
Plug and Flow: Execução de Workflows Cientı́ficos em
Contêineres com o Middleware AkôFlow*†

Wesley Ferreira1, Liliane Kunstmann2, Raphael Garcia1,
Marcos Bedo1, Aline Paes1, Daniel de Oliveira1

1Universidade Federal Fluminense (UFF) – Niterói – Brasil

2Universidade Federal do Rio de Janeiro (UFRJ) – Rio de Janeiro – Brasil

{wesleyferreira,raphaelgarcia}@id.uff.br, lneves@cos.ufrj.br,

{marcosbedo, alinepaes, danielcmo}@ic.uff.br

Resumo. Neste artigo, demonstramos o AkôFlow, um middleware projetado
para a execução paralela de workflows em ambientes conteinerizados. Cons-
truı́do sobre a plataforma Kubernetes, o AkôFlow permite o escalonamento
automático das atividades dos workflows em múltiplos contêineres de acordo
com as dependências de dados existentes. Cada atividade pode ser executada
em uma imagem Docker distinta, e o middleware realiza a captura nativa de
dados de proveniência. Neste artigo de demonstração, executamos o work-
flow do domı́nio da astronomia Montage via AkôFlow, avaliando diferentes
configurações de alocação de recursos.

1. Introdução
Os workflows são abstrações que representam simulações computacionais complexas, ge-
ralmente modeladas como Grafos Acı́clicos Dirigidos (DAGs). Nesses grafos, os vértices
correspondem a atividades, geralmente associadas à execução de programas, e as ares-
tas indicam dependências de dados entre elas [de Oliveira et al. 2019]. Cada execução
de uma atividade, chamada de ativação, usa um subconjunto especı́fico de dados e
parâmetros de entrada. Embora existam diferentes formas de implementar workflows,
o uso de Sistemas de Workflows (SWs) é comum, pois eles oferecem ferramentas para
definir, executar e monitorar workflows em diversas infraestruturas computacionais.

Muitos workflows são intensivos em processamento ou na geração de dados, o
que torna essencial o uso de técnicas de paralelismo aliadas a ambientes de Computação
de Alto Desempenho (HPC). Por isso, diversos SWs já incorporam mecanismos para
execução eficiente em HPCs, como o Pegasus [Deelman et al. 2021], o SciCumulus
[de Oliveira et al. 2010] e o Parsl [Babuji et al. 2019]. Apesar dos avanços, esses SWs
ainda são limitados por dependências especı́ficas. O Pegasus, por exemplo, exige o uso
do escalonador HTCondor, que não é compatı́vel com todos os ambientes. O SciCumulus
foi projetado para nuvens públicas [de Oliveira et al. 2012]. Além disso, os workflows
geralmente dependem de várias bibliotecas e ferramentas, tornando a pilha de software
complexa. Isso dificulta o suporte por centros de HPC, que nem sempre conseguem aten-
der a todos os requisitos [Kunstmann et al. 2022].

*Vı́deo demonstrativo da ferramenta pode ser acessado em https://youtu.be/RmrAMWkJij4
†Os autores gostariam de agradecer pelo apoio financeiro da Coordenação de Aperfeiçoamento de Pes-

soal de Nı́vel Superior (CAPES) – Código de Financiamento 001, do CNPq e da FAPERJ.

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

69



Uma forma de reduzir os problemas de configuração da infraestrutura na
execução de workflows é o uso de contêineres [Struhár et al. 2020]. Contêineres en-
capsulam a aplicação com todas as suas dependências, e.g., bibliotecas, arquivos de
configuração, etc., garantindo portabilidade e isolamento. Soluções como Singula-
rity [Kurtzer et al. 2017] e Kubernetes1 foram desenvolvidas para atender demandas es-
pecı́ficas de HPC, automatizando tarefas como implantação, escalonamento e gerenci-
amento. Apesar dos avanços, essas ferramentas não foram projetadas com foco na
execução de workflows cientı́ficos. Ainda carecem, por exemplo, de mecanismos nati-
vos para captura automática de dados de proveniência [Freire et al. 2008] e definição de
polı́ticas de escalonamento orientadas a objetivos, como otimização de tempo ou redução
de custos. Por outro lado, SWs oferecem suporte nativo à proveniência e permitem con-
figurar polı́ticas de escalonamento com base em diferentes metas, mas ainda enfrentam
limitações em ambientes conteinerizados.

O objetivo deste artigo é demonstrar o funcionamento do AkôFlow
[Ferreira et al. 2024], um middleware desenvolvido para executar workflows cientı́ficos
de forma eficiente em ambientes conteinerizados. Construı́do sobre a plataforma Kuber-
netes, o AkôFlow gerencia múltiplos contêineres com base nas dependências de dados
entre as atividades especificadas no workflow, permitindo o uso de contêineres com dife-
rentes capacidades de processamento e armazenamento. Isso oferece maior flexibilidade
no escalonamento. Além disso, o sistema realiza a captura automática de dados de pro-
veniência durante a execução, permitindo análise e reprodutibilidade por parte do usuário.

2. O Middleware AkôFlow
O AkôFlow é um middleware voltado à execução de workflows cientı́ficos em ambientes
conteinerizados. Ele interage diretamente com a API nativa do Kubernetes para criar e
gerenciar Pods baseados em contêineres Docker2. A arquitetura do AkôFlow pode ser
vista na Figura 1 e é composta de cinco camadas: (i) Cliente, (ii) Servidor, (iii) Proxy, (iv)
Worker e (v) Metadados e Proveniência. O usuário descreve o workflow em um arquivo
YAML, especificando a imagem Docker de cada atividade, os recursos necessários (vC-
PUs, memória, disco) e as dependências de dados entre ativações. Essa definição pode
ser enviada via linha de comando, API ou interface Web.

No servidor, o AkôFlow registra metadados, gerencia a execução das ativações e
realiza a captura automática de dados de proveniência. O orquestrador adota uma polı́tica
de escalonamento gulosa, com suporte aos modelos First-Data-First (FDF) e First-
Activity-First (FAF) [Ogasawara et al. 2011]. O AkôFlow também suporta execução em
múltiplos runtimes (i.e., ambientes HPC), permitindo o uso simultâneo de mais de um
cluster Kubernetes, além de ser extensı́vel para outros ambientes, como supercomputado-
res que utilizam contêineres Singularity.

O Cliente envia o arquivo YAML com a especificação do workflow ao Servidor
via HTTP. Ao recebê-lo, o servidor desserializa a especificação, registra os metadados
e prepara as ativações para orquestração. Cada ativação é instanciada como um Pod no
Kubernetes, de acordo com a configuração de recursos definida. O componente Orques-
trador determina a ordem de execução conforme a polı́tica de escalonamento adotada,

1https://kubernetes.io/pt-br/
2https://www.docker.com/

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

70



Figura 1. A Arquitetura do AkôFlow

atualmente do tipo gulosa, i.e., sempre que um recurso é liberado, uma nova ativação é
iniciada.

Uma das funcionalidades do AkôFlow é a captura e o armazenamento dos dados
de proveniência das ativações executadas. O modelo de proveniência, ilustrado na Figura
2, é composto por cinco tabelas principais: (i) Workflow, (ii) Activity, (iii) Metrics, (iv)
Logs e (v) Storages. A tabela Workflow armazena informações gerais sobre cada workflow
executado, como o namespace, o arquivo de definição e o estado atual. Cada workflow
possui diversas atividades associadas, que são registradas na tabela Activity. Cada ativi-
dade está vinculada a um único workflow e contém informações como o namespace, o
recurso de execução e o estado da atividade. As tabelas Logs e Metrics armazenam dados
coletados diretamente do ambiente de execução. A tabela Storages é a responsável por
registrar as informações de armazenamento associadas a cada atividade, como o tamanho
do disco, a lista de arquivos presentes no inı́cio da execução e os arquivos resultantes ao
final. Todos os metadados e dados de proveniência são armazenados em um banco de
dados SQLite. O código-fonte do AkôFlow se encontra disponı́vel no GitHub na URL
https://github.com/UFFeScience/akoflow.

Figura 2. Modelo de Proveniência do AkôFlow

3. Demonstração
A demonstração do AkôFlow utilizará, como estudo de caso, o workflow cientı́fico Mon-
tage [Sakellariou et al. 2009]. O Montage é amplamente utilizado na área de astrono-
mia para a criação de mosaicos a partir de múltiplas imagens do céu, capturadas por

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

71



Figura 3. Monitoramento do Workflow Montage pelo AkôFlow Admin

telescópios em diferentes momentos e condições. Esse workflow é caracterizado pela
manipulação e geração de grandes volumes de dados, sendo composto por sete atividades
distintas, cada uma delas correspondente à execução de um programa especı́fico do toolkit
Montage3.

As etapas do workflow são as seguintes (Figura 4): (i) mProject (em amarelo),
que projeta cada imagem para uma escala e sistema de coordenadas comuns; (ii) mDiffFit
(em azul), responsável por calcular as diferenças entre imagens sobrepostas e ajustar os
valores de fundo; (iii) mConcatFit (em vermelho), que agrega os resultados dos ajustes
realizados entre pares de imagens; (iv) mBgModel (em laranja), encarregado de modelar
o fundo com base nos ajustes e sobreposições identificados; (v) mBackground (em verde),
que aplica as correções de fundo às imagens; (vi) mImgtbl (em cinza claro), utilizado para
extrair os metadados necessários para a montagem final; e (vii) mAdd (em cinza escuro),
que realiza a composição final das imagens, gerando o mosaico astronômico completo.

Figura 4. O Workflow
Montage.

A demonstração consistirá na submissão do
arquivo YAML contendo a especificação do work-
flow Montage ao AkôFlow, utilizando uma das in-
terfaces disponı́veis: (i) por meio de uma chamada
a API HTTP, (ii) pela interface de linha de comando
(CLI), ou (iii) pela interface web, que permite a
criação interativa do workflow. A escolha da inter-
face será feita com base em fatores como o número
de atividades, o volume de dados envolvidos e a fa-
miliaridade do usuário com as opções de interação
oferecidas pelo AkôFlow.

Uma vez submetida a especificação, o ser-
vidor do AkôFlow é responsável por realizar toda
a orquestração e ativação das atividades nos ambi-
entes de execução previamente configurados. O acompanhamento da execução pode ser

3http://montage.ipac.caltech.edu/

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

72



Figura 5. Listagem de Atividades no AkôFlow Admin

feito em tempo real por meio do módulo AkôFlow Admin, que oferece uma visão de-
talhada do progresso do workflow. A Figura 3 ilustra essa visualização em tempo real,
incluindo informações como o status de cada atividade, o comando executado, a imagem
de contêiner utilizada e o estado atual de execução. Além do monitoramento da execução,
o AkôFlow permite também o acompanhamento dos arquivos gerados por cada ativi-
dade. Conforme mostrado na Figura 5, é possı́vel acessar uma timeline com o histórico
de execução de cada atividade do workflow.

Adicionalmente, o AkôFlow se encontra em processo de desenvolvimento para
incorporar novas funcionalidades como a exportação de documentos e grafos de pro-
veniência durante a execução, seguindo o padrão W3C PROV [Belhajjame et al. 2013].
Essa funcionalidade permitirá representar de forma estruturada as dependências,
interações e relações entre as atividades executadas, ampliando a transparência, a ras-
treabilidade e a reprodutibilidade dos experimentos cientı́ficos.

4. Conclusão e Trabalhos Futuros

Desde sua proposta inicial no Simpósio Brasileiro de Banco de Dados em 2024
[Ferreira et al. 2024], o AkôFlow tem se mostrado como uma ferramenta promissora
para a execução de workflows cientı́ficos em ambientes conteinerizados. Sua capacidade
de permitir que um mesmo workflow seja definido uma única vez e executado em dife-
rentes ambientes, por meio de contêineres, reforça tanto a portabilidade quanto a repro-
dutibilidade dos experimentos cientı́ficos. O projeto segue em constante evolução, com
desenvolvimento ativo e código-fonte disponı́vel no GitHub.

No momento da submissão deste trabalho, o AkôFlow contava com 34 estrelas,
sendo o repositório mais bem avaliado na tag eScience, o que evidencia o interesse da
comunidade na solução. Como trabalhos futuros, destacam-se a expansão do modelo
de proveniência, com o objetivo de aprimorar a rastreabilidade e a reprodutibilidade das
execuções, conforme o padrão W3C PROV, além da implementação de novas heurı́sticas
de escalonamento de atividades, buscando maior eficiência na utilização dos recursos
computacionais.

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

73



Referências
Babuji, Y. N. et al. (2019). Parsl: Pervasive parallel programming in python. In Weissman,

J. B., Butt, A. R., and Smirni, E., editors, HPDC’19, pages 25–36. ACM.

Belhajjame, K., B’Far, R., Cheney, J., Coppens, S., Cresswell, S., Gil, Y., Groth, P.,
Klyne, G., Lebo, T., McCusker, J., Miles, S., Myers, J., Sahoo, S., Tilmes, C., Moreau,
L., and Missier, P. (2013). Prov-dm: The prov data model. W3C Recommendation
/ Technical Report REC-prov-dm-20130430, World Wide Web Consortium. Editors:
Luc Moreau and Paolo Missier.

de Oliveira, D., Ocaña, K. A. C. S., Baião, F. A., and Mattoso, M. (2012). A provenance-
based adaptive scheduling heuristic for parallel scientific workflows in clouds. J. Grid
Comput., 10(3):521–552.

de Oliveira, D., Ogasawara, E. S., Baião, F. A., and Mattoso, M. (2010). Scicumulus: A
lightweight cloud middleware to explore many task computing paradigm in scientific
workflows. In CLOUD’10, pages 378–385.

de Oliveira, D. C. M., Liu, J., and Pacitti, E. (2019). Data-Intensive Workflow Manage-
ment: For Clouds and Data-Intensive and Scalable Computing Environments. Synthe-
sis Lectures on Data Management. Morgan & Claypool Publishers.

Deelman, E., da Silva, R. F., Vahi, K., Rynge, M., Mayani, R., Tanaka, R., Whitcup,
W. R., and Livny, M. (2021). The pegasus workflow management system: Translatio-
nal computer science in practice. J. Comput. Sci., 52:101200.

Ferreira, W., Kunstmann, L., Paes, A., Bedo, M., and de Oliveira, D. (2024). Akôflow: um
middleware para execução de workflows cientı́ficos em múltiplos ambientes conteine-
rizados. In Anais do XXXIX Simpósio Brasileiro de Bancos de Dados, pages 27–39,
Florianópolis/SC. SBC.

Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008). Provenance for computational
tasks: A survey. Computing in science & engineering, 10(3):11–21.

Kunstmann, L., Pina, D., Oliveira, L., Oliveira, D., and Mattoso, M. (2022). Provde-
ploy: Explorando alternativas de conteinerização com proveniência para aplicações
cientı́ficas com pad. In Anais do XXIII Simpósio em Sistemas Computacionais de Alto
Desempenho, pages 49–60, Florianópolis/SC. SBC.

Kurtzer, G. M., Sochat, V., and Bauer, M. W. (2017). Singularity: Scientific containers
for mobility of compute. PloS one, 12(5):e0177459.

Ogasawara, E. S., de Oliveira, D., Valduriez, P., Dias, J., Porto, F., and Mattoso, M.
(2011). An algebraic approach for data-centric scientific workflows. Proc. VLDB
Endow., 4(12):1328–1339.

Sakellariou, R. et al. (2009). Mapping workflows on grid resources: Experiments with
the montage workflow. In ERCIM W. Group on Grids, pages 119–132.

Struhár, V., Behnam, M., Ashjaei, M., and Papadopoulos, A. V. (2020). Real-time contai-
ners: A survey. In Fog-IoT, volume 80 of OASIcs, pages 7:1–7:9.

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

74


