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Resumo. A ado¢do de modelos de Aprendizado Profundo (AP), na tomada de decisdes requer confianca e
interpretacdo por parte de usudrios do modelo. A proveniéncia surge como uma solugo natural para promover
rastros do workflow de AP, passiveis de andlise, englobando desde a preparagdo de dados ao modelo de AP.
Apesar de diversas abordagens alegarem prover proveniéncia, a principal limitagcdo estd na auséncia de meca-
nismos que possibilitem a analise do caminho de derivacdo dos dados apds a geragdo do resultado do workflow
de AP. As solugdes existentes nao oferecem a rastreabilidade do workflow, adotam formatos proprietdrios para
a representacdo dos metadados e ndo geram documentos de proveniéncia que acompanhem os modelos no
ambiente de producdo. A DLProv é um conjunto de servicos de proveniéncia que resolve questdes de captura
e interoperabilidade de rastros de proveniéncia de diferentes etapas do workflow, independente do ambiente de
AP. Os servigcos geram grafos de proveniéncia aderentes ao W3C PROV, que contempla as etapas executadas
no workflow de AP. A DLProv foi avaliada em ambientes de execucdo de alto desempenho, explorando casos
de uso heterogéneos. Os grafos podem ser consultados pelos usudrios do modelo em producdo independente
do acesso aos ambientes de geracdo do modelo.

Abstract. The adoption of Deep Learning (DL) models in decision-making requires trust and interpretation
for the users of the model. Provenance emerges as a natural solution for generating traces of the DL workflow,
which can be analyzed and span from data preparation to the DL model. Although several approaches claim
to provide provenance, the main limitation is the lack of mechanisms that enable analysis of the data deriva-
tion path after the DL workflow results are generated. Existing solutions lack DL workflow traceability, adopt
proprietary formats for representing metadata, and do not generate provenance documents that accompany the
models in the production environment. DLProv is a suite of provenance services that supports the capture and
interoperability of provenance traces across different workflow stages, independent of the DL environment.
The services generate provenance graphs compliant with W3C PROV, which include the steps executed in the
DL workflow. DLProv has been evaluated in high-performance computing environments, using heterogeneous
use cases. The graphs can be queried by users of the production model regardless of access to the DL model
generation environments.
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Highlights:
(1) Bases de proveniéncia para andlise de workflows de Aprendizado Profundo (AP);
(2) Coleta de proveniéncia de workflows de AP com baixa sobrecarga computacional;
(3) Servigos de proveniéncia invocados por scripts, bibliotecas de AP ou embarcados;
(4) Grafos de proveniéncia validados em conformidade com W3C PROV;
(5) Exporta o grafo de proveniéncia de um modelo de AP em multiplos formatos.

! Provenance Data as a First-Class Citizen for Deep Learning Workflow Analyses
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Um modelo de aprendizado profundo (AP) é projetado para analisar dados e gerar resultados preditivos. Sua
construgcdo é um processo iterativo que envolve avaliacdo de métricas e ajustes sucessivos [9], e segue um
workflow com etapas como carregamento, preparagao (incluindo divisdo) dos dados, treinamento e avaliacio
do modelo [10]. Apds gerar modelos candidatos, seleciona-se o melhor com base em critérios relevantes ao
usudrio, e este ¢ implantado em produgdo [19]. A confiabilidade do modelo, necessdria para promover uma
tomada de decisdo de qualidade [43], depende da rastreabilidade das etapas envolvidas em sua geracio, sendo
importante manter registros dos dados, transformagdes aplicadas ao longo do workflow e agentes envolvidos
[36, 19]. No entanto, a andlise da literatura mostra que esse registro € incipiente, levando a andlises ambiguas
e pouco confidveis, pois dependem de integracdes manuais de dados e do desenvolvimento de programas para
correlacionar etapas, algo muitas vezes invidvel, especialmente em ambientes de produ¢do. Dessa forma, a
analise integrada torna-se desafiadora quando os dados estdo registrados de forma desconectada ou sem repre-
sentar relacionamentos passiveis de consultas [15, 21]. O principal problema das solucdes existentes € que elas
mesclam os dados usados para apoiar o cientista de dados com aqueles que permitiriam a gera¢do dos grafos
que promovem a rastreabilidade, o que compromete a representacdo dos relacionamentos entre etapas, introduz
ruido com dados irrelevantes a rastreabilidade e gera dependéncia da ferramenta de modelagem, muitas vezes
inacessivel apds a implantagdo. Até onde sabemos, ndo ha solugdes de rastreabilidade que abranjam todo o
ciclo de vida do modelo, o que compromete a anélise integrada das etapas que levaram ao modelo escolhido
[24, 29], e, por consequéncia, afeta a transparéncia, auditabilidade e confiabilidade dos sistemas de AP. Por
exemplo, consultas como “Quais filtros foram aplicados na preparacdo dos dados de um modelo que atingiu
acurdcia superior a x?” no sdo possiveis ou sio sujeitas a interpretacdes subjetivas.

3. Objetivo

A proveniéncia € uma solucdo natural para oferecer rastreabilidade [24], pois, por meio da captura das pro-
veniéncias prospectiva e retrospectiva [16, 18], permite registrar tanto a estrutura das etapas necessdrias e a
abstracdo do fluxo de dados, representando a sequéncia de tarefas encadeadas por transformacdes, conjuntos
de dados e suas dependéncias, quanto os dados sobre a execuc¢do do workflow. O objetivo desta tese é oferecer
a proveniéncia como cidaddo de primeira classe no contexto de AP, promovendo uma abordagem modular,
estruturada e independente de frameworks de AP para capturar, gerenciar e analisar dados de proveniéncia do
ciclo de vida dos modelos de AP. Nossa hipétese é que Proveniéncia como Servigco € essencial para fornecer a
rastreabilidade necessdria em workflows de AP. Para alcancar esse objetivo, esta tese apresenta a DLProv.

4. Contribuicao

DLProv contribui com uma abordagem centrada em proveniéncia para prover rastreabilidade em workflows de
AP dando flexibilidade para o cientista de dados escolher as melhores ferramentas para cada etapa do workflow
sem prejuizo de obtencdo do grafo de proveniéncia. Do ponto de vista cientifico, as contribui¢des incluem (i)
a proposicao e implementacdo de uma arquitetura baseada no conceito de Proveniéncia como Servigo, capaz
de se integrar com diferentes ferramentas e workflows; (ii) a definicdo de um modelo de dados compativel
com o W3C PROV, assegurando a representacdo explicita de relacionamentos tipicos de workflows de AP;
(iii) a geracdo de documentos de proveniéncia do modelo com o rastreio das etapas de seu workflow; e (iv) os
cendrios reais de uso da DLProv, que evidenciaram a importincia dos grafos de proveniéncia ao serem empa-
cotados junto ao modelo para uso de terceiros, promovendo confianca e interpretacdo em ambientes isolados
dos frameworks que geraram o modelo. A DLProv € disruptiva ao prover um grafo de proveniéncia autd-
nomo, validado pelo padrdo como um servigo cidaddo de primeira classe de baixa sobrecarga computacional.
DLProv viabiliza a geracao desses grafos independentes seja ao ser invocada em scripts [28, 29, 40], ou aco-
plada em bibliotecas [14], ou ainda embarcada em frameworks [31, 33]. O cédigo-fonte da DLProv estd em:
https://github.com/dbpina/dlprov.

5. Avanco no Estado da Arte

A revisdo da literatura mostra que as solucdes existentes para rastreabilidade em AP concentram-se na gestao
de metadados em nivel de entidade [48, 12, 17, 44, 22, 23, 26, 37], negligenciando a representacdo explicita
dos relacionamentos entre atividades, agentes, e entidades dos caminhos de derivacdo de dados. Além disso,
a auséncia de padronizacio na representagdo de dados é uma limitagao recorrente nas solugdes existentes [34,
47,38, 17, 44, 26, 27], que adotam representacio ad-hoc. Essa limitagado se estende a ferramentas amplamente
utilizadas, como Comet [1], MLflow [48, 12, 3], e Weights and Biases [8], que utilizam formatos proprietarios,
dificultando a interoperabilidade entre diferentes ambientes e plataformas. Algumas dessas ferramentas se
restringem a linguagens especificas, como Python [44, 26], ou a frameworks de Aprendizado de Maquina (AM)
[35, 46, 45]. Mesmo solugdes mais flexiveis, como [42, 27], exigem sua incorporagdo em todas as etapas do
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fornecem um documento de proveniéncia 1ndependente que possa acompanhar 0 modelo apods sua implantacgao.
Uma excecdo parcial ¢ o MLflow2PROV [37], que, no entanto, depende do MLflow. Essa limitacao evidencia
uma lacuna ainda ndo resolvida na literatura, que gera uma dependéncia do ambiente original de execugdo,
dificultando andlises posteriores, verificacdo e auditoria de modelos em producdo. Esta tese se destaca, até onde
sabemos, por ser a tnica a propor uma abordagem de rastreabilidade que representa, de forma padronizada,
tanto os metadados (entidades) quanto os relacionamentos entre as atividades, agentes, e entidades do workflow
de AP, promovendo interoperabilidade, rastreabilidade e independéncia do ambiente de execucdo. Com isso,
avanga o estado da arte ao viabilizar uma andlise que abrange o ciclo de vida, independente da execugdo
integral do workflow de AP em um tinico arcabouco e contribui para a confiabilidade dos modelos implantados,
promovendo transparéncia com rastreabilidade [29, 30].

6. Resumo da Solucao

DLProv [28, 29, 32] aborda as lacunas mencionadas, tratando a rastreabilidade como um cidadao de primeira
classe. A DLProv baseia-se em trabalhos anteriores, como a DfAnalyzer [41] e oferece servigos de proveni-
&ncia para capturar e exportar proveniéncias prospectiva e retrospectiva de forma independente de frameworks
de AP, através da instrumentacao de scripts. DLProv adota a recomendagdo W3C PROV [25] para representar
dados de proveniéncia [2], promovendo a interoperabilidade entre sistemas. Os grafos de proveniéncia da DL-
Prov incluem nds de atividade, agente e entidade, que representam valores de dados, transformagdes realizadas
durante o workflow de AP, os atores responsaveis por essas transformagdes e as maquinas nas quais foram exe-
cutadas. A DLProv permite a geragao e exportagdo de documentos de proveni€ncia em formatos como JSON e
W3C PROV-N, utilizando ferramentas como ProvPy [5], que facilitam a manipulacio e conversdo desses docu-
mentos. Esses documentos podem ser ingeridos em bancos de dados de grafos por meio de ferramentas como o
prov2neo [7] e PROV Database Connector [6]. Por exemplo, a DLProv utiliza esse tltimo para permitir que os
usudrios salvem documentos PROV no Neo4j [4]. Embora se baseie em conceitos consolidados como o W3C
PROV e dialogue com servicos como a DfAnalyzer, esta tese propde uma arquitetura de geracao de grafos de
proveniéncia voltada especificamente para etapas dos workflows de AP executadas de modo independente e
em ambientes reais, rompendo com o paradigma de proveniéncia acoplada a plataforma de execugdo e abrindo
caminho para a portabilidade e longevidade da rastreabilidade dos modelos.

7. Avaliacao

A DLProv foi avaliada quanto a (a) integragdo com outras solugdes de proveniéncia; (b) independéncia de fra-
mework; (c) independéncia de ambientes de computacdo; (d) poder de andlise; e (e) exportacdo de documentos
de proveniéncia. Para avaliar a arquitetura de servigos da DLProv, realizamos sua invocagdo explicitamente
em scripts instrumentados, via callbacks e encapsulado no Keras. Essas formas de uso da DLProv ressaltam
a adequacdo e importancia de servicos de proveniéncia como cidaddo de primeira classe. Para validar a ras-
treabilidade, compilamos consultas da literatura, do Data Science Stack Exchange e adaptadas do Provenance
Challenges [28, 29], uma vez que atualmente ndo ha benchmark para esse fim. Os resultados mostram que
a DLProv é capaz de capturar e integrar dados de proveniéncia ao longo do workflow, fornecendo uma visao
conectada das etapas, artefatos e atores envolvidos no modelo de AP. Para avaliar (a), conduzimos experi-
mentos que integraram a proveniéncia do pré-processamento, capturada pela DPDS [11] com a proveniéncia
gerada pela DLProv durante o treinamento de modelos de AP [28]. Utilizamos dados publicos, como Fra-
mingham Heart Disease, Adult Census Income e Credit Card Fraud Detection. Para avaliar (b) e (c), reali-
zamos experimentos com diferentes frameworks de AP, incluindo TensorFlow, Keras, PyTorch e DeepXDE
[30, 13, 14, 33, 39, 40, 20, 31]. Esses experimentos mostraram sua flexibilidade sendo executados em ambien-
tes computacionais heterogéneos, como computadores pessoais, maquinas com multiplas GPUs, e ambientes
de alto desempenho, como Lobo Carneiro, Grid5000, e Santos Dumont, além de plataformas como Google
Colab. Para comparar com o estado da pratica e avaliar (d), comparamos a rastreabilidade da DLProv com
os recursos do Weights and Biases, MLflow e MLflow2PROV [29]. Esses experimentos mostraram o poder
de andlise das consultas com a DLProv e as limitagdes significativas das demais solucdes. Para avaliar (e),
realizamos experimentos simulando a implantacdo um modelo AP e geramos um grafo de proveniéncia desse
modelo, exportando-o em formato PROV-N, ingerido no Neo4j [30]. Mostramos que, mesmo apds a implan-
tacdo, € possivel reconstruir e analisar seu histérico com base nesses documentos, o que confere autonomia e
auditabilidade ao processo. Além disso, nos experimentos realizados, a sobrecarga introduzida pela captura de
proveniéncia com a DLProv foi de, no méximo, 4%. O impacto pratico foi verificado nos diversos estudos de
caso, incluindo os workflows reais. No caso dos modelos de AP guiados pela Fisica para imageamento sismico,
foi possivel acessar e consultar os documentos de proveniéncia completos mesmo apds perder o acesso 2 in-
fraestrutura original de execucdo, permitindo a andlise detalhada de quais dados e pardmetros foram utilizados
na execuc¢do para identificar possiveis divergéncias em producio.
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