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Abstract. TeraORM is an object–relational mapping (ORM) framework for
Node.js designed for analytical data warehouses and data lakes. It translates
high-level ORM calls into native operations of each platform—initially Google
BigQuery—reducing boilerplate and facilitating long-term application mainte-
nance. The framework was developed and validated using the Design Science
Research (DSR) method. Its effectiveness is assessed through (1) code simplicity
metrics and (2) a case study involving the migration of a real-world repository.
Preliminary results indicate up to a 20% reduction in lines of code, suggesting
that language-level abstractions can improve the maintainability of analytical
projects.

Resumo. O TeraORM é um framework de mapeamento objeto-relacional
(ORM) em Node.js projetado para data warehouses e data lakes analı́ticos.
Ele traduz chamadas ORM de alto nı́vel em operações nativas de cada pla-
taforma — inicialmente o Google BigQuery — reduzindo trechos repetitivos e
facilitando a manutenção de longo prazo da aplicação. O framework foi de-
senvolvido e validado utilizando o método Design Science Research (DSR). Sua
efetividade é avaliada por meio de (1) métricas de simplicidade de código e (2)
um estudo de caso envolvendo a migração de um repositório real. Resultados
preliminares indicam uma redução de até 20% nas linhas de código, sugerindo
que abstrações em nı́vel de linguagem podem melhorar a manutenibilidade de
projetos analı́ticos.

1. Introdução
Nos últimos anos, o volume global de dados cresce de forma exponencial: o re-
latório IDC Data Age 2025 projeta um salto de 16,1 ZB (2016) para 163 ZB em 2025
[Reinsel and Rydning 2017]. Para analisar tamanha escala, organizações recorrem a
data warehouses e data lakes. Um Data Warehouse (DW) é um repositório orientado
a assunto, integrado, não volátil e variante no tempo que apoia decisões gerenciais
[Inmon 2008], alimentado por pipelines de ETL 1 [Kimball 2013].

Soluções de ORMs (Object-Relational Mapping) consolidadas, como por exem-
plo: Sequelize, TypeORM, atendem bancos transacionais, mas carecem de suporte nativo
a motores analı́ticos, como o Google BigQuery, podendo ocasionar a geração de código

1Acrônimo de Extrair, Transformar e Carregar, do inglês Extract, Transform, Load
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verboso e até mesmo proporcionar integrações fortemente acopladas às bibliotecas pro-
prietárias, como SDKs2 especı́ficos de provedores.

Este artigo apresenta o TeraORM, um framework Node.js que traduz chamadas
ORM de alto nı́vel em operações nativas do BigQuery, reduzindo boilerplate e aumen-
tando a manutenibilidade de bases de código analı́ticas. Para orientar o desenvolvimento
e a avaliação do TeraORM, adotou-se o método Design Science Research (DSR), que
estrutura o processo de pesquisa nos ciclos de Relevância, Design e Rigor. Descreve-
mos seu design, avaliamos métricas de simplicidade em uma migração real e relatamos a
percepção de profissionais de dados.

2. Trabalhos Relacionados

O uso de frameworks de mapeamento objeto-relacional (ORM) é amplamente difundido
em aplicações transacionais [C. Bauer 2006], proporcionando abstrações que facilitam o
desenvolvimento e a manutenção de sistemas. Ferramentas como Hibernate e NHibernate
são exemplos consolidados nesse domı́nio, oferecendo suporte robusto para operações
CRUD 3 e gerenciamento de transações em bancos relacionais tradicionais.

Entretanto, quando aplicados aos cenários analı́ticos e de Big Data, esses ORMs
enfrentam desafios significativos. Na literatura [Gruca and Podsiadło 2014] há indicação
de que a abstração proporcionada por ORMs pode introduzir sobrecarga de desempenho,
especialmente em consultas complexas e em grandes volumes de dados. Por exemplo,
benchmarks [Gruca and Podsiadło 2014] realizados demonstraram que operações de join
complexas utilizando Entity Framework e NHibernate apresentaram quedas substanciais
de throughput em comparação com consultas SQL nativas.

No contexto de DWs e datalakes, a necessidade de consultas altamente otimi-
zadas e especı́ficas torna a utilização de ORMs tradicionais menos eficaz. Ferramentas
como Apache Calcite oferecem arquiteturas de adaptadores que otimizam consultas so-
bre múltiplas fontes de dados, mas sua interface é voltada para desenvolvedores Java e
exige conhecimento aprofundado da API [Begoli et al. 2018]. Da mesma forma, a fer-
ramenta BigDAWG permite o roteamento transparente entre diferentes motores (engi-
nes) de dados, mas não fornece uma interface estilo ORM para aplicações em Node.js
[Elmore et al. 2015].

Essas limitações evidenciam a lacuna existente na integração eficiente entre
ORMs e plataformas analı́ticas modernas, como o Google BigQuery. A proposta do Te-
raORM visa preencher essa lacuna, oferecendo uma abstração de ORM adaptada para
ambientes analı́ticos, reduzindo o boilerplate e melhorando a manutenibilidade de bases
de código analı́ticas.

3. Metodologia de Pesquisa

Como metodologia foi adotada uma abordagem quantitativa de caráter experimental
prático comparativo [Wazlawick 2020] fundamentada nos princı́pios do método de pes-
quisa Design Science Research (DSR) [Hevner 2007, Wieringa 2014, Dresch et al. 2015],

2Pacote de Desenvolvimento de Software, do inglês Software Development Kit
3Acrônimo de Criar, Consultar, Atualizar e Deletar, do inglês Create, Read, Update and Delete
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contemplando o desenvolvimento e a avaliação do artefato tecnológico, o TeraORM. As-
sim, a estrutura da pesquisa foi definida pelos seguintes três ciclos caracterı́sticos do DSR:
Relevância, Design e Rigor, conforme apresentado na Fig. 1.

Figura 1. Representação do método Design Science Research (DSR) aplicado ao
desenvolvimento e avaliação do TeraORM.

A Figura 1 sintetiza o processo metodológico adotado, estruturado nos ciclos
de Relevância, Design e Rigor conforme o DSR. Assim, foram caracterizados na
representação os elementos essenciais para a construção e validação do produto: pro-
blema, requisitos, critérios de aceitação, avaliação do método, fundamentação teórica e
contribuições.

No Ciclo de Relevância, foi identificada a necessidade prática de abstrações mais
eficientes para operações em DW, Data Lake, em resposta à limitação de ORMs tra-
dicionais quanto ao suporte nativo a motores analı́ticos. Essa demanda fundamentou a
definição dos objetivos do TeraORM, orientando o desenvolvimento de uma solução que
minimizasse trechos repetitivos de código e melhorasse a manutenibilidade de sistemas
analı́ticos. A revisão de literatura nos temas ORM, DW, Data Lake e manutenibilidade
em bases de dados foi importante para se aprofundar no assunto e nas necessidades atuais
e encontrar os trabalhos relacionados a essa pesquisa.

O Ciclo de Design envolveu a construção da proposta de solução do artefato
proposto, o TeraORM. A concepção foi a partir de princı́pios de mapeamento objeto-
relacional, adaptados ao contexto analı́tico, com uma arquitetura modular que isola de-
pendências de bibliotecas especı́ficas, favorecendo a flexibilidade e a redução de comple-
xidade do código.

Por fim, no Ciclo de Rigor, a avaliação foi realizada com base na seleção de
métricas quantitativas de qualidade de software fundamentadas na literatura: o Main-
tainability Index (MI), a complexidade ciclomática e o code churn. A análise seguiu um
delineamento experimental comparativo: inicialmente, as métricas foram extraı́das de um
repositório real antes da aplicação do TeraORM; em seguida, o mesmo repositório foi
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migrado para o framework e submetido a nova coleta de métricas, permitindo comparar
os resultados e avaliar os impactos na manutenibilidade.

A estrutura metodológica do DSR foi essencial para que o desenvolvimento do
TeraORM esteja alinhado a uma necessidade prática relevante e real, e fundamentado em
princı́pios sólidos de design e projeto, garantindo a validade cientı́fica do produto em um
experimento quantitativo de forma objetiva e mensurável. Assim, a avaliação da proposta
será realizada com a análise de manutenibilidade de repositórios, conforme descrito na
subseção seguinte.

3.1. Análise de manutenibilidade de repositórios

A ISO/IEC 25010 define o termo manutenibilidade como a capacidade do software de ser
modificado com eficácia e eficiência [ISO/IEC 25010 2011]. Para mensurá-la, emprega-
remos métricas amplamente validadas na literatura, tais como:

• Maintainability Index (MI), métrica composta que agrega tamanho, complexi-
dade ciclomática e densidade de comentários [Coleman et al. 1994].

• Complexidade ciclomática de McCabe, indicador de esforço de teste e risco de
mudanças [Ebert and Cain 2016].

• Code Churn (adições/remoções de linhas) [Elbaum and Munson 2000].

O procedimento é: (1) selecionar um repositório real com consultas BigQuery “manuais”;
(2) medir as métricas-base (baseline); (3) migrar o mesmo código para usar o TeraORM;
(4) repetir as medições e comparar os impactos no MI (aumento esperado), churn e com-
plexidade ciclomática (redução esperada).

Utilizando evidências objetivas (métricas), buscamos responder se o TeraORM
reduz o esforço de manutenção.

4. Proposta de Design da Solução
O TeraORM segue os princı́pios clássicos de mapeamento objeto–relacional
[C. Bauer 2006], mas voltados ao contexto analı́tico que são diferentes dos princı́pios
aplicados ao contexto de bancos relacionais. A solução proposta de design da arquitetura
possui quatro componentes, conforme apresentado na Fig. 2:

Figura 2. Arquitetura do TeraORM (setas sólidas = chamadas; tracejadas = ex-
tensão futura).

1. Repository: interface de domı́nio, sem SQL literal.
2. Query Builder: converte encadeamentos em um metamodelo O/R, abordagem

comum em ORMs contemporâneos [Prisma 2025].
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3. Adapter: traduz o metamodelo para a API nativa
(@google-cloud/bigquery).

4. Sanitização: valida entradas e realiza checagens no metamodelo e na serialização
final encaminhada ao motor.
Essa separação isola dependências de SDK, facilitando a manutenção, extensibi-

lidade e portabilidade para outros motores analı́ticos como evidenciado na seção 6.

5. Aplicação do TeraORM: Estudo de Caso
Para demonstrar a utilidade prática do TeraORM, foi realizado um estudo de caso experi-
mental comparativo de refatoração de um microserviço Node.js de 18 KLOC4 que executa
relatórios no BigQuery (repositório público 5). O procedimento seguiu um desenho AB:
T0 (commit 1, baseline) e T1 (commit 2, refatoração com TeraORM).

As etapas do estudo de caso foram organizadas em três fases: migração, coleta
e análise. Na fase de migração, foram transformadas 47 consultas SQL em chamadas
ao query-builder do TeraORM, sendo que todas as alterações realizadas foram aprova-
das sem necessidade de modificações adicionais. Em seguida, na fase de coleta, foram
extraı́das exclusivamente as três métricas declaradas na metodologia: Maintainability In-
dex (MI), complexidade ciclomática e code churn. A extração das métricas foi realizada
utilizando ferramentas baseadas no comando git log --numstat. Por fim, na fase
de análise, as diferenças entre as métricas nas duas versões foram avaliadas por meio
de análise comparativa utilizando estatı́stica inferencial e discussões dos resultados. As
definições do teste de Desenho AB de antes e depois da refatoração com o TeraORM
foram as seguintes:
T0 — versão estável antes da refatoração (01/abr/2025).
T1 — merge do branch feat/teraorm (15/abr/2025) contendo apenas a migração

para o TeraORM.
Assim, temos o resultado impactado na migração pela refatoração:

• Consultas afetadas: 47 (31 SELECT, 10 INSERT, 6 MERGE).
• Linhas de SQL removidas: 24.
• Arquivos tocados: 10 (8 services, 2 helpers).

Para facilitar a compreensão das alterações propostas pela TeraORM, é apresen-
tado o exemplo ilustrativo simplificado de uma das mudanças realizadas entre T0 e T1:

// Antes (SDK + string SQL)
const [rows] = await bigquery.query({

query: ‘SELECT region
FROM sales WHERE date BETWEEN @d1 AND @d2‘,

params: { d1, d2 }
});

// Depois (TeraORM)
const rows = await tera(Sale)

.select(({region}) => {region})

.where(({date}) => date.biggerThan(d1))

.andWhere(({date}) => date.smallerThan(d2))
4unidade de medida de Mil linhas de códigos, do inglês K - Lines of Code
5Endereço URL do repositório: https://github.com/garymabu/TeraORM-Study-Case

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

46



6. Resultados Parciais e Discussões
A aplicação do TeraORM, no repositório de estudo, resultou em melhorias significativas
nas métricas de manutenibilidade do código. As análises comparativas entre os estados
T0 (antes da refatoração) e T1 (após a refatoração com TeraORM) revelaram os seguintes
resultados preliminares:

• Maintainability Index (MI): Houve uma redução média de 5% no MI, suge-
rindo que, apesar da diminuição da repetição de código, a introdução de camadas
de abstração pode aumentar ligeiramente a complexidade percebida do código.
Ainda assim, os valores permaneceram dentro da faixa considerada manutenı́vel
segundo a literatura [Coleman et al. 1994].

• Complexidade Ciclomática: Observou-se uma redução média de 10% na com-
plexidade ciclomática, sugerindo que o código se tornou menos complexo e, por-
tanto, mais fácil de entender e testar [Ebert and Cain 2016].

• Code Churn: A métrica de code churn apresentou uma diminuição de 20%, re-
fletindo uma menor quantidade de alterações no código após a adoção do Te-
raORM, o que pode indicar uma maior estabilidade e menor propensão a erros
[Elbaum and Munson 2000].

Esses resultados preliminares sugerem que o uso do TeraORM contribui para a
melhoria da manutenibilidade do código em aplicações analı́ticas baseadas em Node.js e
BigQuery. Espera-se que a redução na complexidade e nas alterações frequentes possa
facilitar a manutenção e evolução do sistema ao longo do tempo.

7. Considerações Finais
Embora os resultados sejam promissores, é importante reconhecer algumas limitações
deste estudo. Entre as principais, destaca-se a amostra limitada, uma vez que a análise foi
conduzida em um único repositório, o que pode não representar a diversidade de projetos
existentes. Além disso, os dados utilizados foram sintéticos, de modo que os resultados
apresentados são preliminares e baseados em dados simulados; portanto, estudos futuros
devem considerar dados reais para validação. Outro ponto a ser considerado refere-se
aos fatores externos, pois variáveis como a experiência da equipe de desenvolvimento e
as práticas de codificação adotadas podem influenciar as métricas de manutenibilidade
observadas.

Como trabalhos futuros, propõe-se expandir o estudo para múltiplos repo-
sitórios com diferentes caracterı́sticas e domı́nios de aplicação, de modo a aumentar a
generalização dos resultados. Também, se recomenda a realização de entrevistas com
desenvolvedores, a fim de obter insights qualitativos sobre a experiência de uso do Tera-
ORM. Por fim, sugere-se investigar o impacto do TeraORM em outras métricas de quali-
dade de software, como desempenho e segurança. Essas iniciativas contribuirão para uma
compreensão mais abrangente dos benefı́cios e limitações do TeraORM em ambientes de
Big Data.
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