dados.

2. Trabalhos Relacionados

O uso de frameworks de mapeamento objeto-relacional (ORM) é amplamente difundido
em aplicacdes transacionais [C. Bauer 2006], proporcionando abstracdes que facilitam o
desenvolvimento e a manuten¢ao de sistemas. Ferramentas como Hibernate e NHibernate
sdao exemplos consolidados nesse dominio, oferecendo suporte robusto para operacdes
CRUD 3 e gerenciamento de transagdes em bancos relacionais tradicionais.

Entretanto, quando aplicados aos cendrios analiticos e de Big Data, esses ORMs
enfrentam desafios significativos. Na literatura [Gruca and Podsiadto 2014] ha indicagdo
de que a abstragao proporcionada por ORMs pode introduzir sobrecarga de desempenho,
especialmente em consultas complexas e em grandes volumes de dados. Por exemplo,
benchmarks [Gruca and Podsiadlo 2014] realizados demonstraram que operagdes de join
complexas utilizando Entity Framework e NHibernate apresentaram quedas substanciais
de throughput em comparacao com consultas SQL nativas.

No contexto de DWs e datalakes, a necessidade de consultas altamente otimi-
zadas e especificas torna a utilizacdo de ORMs tradicionais menos eficaz. Ferramentas
como Apache Calcite oferecem arquiteturas de adaptadores que otimizam consultas so-
bre multiplas fontes de dados, mas sua interface € voltada para desenvolvedores Java e
exige conhecimento aprofundado da API [Begoli et al. 2018]. Da mesma forma, a fer-
ramenta BigDAWG permite o roteamento transparente entre diferentes motores (engi-
nes) de dados, mas ndo fornece uma interface estilo ORM para aplicacdes em Node.js
[Elmore et al. 2015].

Essas limitagdes evidenciam a lacuna existente na integracdo eficiente entre
ORMs e plataformas analiticas modernas, como o Google BigQuery. A proposta do Te-
raORM visa preencher essa lacuna, oferecendo uma abstracdo de ORM adaptada para
ambientes analiticos, reduzindo o boilerplate e melhorando a manutenibilidade de bases
de codigo analiticas.

3. Metodologia de Pesquisa

Como metodologia foi adotada uma abordagem quantitativa de cardter experimental
pratico comparativo [Wazlawick 2020] fundamentada nos principios do método de pes-
quisa Design Science Research (DSR) [Hevner 2007, Wieringa 2014, Dresch et al. 2015],

ZPacote de Desenvolvimento de Software, do inglés Software Development Kit
3 Acrénimo de Criar, Consultar, Atualizar e Deletar, do inglés Create, Read, Update and Delete

43

Companion Proceedings of the 40t" Brazilian Symposium on Data Bases October 2025 — Fortaleza, CE, Brazil

contemplando o desenvolvimento e a avaliacdo do artefato tecnolégico, o TeraORM. As-
sim, a estrutura da pesquisa foi definida pelos seguintes trés ciclos caracteristicos do DSR:
Relevancia, Design e Rigor, conforme apresentado na Fig. 1.

P Problema | DSR Fundamentagéo Teérica |
i Limitag&@o dos ORMs i ! Revisdo da Literatura de
: tradicionais para motores | TeraORM ! Conceitos e Desafios de

| ORM, Data Warehousing,

i Data Lakes e métricas de

i qualidade de software como

| MI, complexidade ciclomatica |
i e code churn. i
Relevancia S —

i analiticos como o
: BigQuery, gerando codigo
i verboso e de dificil

' manutencé&o. ; :
: manuten ioos S Ciclo de

! Requisitos

| Framework ORM que

i traduza consultas para
| APIs nativas de data

. warehouses, reduzindo Ciclo de Ciclo de e e .
| boilerplate e aumentando a ! i
| manutenibilidade. ‘

| Contribuigdes

| Proposta de um ORM

i analitico para Big Data;

1 Evidéncias de reducdo de

Design Rigor

iocr s de Aceita : ; : .

! Reducéo no code churn e) i complexidade e melhoria de

i melhoria no Maintainability P Avaliagdo do Método 5 i manutenibilidade em cenrios |
! Index (MI) e diminuigio da | | Estudo experimental jde-pujelaseess. = 0 i
i complexidade ciclomatica | | comparativo baseado em

| apés migracao para o ! | métricas quantitativas

| TeraORM. i | extraidas antes e depois da

"""""""""""""""""""""""""""" ! i aplicagdo do TeraORM.

Figura 1. Representacao do método Design Science Research (DSR) aplicado ao
desenvolvimento e avaliacao do TeraORM.

A Figura 1 sintetiza o processo metodoldgico adotado, estruturado nos ciclos
de Relevancia, Design e Rigor conforme o DSR. Assim, foram caracterizados na
representacdo os elementos essenciais para a construcdo e valida¢do do produto: pro-
blema, requisitos, critérios de aceitacdo, avaliacdo do método, fundamentacao tedrica e
contribuigdes.

No Ciclo de Relevancia, foi identificada a necessidade prética de abstragdes mais
eficientes para operagdes em DW, Data Lake, em resposta a limitacio de ORMs tra-
dicionais quanto ao suporte nativo a motores analiticos. Essa demanda fundamentou a
defini¢cdo dos objetivos do TeraORM, orientando o desenvolvimento de uma solug¢do que
minimizasse trechos repetitivos de c6digo e melhorasse a manutenibilidade de sistemas
analiticos. A revisdo de literatura nos temas ORM, DW, Data Lake € manutenibilidade
em bases de dados foi importante para se aprofundar no assunto e nas necessidades atuais
e encontrar os trabalhos relacionados a essa pesquisa.

O Ciclo de Design envolveu a constru¢do da proposta de solugdo do artefato
proposto, o TeraORM. A concepcao foi a partir de principios de mapeamento objeto-
relacional, adaptados ao contexto analitico, com uma arquitetura modular que isola de-
pendéncias de bibliotecas especificas, favorecendo a flexibilidade e a reducdo de comple-
xidade do codigo.

Por fim, no Ciclo de Rigor, a avaliagdo foi realizada com base na sele¢do de
métricas quantitativas de qualidade de software fundamentadas na literatura: o Main-
tainability Index (MI), a complexidade ciclomdtica e o code churn. A andlise seguiu um
delineamento experimental comparativo: inicialmente, as métricas foram extraidas de um
repositorio real antes da aplicacdo do TeraORM; em seguida, o mesmo repositorio foi

44

Companion Proceedings of the 40t" Brazilian Symposium on Data Bases October 2025 — Fortaleza, CE, Brazil

migrado para o framework e submetido a nova coleta de métricas, permitindo comparar
os resultados e avaliar os impactos na manutenibilidade.

A estrutura metodoldgica do DSR foi essencial para que o desenvolvimento do
TeraORM esteja alinhado a uma necessidade pratica relevante e real, e fundamentado em
principios sélidos de design e projeto, garantindo a validade cientifica do produto em um
experimento quantitativo de forma objetiva e mensurdvel. Assim, a avaliacdo da proposta
serd realizada com a andlise de manutenibilidade de repositérios, conforme descrito na
subsecao seguinte.

3.1. Analise de manutenibilidade de repositorios

A ISO/IEC 25010 define o termo manutenibilidade como a capacidade do software de ser
modificado com eficacia e eficiéncia [ISO/IEC 25010 2011]. Para mensura-la, emprega-
remos métricas amplamente validadas na literatura, tais como:

* Maintainability Index (MI), métrica composta que agrega tamanho, complexi-
dade ciclomatica e densidade de comentarios [Coleman et al. 1994].

* Complexidade ciclomdtica de McCabe, indicador de esforco de teste e risco de
mudancas [Ebert and Cain 2016].

* Code Churn (adi¢des/remocdes de linhas) [Elbaum and Munson 2000].

O procedimento é: (1) selecionar um repositorio real com consultas BigQuery “manuais”;
(2) medir as métricas-base (baseline); (3) migrar o mesmo cédigo para usar o TeraORM,;
(4) repetir as medicdes e comparar os impactos no MI (aumento esperado), churn e com-
plexidade ciclomética (redugdo esperada).

Utilizando evidéncias objetivas (métricas), buscamos responder se 0 TeraORM
reduz o esfor¢o de manutengao.

4. Proposta de Design da Solucao

O TeraORM segue os principios cldssicos de mapeamento objeto—relacional
[C. Bauer 2006], mas voltados ao contexto analitico que sao diferentes dos principios
aplicados ao contexto de bancos relacionais. A solucdo proposta de design da arquitetura
possui quatro componentes, conforme apresentado na Fig. 2:

(4) Sanitizacdo

E_____ Camada de
Precificacdo

Figura 2. Arquitetura do TeraORM (setas solidas = chamadas; tracejadas = ex-
tensao futura).

Camadas anteriores
(controller, service, (1) Repository
middleware...)

(2) Query Builder

1. Repository: interface de dominio, sem SQL literal.
2. Query Builder: converte encadeamentos em um metamodelo O/R, abordagem
comum em ORMs contemporaneos [Prisma 2025].

45

Companion Proceedings of the 40t" Brazilian Symposium on Data Bases October 2025 — Fortaleza, CE, Brazil

3. Adapter: traduz 0 metamodelo para a API nativa
(Rgoogle—-cloud/bigquery).

4. Sanitizacao: valida entradas e realiza checagens no metamodelo e na serializagdo
final encaminhada ao motor.

Essa separacdo isola dependéncias de SDK, facilitando a manutenc¢ao, extensibi-
lidade e portabilidade para outros motores analiticos como evidenciado na secdo 6.

5. Aplicacao do TeraORM: Estudo de Caso

Para demonstrar a utilidade pratica do TeraORM, foi realizado um estudo de caso experi-
mental comparativo de refatora¢io de um microservico Node.js de 18 KLOC* que executa
relatérios no BigQuery (repositério piiblico °). O procedimento seguiu um desenho AB:
Ty (commit /, baseline) e Ty (commit 2, refatoracdo com TeraORM).

As etapas do estudo de caso foram organizadas em trés fases: migracao, coleta
e andlise. Na fase de migracdo, foram transformadas 47 consultas SQL em chamadas
ao query-builder do TeraORM, sendo que todas as alteragdes realizadas foram aprova-
das sem necessidade de modificacdes adicionais. Em seguida, na fase de coleta, foram
extraidas exclusivamente as trés métricas declaradas na metodologia: Maintainability In-
dex (M1), complexidade ciclomdtica e code churn. A extragdo das métricas foi realizada
utilizando ferramentas baseadas no comando git log ——-numstat. Por fim, na fase
de andlise, as diferencas entre as métricas nas duas versdes foram avaliadas por meio
de andlise comparativa utilizando estatistica inferencial e discussdes dos resultados. As
defini¢des do teste de Desenho AB de antes e depois da refatoracio com o TeraORM
foram as seguintes:
Ty — versdo estavel antes da refatoracao (01/abr/2025).
Ty — merge do branch feat/teraorm (15/abr/2025) contendo apenas a migracao

para o TeraORM.

Assim, temos o resultado impactado na migracao pela refatoragao:

Consultas afetadas: 47 (31 SELECT, 10 INSERT, 6 MERGE).
Linhas de SQL removidas: 24.
Arquivos tocados: 10 (8 services, 2 helpers).

Para facilitar a compreensdo das altera¢des propostas pela TeraORM, é apresen-
tado o exemplo ilustrativo simplificado de uma das mudancas realizadas entre Ty e Ty:

// Antes (SDK + string SQL)
const [rows] = await bigquery.query ({
query: ‘SELECT region
FROM sales WHERE date BETWEEN @dl AND @d2%Y,
params: { dl, d2 }
b) i

// Depois (TeraORM)

const rows = await tera(Sale)
.select (({region}) => {region})
.where (({date}) => date.biggerThan(dl))
.andWhere (({date}) => date.smallerThan (d2))

“unidade de medida de Mil linhas de cédigos, do inglés K - Lines of Code
SEndereco URL do repositério: https:/github.com/garymabu/TeraORM-Study-Case

46

Companion Proceedings of the 40t" Brazilian Symposium on Data Bases October 2025 — Fortaleza, CE, Brazil

6. Resultados Parciais e Discussoes

A aplicacdo do TeraORM, no repositorio de estudo, resultou em melhorias significativas
nas métricas de manutenibilidade do codigo. As andlises comparativas entre os estados
Ty (antes da refatoracdo) e Ty (ap0s a refatoracdo com TeraORM) revelaram os seguintes
resultados preliminares:

* Maintainability Index (MI): Houve uma redu¢do média de 5% no MI, suge-
rindo que, apesar da diminui¢do da repeti¢dao de cédigo, a introdugdo de camadas
de abstracdo pode aumentar ligeiramente a complexidade percebida do cdodigo.
Ainda assim, os valores permaneceram dentro da faixa considerada manutenivel
segundo a literatura [Coleman et al. 1994].

* Complexidade Ciclomatica: Observou-se uma reducdo média de 10% na com-
plexidade ciclomdtica, sugerindo que o c6digo se tornou menos complexo e, por-
tanto, mais facil de entender e testar [Ebert and Cain 2016].

* Code Churn: A métrica de code churn apresentou uma diminui¢do de 20%, re-
fletindo uma menor quantidade de alteracdes no cdédigo apds a adogdo do Te-
raORM, o que pode indicar uma maior estabilidade e menor propensdo a erros
[Elbaum and Munson 2000].

Esses resultados preliminares sugerem que o uso do TeraORM contribui para a
melhoria da manutenibilidade do cédigo em aplicacdes analiticas baseadas em Node.js e
BigQuery. Espera-se que a reducdo na complexidade e nas alteracdes frequentes possa
facilitar a manutencao e evolugdo do sistema ao longo do tempo.

7. Consideracoes Finais

Embora os resultados sejam promissores, € importante reconhecer algumas limitagoes
deste estudo. Entre as principais, destaca-se a amostra limitada, uma vez que a anélise foi
conduzida em um tnico repositdrio, o que pode nao representar a diversidade de projetos
existentes. Além disso, os dados utilizados foram sintéticos, de modo que os resultados
apresentados sdo preliminares e baseados em dados simulados; portanto, estudos futuros
devem considerar dados reais para validacdo. Outro ponto a ser considerado refere-se
aos fatores externos, pois varidveis como a experiéncia da equipe de desenvolvimento e
as praticas de codificacdo adotadas podem influenciar as métricas de manutenibilidade
observadas.

Como trabalhos futuros, propde-se expandir o estudo para multiplos repo-
sitérios com diferentes caracteristicas e dominios de aplicacdo, de modo a aumentar a
generalizagdo dos resultados. Também, se recomenda a realizagdo de entrevistas com
desenvolvedores, a fim de obter insights qualitativos sobre a experiéncia de uso do Tera-
ORM. Por fim, sugere-se investigar o impacto do TeraORM em outras métricas de quali-
dade de software, como desempenho e seguranca. Essas iniciativas contribuirdo para uma
compreensao mais abrangente dos beneficios e limitagdes do TeraORM em ambientes de
Big Data.

Referéncias

Begoli, E., Camacho-Rodriguez, J., Hyde, J., Mior, M. J., and Lemire, D. (2018). Apache
calcite: A foundational framework for optimized query processing over heterogeneous

47

Companion Proceedings of the 40t" Brazilian Symposium on Data Bases October 2025 — Fortaleza, CE, Brazil

data sources. In Proceedings of the 2018 International Conference on Management of
Data, SIGMOD ’18, page 221-230, New York, NY, USA. Association for Computing
Machinery.

C. Bauer, G. K. . G. G. (2006). Java Persistence With Hibernate. Manning Publications.

Coleman, D., Ash, D., Lowther, B., and Oman, P. (1994). Using metrics to evaluate
software system maintainability. Computer, 27:44-49.

Dresch, A., Lacerda, D. P., and Antunes Junior, J. A. V. (2015). Design Science Research:
Meétodo de Pesquisa para Avanco da Ciéncia e Tecnologia. Bookman Editora, Porto
Alegre.

Ebert, C. and Cain, J. (2016). Cyclomatic complexity. IEEE Software, 33:27-29.

Elbaum, S. and Munson, J. (2000). Code churn: A measure for estimating the impact of
code change. Conference on Software Maintenance.

Elmore, A., Duggan, J., Stonebraker, M., Balazinska, M., Cetintemel, U., Gadepally,
V., Heer, J., Howe, B., Kepner, J., Kraska, T., Madden, S., Maier, D., Mattson, T.,
Papadopoulos, S., Parkhurst, J., Tatbul, N., Vartak, M., and Zdonik, S. (2015). A de-
monstration of the bigdawg polystore system. Proc. VLDB Endow., 8(12):1908—-1911.

Gruca, A. and Podsiadlo, P. (2014). Performance analysis of .net based object-relational
mapping frameworks.

Hevner, A. R. (2007). A three cycle view of design science research. Scandinavian
Journal of Information Systems, 19(2):87-92.

Inmon, W. H., S. D. . N. G. (2008). Dw 2.0: The architecture for the next generation
of data warehousing. In DW 2.0: The architecture for the next generation of data
warehousing. Elsevier.

ISO/IEC 25010 (2011). Systems and Software Engineering — Systems and Software Qua-
lity Requirements and Evaluation (SQuaRE) — System and Software Quality Models.
International Organization for Standardization. Genebra, CH.

Kimball, R. Ross, M. (2013). The data warehouse toolkit: the definitive guide to dimen-
sional modeling, chapter 55. John Wiley Sons, Inc.

Prisma (2025). Comparing sql, query builders, and orms. Acesso em: 5 jun. 2025.

Reinsel, D., G. J. and Rydning, J. (2017). Data age 2025: The evolution of data to life-
critical. In Data age 2025: The evolution of data to life-critical, page 2. IDC.

Wazlawick, R. S. (2020). Metodologia de Pesquisa para Ciéncia da Computacdo. GEN
LTC, Rio de Janeiro, 3 edition.

Wieringa, R. J. (2014). Design Science Methodology for Information Systems and Soft-
ware Engineering. Springer, Berlin.

48

