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Resumo. A adoção de modelos de Aprendizado Profundo (AP), na tomada de decisões requer confiança e
interpretação por parte de usuários do modelo. A proveniência surge como uma solução natural para promover
rastros do workflow de AP, passíveis de análise, englobando desde a preparação de dados ao modelo de AP.
Apesar de diversas abordagens alegarem prover proveniência, a principal limitação está na ausência de meca-
nismos que possibilitem a análise do caminho de derivação dos dados após a geração do resultado do workflow
de AP. As soluções existentes não oferecem a rastreabilidade do workflow, adotam formatos proprietários para
a representação dos metadados e não geram documentos de proveniência que acompanhem os modelos no
ambiente de produção. A DLProv é um conjunto de serviços de proveniência que resolve questões de captura
e interoperabilidade de rastros de proveniência de diferentes etapas do workflow, independente do ambiente de
AP. Os serviços geram grafos de proveniência aderentes ao W3C PROV, que contempla as etapas executadas
no workflow de AP. A DLProv foi avaliada em ambientes de execução de alto desempenho, explorando casos
de uso heterogêneos. Os grafos podem ser consultados pelos usuários do modelo em produção independente
do acesso aos ambientes de geração do modelo.

Abstract. The adoption of Deep Learning (DL) models in decision-making requires trust and interpretation
for the users of the model. Provenance emerges as a natural solution for generating traces of the DL workflow,
which can be analyzed and span from data preparation to the DL model. Although several approaches claim
to provide provenance, the main limitation is the lack of mechanisms that enable analysis of the data deriva-
tion path after the DL workflow results are generated. Existing solutions lack DL workflow traceability, adopt
proprietary formats for representing metadata, and do not generate provenance documents that accompany the
models in the production environment. DLProv is a suite of provenance services that supports the capture and
interoperability of provenance traces across different workflow stages, independent of the DL environment.
The services generate provenance graphs compliant with W3C PROV, which include the steps executed in the
DL workflow. DLProv has been evaluated in high-performance computing environments, using heterogeneous
use cases. The graphs can be queried by users of the production model regardless of access to the DL model
generation environments.
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1Provenance Data as a First-Class Citizen for Deep Learning Workflow Analyses
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2. Contexto e Problema
Um modelo de aprendizado profundo (AP) é projetado para analisar dados e gerar resultados preditivos. Sua
construção é um processo iterativo que envolve avaliação de métricas e ajustes sucessivos [9], e segue um
workflow com etapas como carregamento, preparação (incluindo divisão) dos dados, treinamento e avaliação
do modelo [10]. Após gerar modelos candidatos, seleciona-se o melhor com base em critérios relevantes ao
usuário, e este é implantado em produção [19]. A confiabilidade do modelo, necessária para promover uma
tomada de decisão de qualidade [43], depende da rastreabilidade das etapas envolvidas em sua geração, sendo
importante manter registros dos dados, transformações aplicadas ao longo do workflow e agentes envolvidos
[36, 19]. No entanto, a análise da literatura mostra que esse registro é incipiente, levando a análises ambíguas
e pouco confiáveis, pois dependem de integrações manuais de dados e do desenvolvimento de programas para
correlacionar etapas, algo muitas vezes inviável, especialmente em ambientes de produção. Dessa forma, a
análise integrada torna-se desafiadora quando os dados estão registrados de forma desconectada ou sem repre-
sentar relacionamentos passíveis de consultas [15, 21]. O principal problema das soluções existentes é que elas
mesclam os dados usados para apoiar o cientista de dados com aqueles que permitiriam a geração dos grafos
que promovem a rastreabilidade, o que compromete a representação dos relacionamentos entre etapas, introduz
ruído com dados irrelevantes à rastreabilidade e gera dependência da ferramenta de modelagem, muitas vezes
inacessível após a implantação. Até onde sabemos, não há soluções de rastreabilidade que abranjam todo o
ciclo de vida do modelo, o que compromete a análise integrada das etapas que levaram ao modelo escolhido
[24, 29], e, por consequência, afeta a transparência, auditabilidade e confiabilidade dos sistemas de AP. Por
exemplo, consultas como “Quais filtros foram aplicados na preparação dos dados de um modelo que atingiu
acurácia superior a x?” não são possíveis ou são sujeitas a interpretações subjetivas.

3. Objetivo
A proveniência é uma solução natural para oferecer rastreabilidade [24], pois, por meio da captura das pro-
veniências prospectiva e retrospectiva [16, 18], permite registrar tanto a estrutura das etapas necessárias e a
abstração do fluxo de dados, representando a sequência de tarefas encadeadas por transformações, conjuntos
de dados e suas dependências, quanto os dados sobre a execução do workflow. O objetivo desta tese é oferecer
a proveniência como cidadão de primeira classe no contexto de AP, promovendo uma abordagem modular,
estruturada e independente de frameworks de AP para capturar, gerenciar e analisar dados de proveniência do
ciclo de vida dos modelos de AP. Nossa hipótese é que Proveniência como Serviço é essencial para fornecer a
rastreabilidade necessária em workflows de AP. Para alcançar esse objetivo, esta tese apresenta a DLProv.

4. Contribuição
DLProv contribui com uma abordagem centrada em proveniência para prover rastreabilidade em workflows de
AP dando flexibilidade para o cientista de dados escolher as melhores ferramentas para cada etapa do workflow
sem prejuízo de obtenção do grafo de proveniência. Do ponto de vista científico, as contribuições incluem (i)
a proposição e implementação de uma arquitetura baseada no conceito de Proveniência como Serviço, capaz
de se integrar com diferentes ferramentas e workflows; (ii) a definição de um modelo de dados compatível
com o W3C PROV, assegurando a representação explícita de relacionamentos típicos de workflows de AP;
(iii) a geração de documentos de proveniência do modelo com o rastreio das etapas de seu workflow; e (iv) os
cenários reais de uso da DLProv, que evidenciaram a importância dos grafos de proveniência ao serem empa-
cotados junto ao modelo para uso de terceiros, promovendo confiança e interpretação em ambientes isolados
dos frameworks que geraram o modelo. A DLProv é disruptiva ao prover um grafo de proveniência autô-
nomo, validado pelo padrão como um serviço cidadão de primeira classe de baixa sobrecarga computacional.
DLProv viabiliza a geração desses grafos independentes seja ao ser invocada em scripts [28, 29, 40], ou aco-
plada em bibliotecas [14], ou ainda embarcada em frameworks [31, 33]. O código-fonte da DLProv está em:
https://github.com/dbpina/dlprov.

5. Avanço no Estado da Arte
A revisão da literatura mostra que as soluções existentes para rastreabilidade em AP concentram-se na gestão
de metadados em nível de entidade [48, 12, 17, 44, 22, 23, 26, 37], negligenciando a representação explícita
dos relacionamentos entre atividades, agentes, e entidades dos caminhos de derivação de dados. Além disso,
a ausência de padronização na representação de dados é uma limitação recorrente nas soluções existentes [34,
47, 38, 17, 44, 26, 27], que adotam representação ad-hoc. Essa limitação se estende a ferramentas amplamente
utilizadas, como Comet [1], MLflow [48, 12, 3], e Weights and Biases [8], que utilizam formatos proprietários,
dificultando a interoperabilidade entre diferentes ambientes e plataformas. Algumas dessas ferramentas se
restringem a linguagens específicas, como Python [44, 26], ou a frameworks de Aprendizado de Máquina (AM)
[35, 46, 45]. Mesmo soluções mais flexíveis, como [42, 27], exigem sua incorporação em todas as etapas do
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workflow, o que limita a integração com outras soluções de captura de proveniência. As soluções existentes não
fornecem um documento de proveniência independente que possa acompanhar o modelo após sua implantação.
Uma exceção parcial é o MLflow2PROV [37], que, no entanto, depende do MLflow. Essa limitação evidencia
uma lacuna ainda não resolvida na literatura, que gera uma dependência do ambiente original de execução,
dificultando análises posteriores, verificação e auditoria de modelos em produção. Esta tese se destaca, até onde
sabemos, por ser a única a propor uma abordagem de rastreabilidade que representa, de forma padronizada,
tanto os metadados (entidades) quanto os relacionamentos entre as atividades, agentes, e entidades do workflow
de AP, promovendo interoperabilidade, rastreabilidade e independência do ambiente de execução. Com isso,
avança o estado da arte ao viabilizar uma análise que abrange o ciclo de vida, independente da execução
integral do workflow de AP em um único arcabouço e contribui para a confiabilidade dos modelos implantados,
promovendo transparência com rastreabilidade [29, 30].

6. Resumo da Solução
DLProv [28, 29, 32] aborda as lacunas mencionadas, tratando a rastreabilidade como um cidadão de primeira
classe. A DLProv baseia-se em trabalhos anteriores, como a DfAnalyzer [41] e oferece serviços de proveni-
ência para capturar e exportar proveniências prospectiva e retrospectiva de forma independente de frameworks
de AP, através da instrumentação de scripts. DLProv adota a recomendação W3C PROV [25] para representar
dados de proveniência [2], promovendo a interoperabilidade entre sistemas. Os grafos de proveniência da DL-
Prov incluem nós de atividade, agente e entidade, que representam valores de dados, transformações realizadas
durante o workflow de AP, os atores responsáveis por essas transformações e as máquinas nas quais foram exe-
cutadas. A DLProv permite a geração e exportação de documentos de proveniência em formatos como JSON e
W3C PROV-N, utilizando ferramentas como ProvPy [5], que facilitam a manipulação e conversão desses docu-
mentos. Esses documentos podem ser ingeridos em bancos de dados de grafos por meio de ferramentas como o
prov2neo [7] e PROV Database Connector [6]. Por exemplo, a DLProv utiliza esse último para permitir que os
usuários salvem documentos PROV no Neo4j [4]. Embora se baseie em conceitos consolidados como o W3C
PROV e dialogue com serviços como a DfAnalyzer, esta tese propõe uma arquitetura de geração de grafos de
proveniência voltada especificamente para etapas dos workflows de AP executadas de modo independente e
em ambientes reais, rompendo com o paradigma de proveniência acoplada à plataforma de execução e abrindo
caminho para a portabilidade e longevidade da rastreabilidade dos modelos.

7. Avaliação
A DLProv foi avaliada quanto a (a) integração com outras soluções de proveniência; (b) independência de fra-
mework; (c) independência de ambientes de computação; (d) poder de análise; e (e) exportação de documentos
de proveniência. Para avaliar a arquitetura de serviços da DLProv, realizamos sua invocação explicitamente
em scripts instrumentados, via callbacks e encapsulado no Keras. Essas formas de uso da DLProv ressaltam
a adequação e importância de serviços de proveniência como cidadão de primeira classe. Para validar a ras-
treabilidade, compilamos consultas da literatura, do Data Science Stack Exchange e adaptadas do Provenance
Challenges [28, 29], uma vez que atualmente não há benchmark para esse fim. Os resultados mostram que
a DLProv é capaz de capturar e integrar dados de proveniência ao longo do workflow, fornecendo uma visão
conectada das etapas, artefatos e atores envolvidos no modelo de AP. Para avaliar (a), conduzimos experi-
mentos que integraram a proveniência do pré-processamento, capturada pela DPDS [11] com a proveniência
gerada pela DLProv durante o treinamento de modelos de AP [28]. Utilizamos dados públicos, como Fra-
mingham Heart Disease, Adult Census Income e Credit Card Fraud Detection. Para avaliar (b) e (c), reali-
zamos experimentos com diferentes frameworks de AP, incluindo TensorFlow, Keras, PyTorch e DeepXDE
[30, 13, 14, 33, 39, 40, 20, 31]. Esses experimentos mostraram sua flexibilidade sendo executados em ambien-
tes computacionais heterogêneos, como computadores pessoais, máquinas com múltiplas GPUs, e ambientes
de alto desempenho, como Lobo Carneiro, Grid5000, e Santos Dumont, além de plataformas como Google
Colab. Para comparar com o estado da prática e avaliar (d), comparamos a rastreabilidade da DLProv com
os recursos do Weights and Biases, MLflow e MLflow2PROV [29]. Esses experimentos mostraram o poder
de análise das consultas com a DLProv e as limitações significativas das demais soluções. Para avaliar (e),
realizamos experimentos simulando a implantação um modelo AP e geramos um grafo de proveniência desse
modelo, exportando-o em formato PROV-N, ingerido no Neo4j [30]. Mostramos que, mesmo após a implan-
tação, é possível reconstruir e analisar seu histórico com base nesses documentos, o que confere autonomia e
auditabilidade ao processo. Além disso, nos experimentos realizados, a sobrecarga introduzida pela captura de
proveniência com a DLProv foi de, no máximo, 4%. O impacto prático foi verificado nos diversos estudos de
caso, incluindo os workflows reais. No caso dos modelos de AP guiados pela Física para imageamento sísmico,
foi possível acessar e consultar os documentos de proveniência completos mesmo após perder o acesso à in-
fraestrutura original de execução, permitindo a análise detalhada de quais dados e parâmetros foram utilizados
na execução para identificar possíveis divergências em produção.
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