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André Luiz da Costa Carvalho1, Altigran Soares da Silva1

1Instituto de Computação, Universidade Federal do Amazonas (UFAM)
Manaus - AM - Brazil

2Jusbrasil
Salvador - BA - Brazil

{livyreal,andre,alti}@icomp.ufam.edu.br, daniela.vianna}@jusbrasil.com.br

Abstract.

The rapid advancement of Large Language Models (LLMs) demands robust and compre-
hensive evaluation methodologies to assess their capabilities, reliability, and safety. This
advanced 2-hour tutorial will explore the multifaceted landscape of LLM evaluation, mov-
ing beyond traditional NLP metrics to include modern benchmarks, human-in-the-loop
approaches, and cutting-edge techniques such as “LLM-as-a-Judge”. We will address the
challenges of evaluating complex emergent behaviors, factual accuracy, reasoning, and
ethical considerations such as bias and toxicity. Participants will gain practical insights
into selecting appropriate evaluation strategies and understanding the limitations of cur-
rent methods, empowering them to critically assess LLM performance across a range of
real-world scenarios.

Resumo. Os rápidos avanços nos Large Language Models (LLMs) exigem
metodologias de avaliação robustas e abrangentes para verificar suas ca-
pacidades, confiabilidade e segurança. Este tutorial avançado de 2 ho-
ras aprofundar-se-á na multifacetada paisagem da avaliação de LLMs, indo
além das métricas tradicionais de PLN, para cobrir benchmarks modernos,
abordagens com intervenção humana e técnicas de ponta como “LLM-as-a-
Judge”. Discutiremos os desafios de avaliar comportamentos emergentes com-
plexos, precisão factual, raciocı́nio e considerações éticas como viés e toxici-
dade. Os participantes obterão insights práticos sobre a seleção de estratégias
de avaliação apropriadas e a compreensão das limitações dos métodos atu-
ais, capacitando-os a avaliar criticamente o desempenho de LLMs em vários
cenários do mundo real.

1. Introdução

A avaliação de Modelos de Linguagem de Grande Escala (Large Language Mod-
els – LLMs) constitui uma etapa central no ciclo de pesquisa e desenvolvimento
desses sistemas, transcendendo a verificação pontual de desempenho. Trata-se de
um processo essencial para fins de comparação entre arquiteturas, mitigação de
riscos, validação de segurança em aplicações práticas e progresso cientı́fico da
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área [Meva and Kukadiya 2025]. A natureza generativa desses modelos, aliada à com-
plexidade da linguagem natural e às capacidades emergentes, impõe desafios avaliativos
que extrapolam as metodologias tradicionais de Processamento de Linguagem Natural
(PLN) [Minaee et al. 2025].

Entre tais capacidades destacam-se o aprendizado em contexto (in-context learn-
ing) e o seguimento de instruções (instruction following), que tornam os modelos capazes
de generalizar tarefas a partir de poucos exemplos ou mesmo sem exemplos explı́citos
após o ajuste por instruções. Tais propriedades dificultam a aplicação de métricas
clássicas, as quais não são suficientes para captar atributos como criatividade, factuali-
dade, coerência semântica e utilidade prática. O raciocı́nio passo a passo, por exemplo,
demanda critérios avaliativos que ultrapassam a precisão da resposta final, incorporando
aspectos como validade lógica, consistência argumentativa e adequação ao contexto.

Além disso, o uso crescente de LLMs em domı́nios de alta criticidade, como
aplicações médicas, jurı́dicas e educacionais, torna imperativa a adoção de frameworks
de avaliação multifacetados, capazes de abarcar não apenas o desempenho técnico,
mas também segurança, eficiência e impacto social. A multiplicidade de respostas
válidas que esses modelos podem gerar para uma mesma entrada evidencia a necessi-
dade de métricas mais matizadas, subjetivas e semanticamente alinhadas à percepção hu-
mana. A simples correspondência de strings deixa de ser suficiente, sendo substituı́da
por abordagens que consideram a qualidade linguı́stica, contextual e interpretativa da
saı́da [Minaee et al. 2025, Meva and Kukadiya 2025].

É importante destacar que a avaliação não ocorre apenas de forma post hoc, mas
desempenha papel ativo durante o treinamento dos modelos. O aprendizado por reforço
com feedback humano (Reinforcement Learning from Human Feedback – RLHF) de-
pende da qualidade e do alinhamento das métricas utilizadas como função de recompensa.
Métricas mal calibradas ou desalinhadas com valores humanos podem levar à otimização
de aspectos secundários ou irrelevantes, prejudicando a utilidade, segurança ou confiabil-
idade do modelo.

Este tutorial propõe uma jornada crı́tica e estruturada pelo campo da avaliação de
LLMs, abordando os dilemas técnicos, metodológicos e éticos que o acompanham.

2. Esboço do Tutorial

• Introdução à Avaliação de LLMs (20 minutos): A avaliação de LLMs é
essencial para garantir segurança, utilidade e alinhamento em aplicações reais,
indo além da precisão técnica. Modelos generativos demandam métricas sofisti-
cadas que captem nuances como criatividade, coerência e factualidade. A
avaliação divide-se em intrı́nseca vs. extrı́nseca e humana vs. automática, e seu
avanço requer frameworks hı́bridos que combinem eficiência computacional com
profundidade interpretativa humana, especialmente em contextos crı́ticos como
saúde e direito. [Meva and Kukadiya 2025, Minaee et al. 2025, Gao et al. 2025,
Dierk et al. 2025]

– Por que a avaliação de LLMs é crı́tica e desafiadora?
– As propriedades únicas dos LLMs que complicam a avaliação (capacidade

gerativa, comportamentos emergentes, escala, não-determinismo).
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– Breve visão geral dos tipos de avaliação: Intrı́nseca vs. Extrı́nseca, Hu-
mana vs. Automática.

• Métricas Tradicionais de PLN e Suas Limitações para LLMs (20 minutos):
As métricas tradicionais de avaliação de LLMs apresentam limitações significa-
tivas por não refletirem com precisão a percepção humana de qualidade textual.
Elas penalizam paráfrases e sinônimos, ignoram o raciocı́nio lógico, não detectam
alucinações factuais e falham em avaliar aspectos emergentes como segurança,
viés e seguimento de instruções. Embora úteis para comparações superficiais, es-
sas métricas não capturam a complexidade e profundidade das capacidades dos
LLMs, exigindo abordagens mais robustas e complementares para uma avaliação
fiel do desempenho real dos modelos. [Peyrard 2019, Mathur et al. 2020]

– Revisão das Métricas Clássicas: Perplexidade, BLEU, ROUGE, ME-
TEOR, Acurácia, Precisão, Recall, F1-Score.

– Quando e Por Que São Insuficientes: Discutir as limitações para modelos
gerativos (por exemplo, falta de compreensão semântica, múltiplas saı́das
válidas) e para avaliar comportamentos matizados (por exemplo, erros fac-
tuais, coerência).

– Exemplos Práticos: Ilustrar cenários onde as métricas tradicionais podem
ser enganosas.

• Benchmarks e Datasets Modernos para LLMs (20 minutos): Benchmarks são
conjuntos de dados usados para avaliar LLMs em tarefas como compreensão,
QA, sumarização, raciocı́nio e segurança. Embora muitos tragam placares
numéricos, é fundamental considerar limitações metodológicas e incluir análises
qualitativas para garantir avaliações confiáveis e alinhadas a critérios éticos.
[Meva and Kukadiya 2025, AISERA 2025]

– Benchmarks de Propósito Geral: MMLU, HELM, BIG-bench (Hard),
GLUE/SuperGLUE (revisitados no contexto de LLMs).

– Benchmarks para Tarefas Especı́ficas:
* Question Answering (QA): Natural Questions, TriviaQA.
* Sumarização: XSum, CNN/DailyMail.
* Raciocı́nio e Código: GSM8K, HumanEval, MBPP.

– Benchmarks de Segurança e IA Responsável: TruthfulQA, BBQ, Toxi-
Gen/RealToxicityPrompts.

– Desafios com Benchmarks: Contaminação de dados, saturação de conjun-
tos de teste, a ”falácia do leaderboard”.

• Além dos Benchmarks: Metodologias de Avaliação Avançadas (30 minu-
tos): A avaliação humana é considerada o “padrão ouro” para medir a quali-
dade de saı́das de LLMs em tarefas de geração de linguagem natural, por cap-
turar nuances como fluência, coerência e criatividade que métricas automáticas
não detectam. Metodologias comuns incluem escalas Likert, ranking, testes
A/B e anotação de erros. Apesar de sua importância, enfrenta desafios como
custo elevado, subjetividade, viés cultural, dificuldades de escalabilidade e ne-
cessidade de treinamento rigoroso dos avaliadores. Esses limites motivam o
avanço de métodos automáticos e hı́bridos para complementar a avaliação hu-
mana. [Gao et al. 2025, Dierk et al. 2025]

– Avaliação Humana como Padrão Ouro: Metodologias, concordância entre
anotadores, desafios de escalabilidade.
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– Abordagens ”LLM-as-a-Judge”:
* Conceito e motivação (escalabilidade, custo-benefı́cio).
* Metodologias: Comparações pareadas, avaliação de resposta

única, prompt engineering para judges.
* Benefı́cios e limitações: Alucinações do judge, viés em modelos

judge, reprodutibilidade.
* Estudos de caso e pesquisa recente.

• Considerações Éticas e Direções Futuras na Avaliação de LLMs (30 min-
utos): A avaliação de LLMs deve ser contı́nua, ética e integrada ao ciclo de
desenvolvimento. Transparência e interpretabilidade são fundamentais para su-
perar o caráter de “caixa-preta” desses sistemas. O uso dual levanta preocupações
quanto a abusos, exigindo estratégias eficazes de mitigação. A regulamentação
e a padronização são urgentes para garantir comparabilidade e promover a
responsabilização industrial. Avanços futuros devem priorizar meta-avaliação,
monitoramento em tempo real, adaptação por domı́nio, alinhamento com valores
humanos e análise de impactos sociais de longo prazo, adotando uma abordagem
multidisciplinar para enfrentar a complexidade dos modelos. [Jiao et al. 2025]

– Viés e Justiça (Fairness): Identificar e mitigar vieses nas saı́das de LLMs,
métricas de fairness.

– Precisão Factual e Alucinações: Técnicas avançadas de detecção, verifica-
bilidade, citabilidade.

– Conteúdo Tóxico e Nocivo: Detecção e prevenção.
– Interpretabilidade e Explicabilidade: Avaliação de modelos black-box.
– O Cenário em Evolução: Lacunas de pesquisa, problemas abertos e o papel

dos princı́pios de IA responsável na avaliação.
– Avaliação Adversarial e de Robustez: Teste de estresse, injeções de

prompt, jailbreaking.
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