Companion Proceedings of the 40t" Brazilian Symposium on Data Bases October 2025 — Fortaleza, CE, Brazil

Discovery of Denial Constraints Using Specialized Hardware
Processors

Sergio Luiz Marques Filho' , Eduardo Cunha de Almeida’

'Department of Informatics (Dinf) — Federal University of Parana (UFPR)
Av. Cel. Francisco H. dos Santos, 100 — 81530-000 — Curitiba — PR — Brazil
{slmfilho,eduardo}@inf.ufpr.br

Level: Doctorate (Computer Science, Federal University of Parana, Brazil.)
Adyvisor: Eduardo Cunha de Almeida
Admission: 02/2021 - Qualification: 06/2023 - Defense: 12/2025
Completed activities: Mandatory credits; bibliographic review; problem statement;
thesis qualifying exam; FPGA hardware prototype;
Future activities: Thesis writing and defense.
Publications: SIGMOD ’23: Discovering Denial Constraints Using Boolean Patterns
[Marques Filho 2023].

Abstract. Denial constraints (DCs) are at the heart of maintaining data con-
sistency. Automatically discovering DCs from the data is computationally ex-
pensive due to the large search space. In this ongoing work, we propose a
hardware-accelerated design for the automatic discovery of DCs, implemented
on FPGAs. Our design eliminates the need for intermediate data structures,
thereby reducing memory requirements and boosting performance. In prelim-
inary experiments on a real-world dataset, our hardware-accelerated design
outperformed state-of-the-art software solutions by factors ranging from 7 X to
110x. An earlier version of our hardware design earned 3rd place in the pres-
tigious ACM SIGMOD Research Competition.

Resumo. Restricoes de Negacdo (DCs) sdo fundamentais para manter a con-
sisténcia dos dados. Descobrir DCs automaticamente a partir de dados é com-
putacionalmente custoso devido ao grande espaco de busca. Neste trabalho em
andamento, propomos um método acelerado por hardware para a descoberta
automdtica de DCs, implementado em FPGAs, que elimina a necessidade de
estruturas de dados intermedidrias, reduzindo os requisitos de memoria e au-
mentando o desempenho. Em experimentos preliminares com um conjunto de
dados do mundo real, nosso método superou solugcoes de software de estado da
arte por fatores entre 7x e 110x. Uma versdo anterior do nosso método con-
quistou o 3° lugar na prestigiada Competicdo de Pesquisa ACM SIGMOD.

153

Companion Proceedings of the 40t" Brazilian Symposium on Data Bases October 2025 — Fortaleza, CE, Brazil

1. Introduction

Businesses have generated and consumed large amounts of data. Consequently, organi-
zations want to access and analyze these data as a consolidated whole, bringing the need
to employ database management systems (DBMS) to manage and organize such data in a
structured manner.

Thus, a database can be seen as a partial model of an external reality. It is of
common interest that a database be in accurate correspondence with this external reality.
Therefore, certain conditions are imposed to capture the meaning of the outside real-
ity, and these conditions are named Semantic Constraints or Integrity Constraints (ICs).
ICs are used to validate the integrity and consistency of the external entities represented
in the data, and ICs are valuable tools in several DBMS tasks, such as database design
[Papenbrock and Naumann 2017], data integration [Wang et al. 2009], query optimiza-
tion [Kossmann et al. 2021], data cleaning [Chu et al. 2013b] and many others.

Although integrity constraints find practical use in various applications, they also
have different formalisms to define them, with their own level of expressiveness, such
as functional dependencies (FD), conditional functional dependencies, unique column
combinations, and order dependencies, among others. In these independent formalisms,
each type of IC has limited expressiveness and cannot encompass the high number of
types of rules that can be observed in actual datasets. Moreover, the different ICs are
logically isolated, making the interaction between ICs difficult [Bleifuf et al. 2017].

All the above-mentioned IC formalisms can be generalized by a more powerful
constraint language such as Denial Constraints (DC) [Chu et al. 2013a, Pena et al. 2019].
The task of manually discovering DCs is difficult, as it requires domain exper-
tise and database knowledge, and is known to be time-consuming and error-prone
[Song et al. 2020]. Thus, automatically discovering DCs is desirable, but this is also a
difficult task due to the large search space.

This document focuses on the automatic discovery of DCs, which express a
set of predicates that cannot be true together for any combination of tuples in a re-
lationship. We walk through the example dataset shown in Table 1 to demonstrate
the expressiveness of a DC. We observe that flights with the same origin airport can-
not have a different origin city market, a rule expressed by the denial constraint
@ : Vtz, t, € Flights, ~(t,.OriginCityMarket] D # t,.OriginCityMarket] D N
t..OriginAirport] D = t,.OriginAirportI D).

As DCs are expressive enough

to subsume many other dependencies, Table 1. A glance of Flights dataset.
to fully take advantage of the benefits FliahNum Origin .. OriginCity
of DCs, the set of valid DCs is expected ENENUM - pirportiD - MarketID
to be known. To support DC discov- % 305 12953 19805 31703
ery, current state-of-the-art algorithms 2 1527 13204 20355 31454
Y gortt ts 4352 11618 20366 31703
follow the process of constructing in- 4, 5358 12892 20304 32575
termediate data structures from the data ts 4602 12892 19393 32575

and subsequently deriving DCs from
these intermediates. However, these al-
gorithms suffer from inefficiencies in intermediate computation [Pena et al. 2022]. More-

154

Companion Proceedings of the 40t" Brazilian Symposium on Data Bases October 2025 — Fortaleza, CE, Brazil

over, the utilization of high-performance hardware may be hindered if complex interme-
diate data structures are stored in memory during the implementation of such algorithms.

The usage of specialized hardware in data processing has a long tradition
[Mueller et al. 2009]. To overcome the current difficulties presented by software-based
methods, we propose specialized hardware to discover DCs implemented on top of Field-
Programmable Gate Arrays (FPGAs). FPGAs offer greater flexibility, intrinsic paral-
lelism, and distributed on-chip memory, enabling the design and evaluation of customized
hardware solutions, and as their adoption in data centers grows, the integration of spe-
cialized hardware into data processing systems has become increasingly practical and
efficient [Jiang et al. 2023].

2. Related Work

In software-based DC discovery, algorithms based on sets of evidence have become the
standard approach [Chu et al. 2013a, Bleiful3 et al. 2017, Pena and de Almeida 2018,
Pena et al. 2019, Livshits et al. 2021, Xiao et al. 2022, Pena et al. 2022].
FastDC [Chu et al. 2013a] uses a depth-first search to evaluate all possible DC candidates
in a lattice of column combinations and identifies minimal coverages through intersec-
tions in an evidence set. However, its approach demands enormous memory to build the
lattice, which can take days to process, rendering it impractical [Papenbrock et al. 2015].

BFastDC [Pena and de Almeida 2018] and DCFinder [Pena et al. 2019] improve
evidence set building by processing chunks of evidence at a time to benefit from hardware
caches and using indices. However, these algorithms require a computationally expensive
procedure to revisit the chunks of evidences for building the evidence set, which can
be quadratic in the number of pieces of evidence. Hydra [Bleifu} et al. 2017] discovers
exact DCs using a sampling-based approach to construct intermediate DC sets, reducing
the computational cost of evidence set construction, and finally extracts the final DCs
from the complete evidence set.

The Evidence Context Pipeline (ECP) [Pena et al. 2022] introduces new interme-
diate representations, indexes, and algorithms to build a parallel pipeline to generate evi-
dence sets. ECP incorporates DC enumeration techniques leveraging inverted indices and
pruning strategies to reduce the search space and enable parallelism.

Current software-based methods discover DCs from the evidence set intermediate
structures, and all these algorithms keep such a structure in memory. Not optimized
evidence set construction can cause enormous problems, such as a huge memory footprint,
incorrect cache utilization, ineptitude for parallelism, and other problems that can hinder
DC discovery. In contrast, we use simple structures carrying boolean signals appropriate
to hardware acceleration.

2.1. Presentation of the Problem

Discovering DCs requires detecting all minimal DCs that hold in a given relation instance,
but the high expressive power of DCs allows them to express a variety of predicates,
resulting in a huge search space. The number of DCs that potentially hold in a database
instance is 2/7!, where | P| is the number of predicates in the predicate space.

Software-based algorithms are plagued by inefficiencies in computing intermedi-
ates, resulting in significant overhead. In certain instances, the structures produced by

155

Companion Proceedings of the 40t" Brazilian Symposium on Data Bases October 2025 — Fortaleza, CE, Brazil

these algorithms are larger than the initial dataset [Pena et al. 2022]. Moreover, current
DC discovery methods are fine-tuned to run on a CPU, with none designed to leverage
the advantages of high-performance hardware.

Given all these problems, we have some questions to answer. 1. Can special-
ized hardware make better use of memory by eliminating the intermediate data structures
maintained by software versions during the DC discovery process? 2. How does special-
ized hardware performance compare to software methods for discovering DCs? 3. How
does specialized hardware scale in relation to the number of attributes and the number of
rows in the dataset?

Considering that current DC discovery algorithms follow the process of first build-
ing an intermediate data structure and then enumerating the DCs based on these complex
intermediates, we hypothesize that the proposed DC Specialized Hardware offers a more
efficient discovery of DCs than the state-of-the-art algorithms, with better use of memory
space with accelerated computation in highly parallel hardware.

The main objective of this work is to propose a new method for discovering denial
constraints using reconfigurable hardware, such as an FPGA, and to evaluate the perfor-
mance gains provided by hardware acceleration.

2.2. Methodology

The Denial Constraints Specialized Hardware processor is a hardware accelerator built
to assess attribute values in a dataset and identify the exact DCs that hold. Its goal is to
efficiently traverse the search space looking for DCs while keeping a small memory struc-
ture inside the FPGA board that eliminates the need for an intermediate set of evidence
structures, which is a major bottleneck in state-of-the-art software-based solutions. Fig-
ure 1 illustrates the interaction between a CPU and the DC specialized hardware processor
implemented on top of an FPGA board.

In the first step of DC discov-

ery, we perform the Predicate Space — FPGA Programmable Logic
Building in which we compare at- ~ -------- _
tribute values to derive and evalu- ., e Frocsor
ate DC predicates. A pair of tu- e

Predicat:ev

ples t,,t, is the fundamental pro- B ”
. . . . ‘
cessing unit in the DC discovery, [

where the building of the predicate

FPGA Board

Ethernet

1
o
?

space requires iterating over all tuple el

pairs [Chu et al. 2013b], with predi- ' '

cates on categorical attributes using Figure 1. Architecture of the Denial Con-
the operators {=,#}, and those on straint Specialized Hardware Pro-

. . - - cessor.
numerical attributes also including

{<,<,>,>}. Our FPGA-based ac-
celeration employs dedicated parallel circuits that efficiently execute multiple value com-
parisons simultaneously.

Attribute values are structured in pipelines and stored locally in Block RAMs
(BRAMs), interfacing with Direct Memory Access (DMA) via the Advanced eXtensible
Interface (AXI) protocol, which feeds the pipeline during comparison execution.

156

Companion Proceedings of the 40t" Brazilian Symposium on Data Bases October 2025 — Fortaleza, CE, Brazil

Next, we perform the DC enumeration, which is the process of generating DCs
that hold in the dataset. This process handles the search for minimal DCs, which are
DCs that cannot be derived from any other. This minimality property is important for
eliminating redundant DCs that reduce the search space [Chu et al. 2013a].

We organize the predicate space as a set enumeration tree (SE-Tree) representing
all possible irredundant combinations of predicates. The SE-tree node can be designed
using boolean algebra symbols, e.g., we use the boolean algebra symbol A_ to denote
an equality predicate on attribute A, with other comparison operators following the same
notation. Thus, a combination such as A_ + B represents the disjunction of the equality
predicate on attribute A and the non-equality predicate on attribute B.

A P

A_ + B_ A_+DB> ... As+B_ As + B>
Figure 2. The SE-Tree with the possible combinations of two attributes.

We apply the forward path sharing technique for predicate prefix merging
[Maschi et al. 2020], in which combinations with fewer predicates are placed at higher
levels of the SE-Tree, while those with more predicates appear at lower levels.

Evidence is data satisfying one or more predicates, and a cover is a set of predi-
cates that overlap with such evidence. Instead of using intermediate data structures, we
use components inside the FPGA responsible for performing the cover verification aligned
with the evaluation of predicates to determine whether predicates hold. To test the min-
imal cover, we verify if a subset of the tested predicates also covers the evidence. The
internal FPGA components are tied together in a chain, allowing the data to traverse the
tree, evaluating whether the predicates are minimal.

After all data in the dataset have been processed, the DCs found remain available
in the FPGA and can be obtained with read operations using the AXI protocol.

2.3. Preliminary Results

We carried out experiments aimed at answering the research questions stated in Sec-
tion 2.1, comparing the DC Specialized Hardware with the state-of-the-art software-
based algorithms that detect exact DCs: Hydra [Bleiful et al. 2017] and DCFinder
[Pena et al. 2019]. We use the real-world dataset Flights, which consists of data on the
departure and arrival times of flights from different data sources, increasing the number
of tuples from 1k to 8k, and the number of attributes from 1 to 4.

To perform the DC Specialized Hardware experiments, we synthesize the hard-
ware in the FPGA part xc7a100tcsg324-1 with a clock of 90MHz with a dual-core
Cortex-A9 650MHz processor and 512MB DDR3 RAM. The software experiments to run
the Hydra and DCFinder methods were carried out on an LMDE 5 (elsie) machine with
AMD EPYC 7401 24-Core Processor 2.0GHz CPU and 200GB DDR4 RAM.

Table 2 presents the DC discovery execution time (in seconds), as reported by
Hydra, DCFinder, and DC Specialized Hardware, while Table 3 shows the speedup of

157

Companion Proceedings of the 40t" Brazilian Symposium on Data Bases October 2025 — Fortaleza, CE, Brazil

Table 2. Hydra, DCFinder and the DC Specialized Hardware execution time (s) to
detect DCs on the Flights dataset.

Hydra DCFinder DC Specialized Hardware
Dataset size Dataset size Dataset size
1024 2048 4096 8192 1024 2048 4096 8192 1024 2048 4096 8192
0,1623 0,1730 0,2090 0,3063 | 0,3170 0,5200 1,1500 2,8300 | 0,0029 0,0054 0,0124 0,0361
0,1940 0,2157 0,2890 0,3857 | 0,3673 0,6100 1,4300 3,5400 | 0,0044 0,0079 0,0174 0,0456
0,2237 0,2543 0,3350 0,4373 | 0,3987 0,6293 1,6600 4,0100 | 0,0058 0,0113 0,0244 0,0615
0,2577 10,3497 0,4303 0,5450 | 0,4487 0,7600 1,8200 4,5000 | 0,0067 0,0138 0,0302 0,0721

| W= Attrib.

Table 3. DC Specialized Hardware speedup over Hydra and DCFinder to Detect
DCs on the Flights dataset.

Hydra DCFinder
Dataset size Dataset size
1024 2048 4096 8192 1024 2048 4096 8192

56,5941 32,1046 16,8244 18,4776 | 110,5722 96,4995 92,6014 78,2168
44,3330 27,4650 16,6463 8,4576 | 83,9432 77,6830 82,5788 77,5369
38,8759 22,5748 13,7469 7,1070 | 69,2930 55,8600 68,1598 65,2417
38,4732 25,3316 14,2323 7,5570 | 66,9922 55,0581 60,2805 62,3280

W =] Attrib.

DC Specialized Hardware over Hydra and DCFinder.

Considering the results of the Flights dataset for a single attribute, as the number
of tuples varies from 1024 to 8192, the DC Specialized Hardware outperforms DCFinder
from 78x to 110x and Hydra from 8x to 57x. These values emphasize the impact
of the creation of the intermediary data structures, such as the evidence set on the dis-
covery of DCs done by Hydra and DCFinder, in contrast with the design of our method
that eliminates the evidence set, outperforming all software-based algorithms in different
configurations of tuple numbers and attribute numbers.

2.4. Conclusion

We have shown DC Specialized Hardware, a new approach to deal with the problem of
detecting denial constraints that uses high-parallel hardware. Compared to its software
counterparts, it demonstrated superior performance, from 7x to 110x.

Our major contributions are threefold: 1) We present a new method to deal with
the discovery of DCs that uses memory efficiently by eliminating the intermediate data
structures kept by the state-of-the-art software versions. 2) We present a specialized hard-
ware processor using reconfigurable hardware on top of an FPGA, a new solution to the
problem of discovering DCs. To our best understanding, this is the first method that uses
high-parallel hardware to detect DCs. 3) We evaluate the specialized hardware processor
and its software counterparts on a real-world dataset commonly used to discover DCs.

2.5. Acknowledgments

This work was partially supported by CNPq (grants 302909/2022-2 and 444192/2024-
7) and by the Coordenagdo de Aperfeicoamento de Pessoal de Nivel Superior (CAPES),
Brazil — Finance Code 001.

References

BleifuB3, T., Kruse, S., and Naumann, F. (2017). Efficient denial constraint discovery with
hydra. Proceedings of the VLDB Endowment, 11:311-323.

158

Companion Proceedings of the 40t" Brazilian Symposium on Data Bases October 2025 — Fortaleza, CE, Brazil

Chu, X., Ilyas, I. F.,, and Papotti, P. (2013a). Discovering denial constraints. Proc. VLDB
Endow., 6(13):1498-1509.

Chu, X, Ilyas, I. F,, and Papotti, P. (2013b). Holistic data cleaning: Putting violations
into context. In 2013 IEEE 29th International Conference on Data Engineering.

Jiang, W., Parvanov, M., and Alonso, G. (2023). Swiftspatial: Spatial joins on modern
hardware.

Kossmann, J., Papenbrock, T., and Naumann, F. (2021). Data dependencies for query
optimization: a survey. The VLDB Journal, 31.

Livshits, E., Heidari, A., Ilyas, 1. F., and Kimelfeld, B. (2021). Approximate denial
constraints. Proc. VLDB Endow., 13(10):1682—-1695.

Marques Filho, S. L. (2023). Discovering denial constraints using boolean patterns. In
Companion of the 2023 International Conference on Management of Data, SIGMOD
’23, page 281-283, New York, NY, USA. Association for Computing Machinery.

Maschi, F., Owaida, M., Alonso, G., Casalino, M., and Hock-Koon, A. (2020). Making
search engines faster by lowering the cost of querying business rules through fpgas. In
SIGMOD Conference 2020 [USA], June 14-19, 2020, pages 2255-2270. ACM.

Mueller, R., Teubner, J., and Alonso, G. (2009). Data processing on fpgas. Proc. VLDB
Endow., 2(1):910-921.

Papenbrock, T., Ehrlich, J., Marten, J., Neubert, T., Rudolph, J.-P., Schonberg, M.,
Zwiener, J., and Naumann, F. (2015). Functional dependency discovery: An exper-
imental evaluation of seven algorithms. Proc. VLDB Endow., 8(10):1082-1093.

Papenbrock, T. and Naumann, F. (2017). Data-driven schema normalization. In Markl, V.,
Orlando, S., Mitschang, B., Andritsos, P., Sattler, K., and BreB3, S., editors, Proceedings
of the 20th International Conference on Extending Database Technology, EDBT 2017,
Venice, Italy, March 21-24, 2017, pages 342—-353. OpenProceedings.org.

Pena, E. H. M. and de Almeida, E. C. (2018). BFASTDC: A bitwise algorithm for mining
denial constraints. In Database and Expert Systems Applications - DEXA 2018, Re-
gensburg, Germany, September, 2018, Proceedings, Part I, volume 11029 of Lecture
Notes in Computer Science, pages 53—68, Regensburg, Germany. Springer.

Pena, E. H. M., de Almeida, E. C., and Naumann, F. (2019). Discovery of approximate
(and exact) denial constraints. Proc. VLDB Endow., 13(3):266-278.

Pena, E. H. M., Porto, F., and Naumann, F. (2022). Fast algorithms for denial constraint
discovery. Proc. VLDB Endow., 16(4):684—696.

Song, S., Gao, F., Huang, R., and Wang, C. (2020). Data dependencies over big data: A
family tree. IEEE Transactions on Knowledge and Data Engineering, 34(10):1-1.

Wang, D., Dong, X., Das Sarma, A., Franklin, M., and Halevy, A. (2009). Functional
dependency generation and applications in pay-as-you-go data integration systems.

Xiao, R., Tan, Z., Wang, H., and Ma, S. (2022). Fast approximate denial constraint
discovery. Proc. VLDB Endow., 16(2):269-281.

159

