
TeraORM — Design e Implementação de um ORM Analı́tico
para Aplicações em Big Data com Foco na Sustentabilidade de

Codebases

João Vitor Coimbra1 , Eduardo Ferreira1

1Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ)
Campus Maria da Graça – Rio de Janeiro, RJ – Brasil

joao.coimbra@aluno.cefet-rj.br, eduardo.ferreira@cefet-rj.br

Abstract. TeraORM is an object–relational mapping (ORM) framework for
Node.js designed for analytical data warehouses and data lakes. It translates
high-level ORM calls into native operations of each platform—initially Google
BigQuery—reducing boilerplate and facilitating long-term application mainte-
nance. The framework was developed and validated using the Design Science
Research (DSR) method. Its effectiveness is assessed through (1) code simplicity
metrics and (2) a case study involving the migration of a real-world repository.
Preliminary results indicate up to a 20% reduction in lines of code, suggesting
that language-level abstractions can improve the maintainability of analytical
projects.

Resumo. O TeraORM é um framework de mapeamento objeto-relacional
(ORM) em Node.js projetado para data warehouses e data lakes analı́ticos.
Ele traduz chamadas ORM de alto nı́vel em operações nativas de cada pla-
taforma — inicialmente o Google BigQuery — reduzindo trechos repetitivos e
facilitando a manutenção de longo prazo da aplicação. O framework foi de-
senvolvido e validado utilizando o método Design Science Research (DSR). Sua
efetividade é avaliada por meio de (1) métricas de simplicidade de código e (2)
um estudo de caso envolvendo a migração de um repositório real. Resultados
preliminares indicam uma redução de até 20% nas linhas de código, sugerindo
que abstrações em nı́vel de linguagem podem melhorar a manutenibilidade de
projetos analı́ticos.

1. Introdução
Nos últimos anos, o volume global de dados cresce de forma exponencial: o re-
latório IDC Data Age 2025 projeta um salto de 16,1 ZB (2016) para 163 ZB em 2025
[Reinsel and Rydning 2017]. Para analisar tamanha escala, organizações recorrem a
data warehouses e data lakes. Um Data Warehouse (DW) é um repositório orientado
a assunto, integrado, não volátil e variante no tempo que apoia decisões gerenciais
[Inmon 2008], alimentado por pipelines de ETL 1 [Kimball 2013].

Soluções de ORMs (Object-Relational Mapping) consolidadas, como por exem-
plo: Sequelize, TypeORM, atendem bancos transacionais, mas carecem de suporte nativo
a motores analı́ticos, como o Google BigQuery, podendo ocasionar a geração de código

1Acrônimo de Extrair, Transformar e Carregar, do inglês Extract, Transform, Load

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

42



verboso e até mesmo proporcionar integrações fortemente acopladas às bibliotecas pro-
prietárias, como SDKs2 especı́ficos de provedores.

Este artigo apresenta o TeraORM, um framework Node.js que traduz chamadas
ORM de alto nı́vel em operações nativas do BigQuery, reduzindo boilerplate e aumen-
tando a manutenibilidade de bases de código analı́ticas. Para orientar o desenvolvimento
e a avaliação do TeraORM, adotou-se o método Design Science Research (DSR), que
estrutura o processo de pesquisa nos ciclos de Relevância, Design e Rigor. Descreve-
mos seu design, avaliamos métricas de simplicidade em uma migração real e relatamos a
percepção de profissionais de dados.

2. Trabalhos Relacionados

O uso de frameworks de mapeamento objeto-relacional (ORM) é amplamente difundido
em aplicações transacionais [C. Bauer 2006], proporcionando abstrações que facilitam o
desenvolvimento e a manutenção de sistemas. Ferramentas como Hibernate e NHibernate
são exemplos consolidados nesse domı́nio, oferecendo suporte robusto para operações
CRUD 3 e gerenciamento de transações em bancos relacionais tradicionais.

Entretanto, quando aplicados aos cenários analı́ticos e de Big Data, esses ORMs
enfrentam desafios significativos. Na literatura [Gruca and Podsiadło 2014] há indicação
de que a abstração proporcionada por ORMs pode introduzir sobrecarga de desempenho,
especialmente em consultas complexas e em grandes volumes de dados. Por exemplo,
benchmarks [Gruca and Podsiadło 2014] realizados demonstraram que operações de join
complexas utilizando Entity Framework e NHibernate apresentaram quedas substanciais
de throughput em comparação com consultas SQL nativas.

No contexto de DWs e datalakes, a necessidade de consultas altamente otimi-
zadas e especı́ficas torna a utilização de ORMs tradicionais menos eficaz. Ferramentas
como Apache Calcite oferecem arquiteturas de adaptadores que otimizam consultas so-
bre múltiplas fontes de dados, mas sua interface é voltada para desenvolvedores Java e
exige conhecimento aprofundado da API [Begoli et al. 2018]. Da mesma forma, a fer-
ramenta BigDAWG permite o roteamento transparente entre diferentes motores (engi-
nes) de dados, mas não fornece uma interface estilo ORM para aplicações em Node.js
[Elmore et al. 2015].

Essas limitações evidenciam a lacuna existente na integração eficiente entre
ORMs e plataformas analı́ticas modernas, como o Google BigQuery. A proposta do Te-
raORM visa preencher essa lacuna, oferecendo uma abstração de ORM adaptada para
ambientes analı́ticos, reduzindo o boilerplate e melhorando a manutenibilidade de bases
de código analı́ticas.

3. Metodologia de Pesquisa

Como metodologia foi adotada uma abordagem quantitativa de caráter experimental
prático comparativo [Wazlawick 2020] fundamentada nos princı́pios do método de pes-
quisa Design Science Research (DSR) [Hevner 2007, Wieringa 2014, Dresch et al. 2015],

2Pacote de Desenvolvimento de Software, do inglês Software Development Kit
3Acrônimo de Criar, Consultar, Atualizar e Deletar, do inglês Create, Read, Update and Delete

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

43



contemplando o desenvolvimento e a avaliação do artefato tecnológico, o TeraORM. As-
sim, a estrutura da pesquisa foi definida pelos seguintes três ciclos caracterı́sticos do DSR:
Relevância, Design e Rigor, conforme apresentado na Fig. 1.

Figura 1. Representação do método Design Science Research (DSR) aplicado ao
desenvolvimento e avaliação do TeraORM.

A Figura 1 sintetiza o processo metodológico adotado, estruturado nos ciclos
de Relevância, Design e Rigor conforme o DSR. Assim, foram caracterizados na
representação os elementos essenciais para a construção e validação do produto: pro-
blema, requisitos, critérios de aceitação, avaliação do método, fundamentação teórica e
contribuições.

No Ciclo de Relevância, foi identificada a necessidade prática de abstrações mais
eficientes para operações em DW, Data Lake, em resposta à limitação de ORMs tra-
dicionais quanto ao suporte nativo a motores analı́ticos. Essa demanda fundamentou a
definição dos objetivos do TeraORM, orientando o desenvolvimento de uma solução que
minimizasse trechos repetitivos de código e melhorasse a manutenibilidade de sistemas
analı́ticos. A revisão de literatura nos temas ORM, DW, Data Lake e manutenibilidade
em bases de dados foi importante para se aprofundar no assunto e nas necessidades atuais
e encontrar os trabalhos relacionados a essa pesquisa.

O Ciclo de Design envolveu a construção da proposta de solução do artefato
proposto, o TeraORM. A concepção foi a partir de princı́pios de mapeamento objeto-
relacional, adaptados ao contexto analı́tico, com uma arquitetura modular que isola de-
pendências de bibliotecas especı́ficas, favorecendo a flexibilidade e a redução de comple-
xidade do código.

Por fim, no Ciclo de Rigor, a avaliação foi realizada com base na seleção de
métricas quantitativas de qualidade de software fundamentadas na literatura: o Main-
tainability Index (MI), a complexidade ciclomática e o code churn. A análise seguiu um
delineamento experimental comparativo: inicialmente, as métricas foram extraı́das de um
repositório real antes da aplicação do TeraORM; em seguida, o mesmo repositório foi

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

44



migrado para o framework e submetido a nova coleta de métricas, permitindo comparar
os resultados e avaliar os impactos na manutenibilidade.

A estrutura metodológica do DSR foi essencial para que o desenvolvimento do
TeraORM esteja alinhado a uma necessidade prática relevante e real, e fundamentado em
princı́pios sólidos de design e projeto, garantindo a validade cientı́fica do produto em um
experimento quantitativo de forma objetiva e mensurável. Assim, a avaliação da proposta
será realizada com a análise de manutenibilidade de repositórios, conforme descrito na
subseção seguinte.

3.1. Análise de manutenibilidade de repositórios

A ISO/IEC 25010 define o termo manutenibilidade como a capacidade do software de ser
modificado com eficácia e eficiência [ISO/IEC 25010 2011]. Para mensurá-la, emprega-
remos métricas amplamente validadas na literatura, tais como:

• Maintainability Index (MI), métrica composta que agrega tamanho, complexi-
dade ciclomática e densidade de comentários [Coleman et al. 1994].

• Complexidade ciclomática de McCabe, indicador de esforço de teste e risco de
mudanças [Ebert and Cain 2016].

• Code Churn (adições/remoções de linhas) [Elbaum and Munson 2000].

O procedimento é: (1) selecionar um repositório real com consultas BigQuery “manuais”;
(2) medir as métricas-base (baseline); (3) migrar o mesmo código para usar o TeraORM;
(4) repetir as medições e comparar os impactos no MI (aumento esperado), churn e com-
plexidade ciclomática (redução esperada).

Utilizando evidências objetivas (métricas), buscamos responder se o TeraORM
reduz o esforço de manutenção.

4. Proposta de Design da Solução
O TeraORM segue os princı́pios clássicos de mapeamento objeto–relacional
[C. Bauer 2006], mas voltados ao contexto analı́tico que são diferentes dos princı́pios
aplicados ao contexto de bancos relacionais. A solução proposta de design da arquitetura
possui quatro componentes, conforme apresentado na Fig. 2:

Figura 2. Arquitetura do TeraORM (setas sólidas = chamadas; tracejadas = ex-
tensão futura).

1. Repository: interface de domı́nio, sem SQL literal.
2. Query Builder: converte encadeamentos em um metamodelo O/R, abordagem

comum em ORMs contemporâneos [Prisma 2025].

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

45



3. Adapter: traduz o metamodelo para a API nativa
(@google-cloud/bigquery).

4. Sanitização: valida entradas e realiza checagens no metamodelo e na serialização
final encaminhada ao motor.
Essa separação isola dependências de SDK, facilitando a manutenção, extensibi-

lidade e portabilidade para outros motores analı́ticos como evidenciado na seção 6.

5. Aplicação do TeraORM: Estudo de Caso
Para demonstrar a utilidade prática do TeraORM, foi realizado um estudo de caso experi-
mental comparativo de refatoração de um microserviço Node.js de 18 KLOC4 que executa
relatórios no BigQuery (repositório público 5). O procedimento seguiu um desenho AB:
T0 (commit 1, baseline) e T1 (commit 2, refatoração com TeraORM).

As etapas do estudo de caso foram organizadas em três fases: migração, coleta
e análise. Na fase de migração, foram transformadas 47 consultas SQL em chamadas
ao query-builder do TeraORM, sendo que todas as alterações realizadas foram aprova-
das sem necessidade de modificações adicionais. Em seguida, na fase de coleta, foram
extraı́das exclusivamente as três métricas declaradas na metodologia: Maintainability In-
dex (MI), complexidade ciclomática e code churn. A extração das métricas foi realizada
utilizando ferramentas baseadas no comando git log --numstat. Por fim, na fase
de análise, as diferenças entre as métricas nas duas versões foram avaliadas por meio
de análise comparativa utilizando estatı́stica inferencial e discussões dos resultados. As
definições do teste de Desenho AB de antes e depois da refatoração com o TeraORM
foram as seguintes:
T0 — versão estável antes da refatoração (01/abr/2025).
T1 — merge do branch feat/teraorm (15/abr/2025) contendo apenas a migração

para o TeraORM.
Assim, temos o resultado impactado na migração pela refatoração:

• Consultas afetadas: 47 (31 SELECT, 10 INSERT, 6 MERGE).
• Linhas de SQL removidas: 24.
• Arquivos tocados: 10 (8 services, 2 helpers).

Para facilitar a compreensão das alterações propostas pela TeraORM, é apresen-
tado o exemplo ilustrativo simplificado de uma das mudanças realizadas entre T0 e T1:

// Antes (SDK + string SQL)
const [rows] = await bigquery.query({

query: ‘SELECT region
FROM sales WHERE date BETWEEN @d1 AND @d2‘,

params: { d1, d2 }
});

// Depois (TeraORM)
const rows = await tera(Sale)

.select(({region}) => {region})

.where(({date}) => date.biggerThan(d1))

.andWhere(({date}) => date.smallerThan(d2))
4unidade de medida de Mil linhas de códigos, do inglês K - Lines of Code
5Endereço URL do repositório: https://github.com/garymabu/TeraORM-Study-Case

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

46



6. Resultados Parciais e Discussões
A aplicação do TeraORM, no repositório de estudo, resultou em melhorias significativas
nas métricas de manutenibilidade do código. As análises comparativas entre os estados
T0 (antes da refatoração) e T1 (após a refatoração com TeraORM) revelaram os seguintes
resultados preliminares:

• Maintainability Index (MI): Houve uma redução média de 5% no MI, suge-
rindo que, apesar da diminuição da repetição de código, a introdução de camadas
de abstração pode aumentar ligeiramente a complexidade percebida do código.
Ainda assim, os valores permaneceram dentro da faixa considerada manutenı́vel
segundo a literatura [Coleman et al. 1994].

• Complexidade Ciclomática: Observou-se uma redução média de 10% na com-
plexidade ciclomática, sugerindo que o código se tornou menos complexo e, por-
tanto, mais fácil de entender e testar [Ebert and Cain 2016].

• Code Churn: A métrica de code churn apresentou uma diminuição de 20%, re-
fletindo uma menor quantidade de alterações no código após a adoção do Te-
raORM, o que pode indicar uma maior estabilidade e menor propensão a erros
[Elbaum and Munson 2000].

Esses resultados preliminares sugerem que o uso do TeraORM contribui para a
melhoria da manutenibilidade do código em aplicações analı́ticas baseadas em Node.js e
BigQuery. Espera-se que a redução na complexidade e nas alterações frequentes possa
facilitar a manutenção e evolução do sistema ao longo do tempo.

7. Considerações Finais
Embora os resultados sejam promissores, é importante reconhecer algumas limitações
deste estudo. Entre as principais, destaca-se a amostra limitada, uma vez que a análise foi
conduzida em um único repositório, o que pode não representar a diversidade de projetos
existentes. Além disso, os dados utilizados foram sintéticos, de modo que os resultados
apresentados são preliminares e baseados em dados simulados; portanto, estudos futuros
devem considerar dados reais para validação. Outro ponto a ser considerado refere-se
aos fatores externos, pois variáveis como a experiência da equipe de desenvolvimento e
as práticas de codificação adotadas podem influenciar as métricas de manutenibilidade
observadas.

Como trabalhos futuros, propõe-se expandir o estudo para múltiplos repo-
sitórios com diferentes caracterı́sticas e domı́nios de aplicação, de modo a aumentar a
generalização dos resultados. Também, se recomenda a realização de entrevistas com
desenvolvedores, a fim de obter insights qualitativos sobre a experiência de uso do Tera-
ORM. Por fim, sugere-se investigar o impacto do TeraORM em outras métricas de quali-
dade de software, como desempenho e segurança. Essas iniciativas contribuirão para uma
compreensão mais abrangente dos benefı́cios e limitações do TeraORM em ambientes de
Big Data.

Referências
Begoli, E., Camacho-Rodrı́guez, J., Hyde, J., Mior, M. J., and Lemire, D. (2018). Apache

calcite: A foundational framework for optimized query processing over heterogeneous

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

47



data sources. In Proceedings of the 2018 International Conference on Management of
Data, SIGMOD ’18, page 221–230, New York, NY, USA. Association for Computing
Machinery.

C. Bauer, G. K. . G. G. (2006). Java Persistence With Hibernate. Manning Publications.

Coleman, D., Ash, D., Lowther, B., and Oman, P. (1994). Using metrics to evaluate
software system maintainability. Computer, 27:44–49.

Dresch, A., Lacerda, D. P., and Antunes Júnior, J. A. V. (2015). Design Science Research:
Método de Pesquisa para Avanço da Ciência e Tecnologia. Bookman Editora, Porto
Alegre.

Ebert, C. and Cain, J. (2016). Cyclomatic complexity. IEEE Software, 33:27–29.

Elbaum, S. and Munson, J. (2000). Code churn: A measure for estimating the impact of
code change. Conference on Software Maintenance.

Elmore, A., Duggan, J., Stonebraker, M., Balazinska, M., Cetintemel, U., Gadepally,
V., Heer, J., Howe, B., Kepner, J., Kraska, T., Madden, S., Maier, D., Mattson, T.,
Papadopoulos, S., Parkhurst, J., Tatbul, N., Vartak, M., and Zdonik, S. (2015). A de-
monstration of the bigdawg polystore system. Proc. VLDB Endow., 8(12):1908–1911.

Gruca, A. and Podsiadło, P. (2014). Performance analysis of .net based object–relational
mapping frameworks.

Hevner, A. R. (2007). A three cycle view of design science research. Scandinavian
Journal of Information Systems, 19(2):87–92.

Inmon, W. H., S. D. . N. G. (2008). Dw 2.0: The architecture for the next generation
of data warehousing. In DW 2.0: The architecture for the next generation of data
warehousing. Elsevier.

ISO/IEC 25010 (2011). Systems and Software Engineering — Systems and Software Qua-
lity Requirements and Evaluation (SQuaRE) — System and Software Quality Models.
International Organization for Standardization. Genebra, CH.

Kimball, R. Ross, M. (2013). The data warehouse toolkit: the definitive guide to dimen-
sional modeling, chapter 55. John Wiley Sons, Inc.

Prisma (2025). Comparing sql, query builders, and orms. Acesso em: 5 jun. 2025.

Reinsel, D., G. J. and Rydning, J. (2017). Data age 2025: The evolution of data to life-
critical. In Data age 2025: The evolution of data to life-critical, page 2. IDC.

Wazlawick, R. S. (2020). Metodologia de Pesquisa para Ciência da Computação. GEN
LTC, Rio de Janeiro, 3 edition.

Wieringa, R. J. (2014). Design Science Methodology for Information Systems and Soft-
ware Engineering. Springer, Berlin.

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

48


