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Laboratório de Inteligência em Sistemas Pervasivos e Distribuı́dos (NESPeD-Lab)

Florestal - MG - Brasil

2Universidade Estadual de Maringá (UEM) Maringá - PR - Brasil
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Abstract. The Customer Lifetime Value (CLV) is an essential metric for iden-
tifying the most valuable customers, enabling comprehensive profit estimations.
Furthermore, it allows companies to tailor their services to meet customer ex-
pectations, thereby improving the quality of the relationship between the consu-
mer and the business. Despite its advantages, CLV is not widely adopted, and
applying it across different contexts presents several challenges, particularly re-
garding the data required. The goal of this work is to provide a tool1 that allows
CLV estimation for different users in a visually intuitive, modular, extensible,
and flexible manner, delivering a robust prediction of the expected CLV.

Resumo. O Customer Lifetime Value (CLV) é uma métrica essencial para iden-
tificar clientes mais valiosos, possibilitando estimativas abrangentes de lucro.
Além disto, permite que a empresa forneça um serviços de acordo com as ex-
pectativas de seus clientes, melhorando a qualidade do relacionamento entre
consumidor e o negócio. Apesar de suas vantagens, o CLV não é uma métrica
utilizada em larga escala, e a aplicação de um contexto ao outro apresenta uma
série de dificuldades, principalmente em relação aos dados utilizados. O obje-
tivo deste trabalho é fornecer uma ferramenta1 que permita a estimativa do CLV
para diferentes usuários de maneira visualmente intuitiva, modular, extensı́vel
e flexı́vel, fornecendo uma ótima estimativa do CLV esperado.

1. Introdução
O Lifetime Value (LTV) ou Customer Lifetime Value (CLV) é uma métrica am-
plamente reconhecida na literatura de marketing e gestão de relacionamento com
o cliente [Berger and Nasr 1998] [Jain and Singh 2002] [Venkatesan and Kumar 2004]
[Popa et al. 2021]. Ela permite identificar quais clientes são mais valiosos para a em-
presa, que respondem positivamente às ações promocionais, gerando maior lucratividade
ao longo do tempo. Um cálculo acurado do CLV possibilita compreender a dinâmica

1O vı́deo de demonstração da ferramenta LTVHub está disponı́vel em: https://youtu.be/S-fO2e8nPxI.
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do relacionamento com o cliente, estimando com mais precisão os ganhos esperados e a
possı́vel redução de encargos, como custos de atendimento e comunicação.

Apesar de sua relevância teórica e potencial estratégico, as ferramentas que permi-
tem o cálculo do CLV, como as fornecidas pela UpGrowth, MétricaHub, Asllan Maciel,
WebEngage, WebFX e Upollo, ainda são bastante limitadas, ao exigirem que o usuário
insira manualmente métricas previamente calculadas como o ticket médio, a taxa de
retenção, margem de lucro, dentre outras. Isso pressupõe que o usuário já tenha feito
uma análise prévia dos dados, o que dificulta o acesso ao CLV. Além disso, essas ferra-
mentas geralmente retornam o CLV médio de forma agregada, considerando a empresa
como um todo, dificultando, como consequência, a adoção prática e a exploração plena
do potencial analı́tico do CLV.

Dito isso, o presente trabalho tem como objetivo construir um sistema distribuı́do
que permita o uso de diferentes algoritmos para o cálculo do CLV, com uma interface
intuitiva para possibilitar futuros modelos de aprendizado de forma simples e modular.

2. Fundamentação Teórica
Este estudo baseia-se em [Qismat and Feng 2020] e dá continuidade ao trabalho de
[Ramos and Silva 2024], que propôs uma abordagem genérica para predição do CLV
usando atributos de transações. Aqui, desenvolve-se uma ferramenta que automatiza todo
o fluxo de análise.

2.1. RFM
O método RFM (Recência, Frequência e Valor Monetário) é amplamente utilizado para o
cálculo do CLV. Seu nome provém das três variáveis centrais que compõem sua lógica de
análise. São elas:

• Recência: Tempo desde a última compra. Quanto menor, mais recentemente o
cliente realizou uma compra.

• Frequência: Número de compras no perı́odo. Quanto maior, mais frequentemente
o cliente realizou compras.

• Valor Monetário: Gasto médio do cliente. Quanto maior, mais o cliente gastou em
suas compras.

2.2. Modelo Pareto/Distribuição Binomial Negativa (NBD)
Modelo de método Bayesiano que prevê o número esperado de compras futuras, focando
na frequência e sem considerar o valor monetário[Schmittlein et al. 1987]. O Pareto mo-
dela a probabilidade do cliente estar ativo, através de uma distribuição exponencial, cuja
taxa de abandono segue uma distribuição Gamma.

2.3. Modelo Beta-Geométrico (BG/NBD)
Similar ao Pareto/NBD, mas mais eficiente. Prevê a frequência de compras e o momento
de abandono, é relevante para relações com frequência instável [Fader et al. 2005].

2.4. Modelo Gamma-Gamma
O modelo Gamma-Gamma [Fader and Hardie 2013] é uma extensão do modelo Pa-
reto/NBD [Schmittlein et al. 1987], que atribui um valor monetário a cada compra futura,
além de estimar a probabilidade de o cliente continuar ativo.
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2.5. Modelos de Aprendizado de Máquina
Modelos de ML incorporam múltiplas variáveis, gerando, potencialmente, uma maior
precisão. Para a modelagem com Aprendizado de Máquina, o LTVHub utiliza uma abor-
dagem comparativa para selecionar o algoritmo de maior desempenho. Os modelos são
treinados e, em seguida, avaliados com base na métrica do Erro Quadrático Médio (MSE),
que quantifica a distância entre valores previstos e reais. O modelo com menor erro é es-
colhido para a predição final. Os algoritmos avaliados incluem: LassoCV, ElasticNet,
Random Forest Regressor, Gradient Boosting Regressor, Histogram Gradient Boosting
Regressor, LightGBM Regressor (Light Gradient Boosting Machine) e Extreme Gradient
Boosting (XGBoost).

3. Arquitetura
O Back-End do sistema foi desenvolvido em Python, utilizando o framework Flask para
expor uma interface de comunicação eficiente com o Front-End. Além disso, sua lógica
interna foi estruturada com base no padrão de projeto Cadeia de Responsabilidade, no
qual as tarefas são processadas em etapas sequenciais: cada etapa realiza uma operação
especı́fica e encaminha o resultado à próxima. Essa abordagem favorece a modularidade,
a reutilização e a manutenção do código.

O Front-End foi implementado usando React, que proporciona maior dinamismo
e responsividade na construção de componentes reutilizáveis.

Uma descrição breve da arquitetura do sistema pode ser encontrada na Figura 1.

Figura 1. Arquitetura LTVHub.

Front-End: Consiste na parte do código que permite a interação do usuário. Aqui
foi definida uma interface intuitiva e facilmente extensı́vel. O sistema foi projetado com
foco na extensibilidade e na facilidade de integração de novos modelos. Para isso, utiliza
um arquivo, no qual o desenvolvedor pode adicionar novos modelos à interface de forma
simples e direta, informando apenas os dados essenciais para seu uso. Essa abordagem
elimina a necessidade de modificações complexas no código-fonte, promovendo maior
flexibilidade e agilidade no desenvolvimento e na manutenção do sistema.

Na sequência, detalham-se os módulos responsáveis pelo funcionamento do Back-
End do sistema.

Módulo de Pré-Processamento: Esta etapa recebe os dados do Front-End e rea-
liza a limpeza, tratamento de nulos e transformação dos atributos. Atualmente, são per-
mitidas as transformações para o RFM e para o RFMT [Ullah et al. 2023], este último
incluindo a métrica T (tempo desde a primeira compra), que permite diferenciar clien-
tes novos e antigos. Embora ambos sejam métodos tradicionais para calcular o CLV,

Companion Proceedings of the 40th Brazilian Symposium on Data Bases October 2025 – Fortaleza, CE, Brazil

113



limitam-se a considerar apenas o histórico de compras. Para superar essa limitação, o
presente artigo combina o RFM com modelos preditivos para estimar o CLV futuro.

Módulo de previsão de transações: Neste módulo, são definidos os mode-
los utilizados para estimar o número médio de transações por cliente até a data da
análise. Para isso, são utilizados os dados processados no módulo anterior. A fer-
ramenta conta com os modelos probabilı́sticos Pareto [Schmittlein et al. 1987] e Beta
Geométrico [Fader et al. 2005], além dos modelos de aprendizado de máquina desenvol-
vidos no trabalho de [Ramos and Silva 2024].

Módulo de previsão do valor monetário: Se baseia em fazer as estimativas do
valor monetário médio por transação. Pode-se utilizar tanto o Gamma-Gamma quanto o
modelo de aprendizado de máquina.

Módulo do cálculo do CLV: Baseia-se nas informações calculadas nos módulos
de previsão, como frequência de compra e valor monetário previsto, para realizar o cálculo
do CLV. O CLV é composto pela multiplicação da frequência prevista de transações pelo
valor monetário médio previsto, ajustando o resultado por uma taxa de desconto e pelo
número de perı́odos desejados. O modelo permite calcular o CLV tanto para dados de
calibração, quanto para dados de treino e teste, garantindo que valores negativos sejam
ajustados para zero. Assim, o módulo fornece uma estimativa do CLV futuro esperado de
cada cliente.

Módulo Estatı́stico e Gráfico: Responsável por consolidar os dados, individuais
e agrupados, calculados nos módulos anteriores, e prepará-los para a visualização. Essas
informações são estruturadas para envio ao Front-End, as métricas enviadas incluem o
CLV previsto, frequência e valor monetário, bem como a segmentação dos clientes com
base nos atributos do RFM, seguindo o trabalho de [Qismat and Feng 2020] (Tabela 1).

Tabela 1. Classificação dos clientes com base no modelo RFM

Tipo de Cliente Caracterı́stica Estratégia Recomendada
Cliente de Alto Valor Compra recente, alta frequência e alto

volume. Principais consumidores.
Elevar a status VIP, oferecer serviços personali-
zados e alocar mais recursos.

Cliente de Desenvolvimento
Estratégico

Compra baixa frequência, mas alto
valor unitário. Potenciais atacadis-
tas/corporativos.

Oferecer pontos de membro e descontos para au-
mentar fidelização e retenção.

Cliente em Fase de Proteção Não compra recentemente, mas alta
frequência e volume passados.

Enviar atualizações (novos produtos/serviços)
para incentivar retorno e consumo.

Cliente de Retenção Crı́tica Não compra recentemente, baixa
frequência, mas alto valor médio.

Enviar ofertas personalizadas, atualizações e
promoções para evitar perda.

Cliente de Valor Geral Compra alta frequência, mas baixo vo-
lume.

Introduzir novos
produtos/serviços/funcionalidades para au-
mentar volume e engajamento.

Cliente em Desenvolvimento Compra baixa frequência e baixo vo-
lume. Novos ou pouco engajados.

Oferecer serviços adicionais, apresentar novos
produtos e incentivar aumento de consumo.

Cliente de Retenção Geral Não compra recentemente, mas alta
frequência passada, com baixo volume.

Apresentar novos produtos para estimular con-
sumo.

Cliente Perdido Não compra, baixa frequência e baixo
volume.

Utilizar promoções para tentar reconquistar. Pri-
orizar outros segmentos de recursos limitados.

4. Interface e Utilização

Após todo o processamento no Back-End, o sistema retorna as informações para a in-
terface, permitindo que o usuário analise o comportamento de seus clientes, tanto no
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passado quanto no futuro, inserindo apenas o conjunto de dados das transações. Ao ini-
ciar a aplicação, é necessário fornecer um arquivo no formato .csv com os registros das
transações a serem analisadas. Esse arquivo deve conter, obrigatoriamente, a coluna de
identificação única dos usuários, a coluna da data e a coluna do valor das transações.
Após a inserção do arquivo de dados, é necessário realizar a configuração dos modelos no
sistema. Nessa etapa, o usuário deve indicar os identificadores das colunas obrigatórias,
selecionar o modelo de predição de frequência e o modelo de predição monetária a serem
utilizados, além de definir o perı́odo de previsão, especificado em número de semanas,
para o cálculo do CLV futuro. Essas informações são enviadas ao Back-End, que realiza o
processamento, executa as predições e retorna, para cada cliente, as métricas calculadas,
como CLV, frequência, valor monetário e segmentação, além de dados agregados para
análise por grupos.

No Front-End, são apresentadas ao usuário duas seções principais para a
visualização e interpretação dos dados obtidos a partir do modelo de previsão de CLV:
a página “Clientes” e a página “Estatı́sticas”. Ambas são acessadas no Front-End e ofere-
cem as perspectivas de análise individual e agregada. Na página de “Clientes”, os resul-
tados do modelo são apresentados de forma detalhada para cada cliente individualmente.
Esta página permite buscar clientes por ID ou segmento, filtrar a lista de clientes pelos
seus tipos e ordenar os clientes por ID, CLV, frequência esperada, valor por transação ou
categoria (conforme detalhadas na Tabela 1).

Além disso, para cada cliente são exibidas informações essenciais, como o seu
tipo, a frequência prevista, o valor médio por transação e o valor estimado de CLV.
Ao final, também é possı́vel acessar a página de detalhes do cliente, que fornece mais
informações sobre como lidar com o perfil daquele cliente, além de exibir seu histórico
de compras em formato tabular e gráfico.

A página “Estatı́sticas” apresenta uma visão agregada e comparativa do comporta-
mento dos clientes por meio de gráficos interativos. Ela permite identificar padrões gerais
e avaliar o desempenho dos diferentes segmentos. As visualizações incluem:

• Gráficos de setores: mostram a distribuição percentual dos clientes, valor mo-
netário total e frequência de transações por tipo de cliente, facilita a identificação
dos perfil mais valiosos.

• Gráfico de barras horizontais: apresenta o ranking de CLV total por tipo de cliente,
destacando os perfis com maior valor estimado.

• Interatividade: permite ocultar ou exibir categorias especı́ficas via legenda intera-
tiva, possibilita análises comparativas mais focadas.

5. Conclusão
Este trabalho apresentou o LTVHub, uma ferramenta modular, extensı́vel e intuitiva para
cálculo do Customer Lifetime Value, que utiliza diferentes modelos de aprendizado de
máquina para previsão da frequência e valor monetário. A arquitetura desenvolvida faci-
lita a integração de novos modelos e garante uma interface amigável e completa para os
usuários finais. Em conclusão, a aplicação automatiza todo o processo de transformação
e predição dos dados, até a visualização dos resultados, contribuindo, assim, para a maior
adoção e aplicação da métrica do CLV. Para trabalhos futuros, pretende-se incorporar no-
vos algoritmos. Além disso, busca-se expandir a ferramenta para fornecer ao usuário um
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retorno mais detalhado sobre o desempenho dos modelos de predição escolhidos, apre-
sentando suas principais métricas. Desse modo, será possı́vel realizar uma comparação
mais precisa entre os modelos existentes.
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