Companion Proceedings of the 40t" Brazilian Symposium on Data Bases October 2025 — Fortaleza, CE, Brazil

LTVHub: Uma Ferramenta Modular para Calculo do
Customer Lifetime Value com Suporte a Multiplos Modelos

Maria Eduarda de Pinho Braga', Joao M. A. M. Ramos'?,
Fabricio A. Silva', Linnyer B. R. Aylon??

'Universidade Federal de Vicosa (UFV)
Laboratorio de Inteligéncia em Sistemas Pervasivos e Distribuidos (NESPeD-Lab)
Florestal - MG - Brasil

*Universidade Estadual de Maringd (UEM) Maring - PR - Brasil
3Manna Team
{maria.e.braga, joao.m.ramos, fabricio.asilva}@ufv.br

lbruiz@uem.br

Abstract. The Customer Lifetime Value (CLV) is an essential metric for iden-
tifying the most valuable customers, enabling comprehensive profit estimations.
Furthermore, it allows companies to tailor their services to meet customer ex-
pectations, thereby improving the quality of the relationship between the consu-
mer and the business. Despite its advantages, CLV is not widely adopted, and
applying it across different contexts presents several challenges, particularly re-
garding the data required. The goal of this work is to provide a tool' that allows
CLV estimation for different users in a visually intuitive, modular, extensible,
and flexible manner, delivering a robust prediction of the expected CLV.

Resumo. O Customer Lifetime Value (CLV) é uma métrica essencial para iden-
tificar clientes mais valiosos, possibilitando estimativas abrangentes de lucro.
Além disto, permite que a empresa forneca um servicos de acordo com as ex-
pectativas de seus clientes, melhorando a qualidade do relacionamento entre
consumidor e o negocio. Apesar de suas vantagens, o CLV ndo é uma métrica
utilizada em larga escala, e a aplicacdo de um contexto ao outro apresenta uma
série de dificuldades, principalmente em relacdo aos dados utilizados. O obje-
tivo deste trabalho é fornecer uma ferramenta' que permita a estimativa do CLV
para diferentes usudrios de maneira visualmente intuitiva, modular, extensivel
e flexivel, fornecendo uma otima estimativa do CLV esperado.

1. Introducao

O Lifetime Value (LTV) ou Customer Lifetime Value (CLV) é uma métrica am-
plamente reconhecida na literatura de marketing e gestdo de relacionamento com
o cliente [Berger and Nasr 1998] [Jain and Singh 2002] [Venkatesan and Kumar 2004]
[Popa et al. 2021]. Ela permite identificar quais clientes sdo mais valiosos para a em-
presa, que respondem positivamente as agdes promocionais, gerando maior lucratividade
ao longo do tempo. Um célculo acurado do CLV possibilita compreender a dindmica

10 video de demonstragio da ferramenta LTVHub est4 disponivel em: https://youtu.be/S-fO2e8nPxI.
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do relacionamento com o cliente, estimando com mais precisdao os ganhos esperados e a
possivel reducao de encargos, como custos de atendimento e comunicagao.

Apesar de sua relevancia tedrica e potencial estratégico, as ferramentas que permi-
tem o cédlculo do CLV, como as fornecidas pela UpGrowth, MétricaHub, Asllan Maciel,
WebEngage, WebFX e Upollo, ainda sdo bastante limitadas, ao exigirem que o usudrio
insira manualmente métricas previamente calculadas como o ticket médio, a taxa de
retencdo, margem de lucro, dentre outras. Isso pressupde que o usudrio ja tenha feito
uma analise prévia dos dados, o que dificulta o acesso ao CLV. Além disso, essas ferra-
mentas geralmente retornam o CLV médio de forma agregada, considerando a empresa
como um todo, dificultando, como consequéncia, a adocdo pratica e a exploracio plena
do potencial analitico do CLV.

Dito isso, o presente trabalho tem como objetivo construir um sistema distribuido
que permita o uso de diferentes algoritmos para o cdlculo do CLV, com uma interface
intuitiva para possibilitar futuros modelos de aprendizado de forma simples e modular.

2. Fundamentacao Teérica

Este estudo baseia-se em [Qismat and Feng 2020] e dd continuidade ao trabalho de
[Ramos and Silva 2024], que prop6s uma abordagem genérica para predi¢do do CLV
usando atributos de transacdes. Aqui, desenvolve-se uma ferramenta que automatiza todo
o fluxo de andlise.

2.1. RFM

O método RFM (Recéncia, Frequéncia e Valor Monetério) ¢ amplamente utilizado para o
calculo do CLV. Seu nome provém das trés varidveis centrais que compdem sua logica de
andlise. Sao elas:

* Recéncia: Tempo desde a ultima compra. Quanto menor, mais recentemente o
cliente realizou uma compra.

* Frequéncia: Numero de compras no periodo. Quanto maior, mais frequentemente
o cliente realizou compras.

* Valor Monetario: Gasto médio do cliente. Quanto maior, mais o cliente gastou em
suas compras.

2.2. Modelo Pareto/Distribuicdo Binomial Negativa (NBD)

Modelo de método Bayesiano que prevé o nimero esperado de compras futuras, focando
na frequéncia e sem considerar o valor monetario[Schmittlein et al. 1987]. O Pareto mo-
dela a probabilidade do cliente estar ativo, através de uma distribui¢do exponencial, cuja
taxa de abandono segue uma distribuicio Gamma.

2.3. Modelo Beta-Geométrico (BG/NBD)

Similar ao Pareto/NBD, mas mais eficiente. Prevé a frequéncia de compras € o momento
de abandono, € relevante para relagcdes com frequéncia instavel [Fader et al. 2005].

2.4. Modelo Gamma-Gamma

O modelo Gamma-Gamma [Fader and Hardie 2013] é uma extensdao do modelo Pa-
reto/NBD [Schmittlein et al. 1987], que atribui um valor monetario a cada compra futura,
além de estimar a probabilidade de o cliente continuar ativo.
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2.5. Modelos de Aprendizado de Mdquina

Modelos de ML incorporam multiplas varidveis, gerando, potencialmente, uma maior
precisdo. Para a modelagem com Aprendizado de Mdquina, o LTVHub utiliza uma abor-
dagem comparativa para selecionar o algoritmo de maior desempenho. Os modelos sdao
treinados e, em seguida, avaliados com base na métrica do Erro Quadratico Médio (MSE),
que quantifica a distancia entre valores previstos e reais. O modelo com menor erro € es-
colhido para a predicdo final. Os algoritmos avaliados incluem: LassoCV, ElasticNet,
Random Forest Regressor, Gradient Boosting Regressor, Histogram Gradient Boosting
Regressor, LightGBM Regressor (Light Gradient Boosting Machine) e Extreme Gradient
Boosting (XGBoost).

3. Arquitetura

O Back-End do sistema foi desenvolvido em Python, utilizando o framework Flask para
expor uma interface de comunicacao eficiente com o Front-End. Além disso, sua logica
interna foi estruturada com base no padrao de projeto Cadeia de Responsabilidade, no
qual as tarefas sdo processadas em etapas sequenciais: cada etapa realiza uma operacao
especifica e encaminha o resultado a préxima. Essa abordagem favorece a modularidade,
a reutilizacao e a manutencao do cédigo.

O Front-End foi implementado usando React, que proporciona maior dinamismo
e responsividade na constru¢ido de componentes reutilizaveis.

Uma descricao breve da arquitetura do sistema pode ser encontrada na Figura 1.
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Figura 1. Arquitetura LTVHub.

Front-End: Consiste na parte do c6digo que permite a interagdo do usudrio. Aqui
foi definida uma interface intuitiva e facilmente extensivel. O sistema foi projetado com
foco na extensibilidade e na facilidade de integracao de novos modelos. Para isso, utiliza
um arquivo, no qual o desenvolvedor pode adicionar novos modelos a interface de forma
simples e direta, informando apenas os dados essenciais para seu uso. Essa abordagem
elimina a necessidade de modificagcbes complexas no codigo-fonte, promovendo maior
flexibilidade e agilidade no desenvolvimento e na manutengdo do sistema.

Na sequéncia, detalham-se os médulos responséveis pelo funcionamento do Back-
End do sistema.

Modulo de Pré-Processamento: Esta etapa recebe os dados do Front-End e rea-
liza a limpeza, tratamento de nulos e transformacao dos atributos. Atualmente, sdo per-
mitidas as transformacdes para o RFM e para o RFMT [Ullah et al. 2023], este ultimo
incluindo a métrica T (tempo desde a primeira compra), que permite diferenciar clien-
tes novos e antigos. Embora ambos sejam métodos tradicionais para calcular o CLYV,
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limitam-se a considerar apenas o histérico de compras. Para superar essa limitacdo, o
presente artigo combina 0 RFM com modelos preditivos para estimar o CLV futuro.

Modulo de previsao de transacoes: Neste moédulo, sdo definidos os mode-
los utilizados para estimar o nimero médio de transagcdes por cliente até a data da
andlise. Para isso, sdo utilizados os dados processados no médulo anterior. A fer-
ramenta conta com os modelos probabilisticos Parefo [Schmittlein et al. 1987] e Beta
Geométrico [Fader et al. 2005], além dos modelos de aprendizado de méquina desenvol-
vidos no trabalho de [Ramos and Silva 2024].

Modulo de previsao do valor monetario: Se baseia em fazer as estimativas do
valor monetario médio por transacdo. Pode-se utilizar tanto o Gamma-Gamma quanto o
modelo de aprendizado de mdquina.

Modulo do calculo do CLV: Baseia-se nas informagdes calculadas nos médulos
de previsdo, como frequéncia de compra e valor monetério previsto, para realizar o cdlculo
do CLV. O CLV é composto pela multiplicagdo da frequéncia prevista de transagdes pelo
valor monetario médio previsto, ajustando o resultado por uma taxa de desconto e pelo
numero de periodos desejados. O modelo permite calcular o CLV tanto para dados de
calibracdo, quanto para dados de treino e teste, garantindo que valores negativos sejam
ajustados para zero. Assim, o médulo fornece uma estimativa do CLV futuro esperado de
cada cliente.

Maédulo Estatistico e Grafico: Responsavel por consolidar os dados, individuais
e agrupados, calculados nos médulos anteriores, e prepara-los para a visualizacdo. Essas
informacdes sdo estruturadas para envio ao Front-End, as métricas enviadas incluem o
CLYV previsto, frequéncia e valor monetério, bem como a segmentacio dos clientes com
base nos atributos do RFM, seguindo o trabalho de [Qismat and Feng 2020] (Tabela 1).

Tabela 1. Classificacao dos clientes com base no modelo RFM

Tipo de Cliente

Caracteristica

Estratégia Recomendada

Cliente de Alto Valor

Compra recente, alta frequéncia e alto
volume. Principais consumidores.

Elevar a status VIP, oferecer servigos personali-
zados e alocar mais recursos.

Cliente de Desenvolvimento
Estratégico

Compra baixa frequéncia, mas alto
valor unitdrio.  Potenciais atacadis-
tas/corporativos.

Oferecer pontos de membro e descontos para au-
mentar fidelizac@o e retencao.

Cliente em Fase de Protecdo

Ndo compra recentemente, mas alta
frequéncia e volume passados.

Enviar atualizagdes (novos produtos/servicos)
para incentivar retorno e consumo.

Cliente de Retencdo Critica

Nido compra recentemente, baixa

frequéncia, mas alto valor médio.

Enviar ofertas personalizadas, atualizagdes e
promogdes para evitar perda.

Cliente de Valor Geral

Compra alta frequéncia, mas baixo vo-
lume.

Introduzir
produtos/servi¢os/funcionalidades
mentar volume e engajamento.

novos
para  au-

Cliente em Desenvolvimento

Compra baixa frequéncia e baixo vo-
lume. Novos ou pouco engajados.

Oferecer servigos adicionais, apresentar novos
produtos e incentivar aumento de consumo.

Cliente de Retencdo Geral

Nao compra recentemente, mas alta
frequéncia passada, com baixo volume.

Apresentar novos produtos para estimular con-
sumo.

Cliente Perdido

Nao compra, baixa frequéncia e baixo
volume.

Utilizar promogdes para tentar reconquistar. Pri-
orizar outros segmentos de recursos limitados.

4. Interface e Utilizacao

Ap6s todo o processamento no Back-End, o sistema retorna as informagdes para a in-
terface, permitindo que o usudrio analise o comportamento de seus clientes, tanto no
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passado quanto no futuro, inserindo apenas o conjunto de dados das transacdes. Ao ini-
ciar a aplicacdo, € necessdrio fornecer um arquivo no formato .csv com os registros das
transacoes a serem analisadas. Esse arquivo deve conter, obrigatoriamente, a coluna de
identificac@o tnica dos usudrios, a coluna da data e a coluna do valor das transagdes.
Ap6s a insercao do arquivo de dados, € necessdrio realizar a configuracao dos modelos no
sistema. Nessa etapa, o usudrio deve indicar os identificadores das colunas obrigatdrias,
selecionar o modelo de predi¢do de frequéncia e o modelo de predi¢do monetaria a serem
utilizados, além de definir o periodo de previsao, especificado em nimero de semanas,
para o célculo do CLV futuro. Essas informacdes sao enviadas ao Back-End, que realiza o
processamento, executa as predicdes e retorna, para cada cliente, as métricas calculadas,
como CLV, frequéncia, valor monetdrio e segmentacdo, além de dados agregados para
andlise por grupos.

No Front-End, sao apresentadas ao usudrio duas secdes principais para a
visualizacdo e interpretacdo dos dados obtidos a partir do modelo de previsao de CLV:
a pagina “Clientes” e a pagina “Estatisticas”. Ambas sdo acessadas no Front-End e ofere-
cem as perspectivas de andlise individual e agregada. Na pagina de “Clientes”, os resul-
tados do modelo sao apresentados de forma detalhada para cada cliente individualmente.
Esta pdgina permite buscar clientes por ID ou segmento, filtrar a lista de clientes pelos
seus tipos e ordenar os clientes por ID, CLV, frequéncia esperada, valor por transacdo ou
categoria (conforme detalhadas na Tabela 1).

Além disso, para cada cliente sdo exibidas informagdes essenciais, como o seu
tipo, a frequéncia prevista, o valor médio por transacdo e o valor estimado de CLV.
Ao final, também €& possivel acessar a pagina de detalhes do cliente, que fornece mais
informacdes sobre como lidar com o perfil daquele cliente, além de exibir seu histdrico
de compras em formato tabular e grafico.

A pégina “Estatisticas” apresenta uma visao agregada e comparativa do comporta-
mento dos clientes por meio de graficos interativos. Ela permite identificar padrdes gerais
e avaliar o desempenho dos diferentes segmentos. As visualiza¢des incluem:

* Graficos de setores: mostram a distribui¢do percentual dos clientes, valor mo-
netario total e frequéncia de transacdes por tipo de cliente, facilita a identificacao
dos perfil mais valiosos.

* Grafico de barras horizontais: apresenta o ranking de CLV total por tipo de cliente,
destacando os perfis com maior valor estimado.

* Interatividade: permite ocultar ou exibir categorias especificas via legenda intera-
tiva, possibilita andlises comparativas mais focadas.

5. Conclusao

Este trabalho apresentou o LTVHub, uma ferramenta modular, extensivel e intuitiva para
calculo do Customer Lifetime Value, que utiliza diferentes modelos de aprendizado de
maquina para previsao da frequéncia e valor monetario. A arquitetura desenvolvida faci-
lita a integragdo de novos modelos e garante uma interface amigavel e completa para os
usudrios finais. Em conclusio, a aplicagdo automatiza todo o processo de transformacao
e predicao dos dados, até a visualizacdo dos resultados, contribuindo, assim, para a maior
adocdo e aplicacao da métrica do CLV. Para trabalhos futuros, pretende-se incorporar no-
vos algoritmos. Além disso, busca-se expandir a ferramenta para fornecer ao usudrio um

115



Companion Proceedings of the 40t" Brazilian Symposium on Data Bases October 2025 — Fortaleza, CE, Brazil

retorno mais detalhado sobre o desempenho dos modelos de predi¢do escolhidos, apre-
sentando suas principais métricas. Desse modo, serd possivel realizar uma comparagdo
mais precisa entre os modelos existentes.
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