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Abstract. Although air quality data is often limited by the cost and complexity
of sensor networks, open geospatial data provides detailed information on the
built environment, which can be used to estimate concentrations of pollutants.
Using point-based sensor data and urban features from a pilot city, the
research presented herein has trained and validated multiple supervised
regression models finding that features such as tree density, building height,
Street connectivity, and infrastructure coverage can effectively predict spatial
variation in Particulate Matter size 2.5um, even in areas without direct
measurements. This scalable and data-driven solution supports environmental
monitoring and sustainable planning in cities worldwide with minimal reliance
on primary sensor data.

1. Introduction

Air quality plays a fundamental role in public health and urban sustainability. Among
the many pollutants that affect urban populations, fine particulate matter—particularly
PM2.5 (Particulate Matter of size 2.5um)—stands out due to its ability to penetrate deep
into the respiratory system and its strong association with cardiovascular and respiratory
diseases, as well as cancer (Dapper et al., 2016; WHO, 2021; Liang et al., 2023).
Despite growing recognition of its health impacts, access to high-resolution, localized
air quality data remains a significant challenge, especially in cities of the Global South.
The reliance on sparse official monitoring stations often limits the ability to fully capture
environmental inequalities and localized pollution patterns.

In response to these limitations, recent advances in urban data availability and
spatial analytics have opened new pathways for modeling air quality using secondary
data sources. The proliferation of georeferenced information about the built
environment—such as land use, vegetation cover, street networks, and building
characteristics—offers an alternative means to estimate pollution levels with greater
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spatial granularity. These data, when analyzed through data science and machine
learning techniques, enable predictive modeling even in the absence of dense sensor
networks (Liu et al., 2020; Tella & Balogun, 2022).

This paper presents a methodology to model PM2.5 concentrations using urban
and environmental data from Fortaleza, the fourth largest city in Brazil. While the
model is trained and validated in this specific context, the framework is scalable and
adaptable to other cities. Our goal is twofold: to demonstrate how urban form and
infrastructure contribute to local air quality outcomes, and present a data-driven
approach in promoting environmentally informed urban planning.

2. Literature Review

Understanding the urban environment presents several challenges, particularly due to
the presence of multiple interdependent and often uncontrollable variables. To support
interventions and investments in pollution mitigation actions, the development of
predictive models and the simulation of future scenarios becomes essential.

Historical data on air pollutant emissions have been the main source for
analyzing this phenomenon (Xie et al., 2022; Ji et al., 2022). However, most cities do
not have continuous pollution monitoring networks and data collection stations can be
expensive to purchase and maintain (Li et al., 2023). This limitation makes it difficult to
assess pollution patterns at a local scale, which reinforces the need for predictive models
based on urban and environmental data that can be replicated in other regions.

Computational modeling is increasingly used in environmental research to
simulate air pollution in areas with limited data (Lou et al., 2023). Techniques such as
regression models, random forests, neural networks, and deep learning help identify
patterns and predict pollutant concentrations. Many models integrate machine learning
with spatial data to increase accuracy and interpretability, offering a scalable solution for
assessing urban air quality (Tella & Balogun, 2022). Air quality prediction can be
improved by incorporating additional variables, such as meteorological data (Faraji et
al., 2022), traffic volume estimates, microclimate variations, and urban thermal comfort
data (Yang et al., 2020). Similarly, models have been studied for large-scale pollution
forecasting using point data collected using low-cost sensors and georeferenced
information (Liu et al., 2020; Gurjdo et al., 2024).

Human activities are widely recognized as the main drivers of change in urban
environments, especially due to the rapid expansion of built-up areas, the increase in
impervious surfaces, and the reduction of green spaces. In this context, urban planning
and land use optimization are fundamental for analyzing pollution in cities (Che et al.,
2023). The relationship between building height and street width (including sidewalks)
defines the so-called urban canyons, which are characterized as confined spaces between
buildings with limited ventilation, high traffic intensity, and often elevated pollutant
concentrations, suggesting an increase in surface temperature (Vardoulakis et al., 2003;
Seaton et al., 2022). Gurjao et al. (2024) analyzed multiple urban factors and found that
the height of buildings and the presence of urban canyons stood out as significant
variables in predictive models of particulate matter concentration, especially when
integrated with meteorological variables. Studies also indicate higher pollutant
concentrations in areas near high-traffic roads or in regions with dense road networks
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that accommodate heavy vehicles, particularly where adjacent buildings hinder pollutant
dispersion (Silva & Mendes, 2006; Che et al., 2023).

Vegetation can also play an important role in pollutant mitigation and thermal
regulation in urban environments. Wooded environments help absorb solar radiation,
tree canopies provide shade and contribute to reducing surface temperatures through
evapotranspiration (Stache et al., 2022). In addition, urban vegetation acts as a natural
filter, capturing pollutant particles, releasing oxygen, increasing humidity and reducing
air temperature (Zheng et al., 2021). These mechanisms also interact with the built
environment, influencing microclimatic conditions and pollutant dispersion dynamics.

The literature reveals that several variables act differently on the dispersion and
concentration of pollutants, contributing to different effects on air quality. These
findings demonstrate the importance of connecting air quality with built environment
indicators, using data science tools such as machine learning, remote sensing and
geospatial analysis, as well as direct field measurements as baseline data for prediction
(Sakti et al., 2023).

Therefore, this study focuses on the construction of predictive models on the
concentration of particulate matter. The emphasis is on urban variables given their
availability in public databases in the investigated area, in addition to the possibility of
being collected and analyzed with spatial scope in other regions.

3. Methodology

This study was conducted in Fortaleza, Brazil, with a focus on two urban
neighborhoods: Meireles and Aldeota. These areas were selected due to their high
population density, urban complexity, and the availability of primary air quality data,
which enabled testing and training of the proposed air quality model (Gurjao, 2024).

3.1. Data Collection and Preparation

Primary pollution data were collected using a portable sensor capable of detecting
concentrations of PM2.5 (see sensor specifications in Furtado et al., 2024). The sensor
was installed on tripods approximately 1.8 m above ground level, near major roads and
canyon-shaped street sections, where the study area ensured the safety of the team and
equipment (Figure 1). Measurements were conducted at 11 georeferenced locations
within the study area between August and September 2023, from Tuesday to Thursday,
with data recorded every minute over continuous 4-hour sampling windows.

The procedures performed are described in Gurjao (2024) and Gurjao et al.
(2024), where details on sensor calibration, measurement protocol, and point selection
are reported in full. Briefly, missing values were imputed by linear interpolation, and all
series were aggregated into one-minute averages to match the resolution used for model
training.
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Figure 1. Structure and positioning of sensors in outdoor city locations.

Environmental and infrastructure data about the built environment were obtained from
the Fortaleza Municipal Secretary of Finances (SEFIN) via the city's official spatial data
infrastructure portal (SEFIN, 2016). The datasets consist of: (i) Point data on individual
tree locations; (i1) Polygon data of building footprints with associated attributes; (ii1)
Line data representing the street network, including infrastructure indicators. In this
way, the variables considered in the models were: 2.5 Particulate Matter; Buildings
Count; Street Connectivity; Average Building Area; Average Canyon Width; Average
Building Height; Total Built Area; Sewage Coverage Rate; Drainage Coverage Rate;
Street Lighting Rate; Pavement Coverage Rate; Gutter Coverage Rate; Tree Count;
Water Coverage Rate.

3.2. Feature Engineering

To estimate PM2.5 concentrations across the urban area, we developed a supervised
regression modeling pipeline based on point-level sensor data enriched with contextual
urban features. The original air quality measurements were collected at discrete
geographic points, each corresponding to a sensor location. To incorporate surrounding
urban conditions, these points were spatially joined to a uniform hexagonal grid with
200-meter resolution. This allowed each observation to inherit built environment
characteristics from the hexagon it fell within, such as tree density, street connectivity,
building height, built-up area, infrastructure coverage, and the canyon effect (defined as
the height-to-width ratio of surrounding structures).

The predictor variables used in the regression models capture key aspects of the
built environment. Vegetation, represented by tree density, can act to mitigate pollutants
and regulate the microclimate (Zheng et al., 2021; Stache et al., 2022), while building
height and the urban canyon effect can influence pollutant accumulation and ventilation
restrictions in urban areas (Vardoulakis et al., 2003; Seaton et al., 2022). Traffic-related
effects were considered through road connectivity, given the established relationship
between dense road networks and higher pollutant concentrations (Silva & Mendes,
2006; Che et al., 2023). Finally, infrastructure coverage was incorporated to reflect
broader urbanization processes that shape air quality dynamics (Che et al., 2023; Gurjao
et al., 2024).

Figure 2 illustrates the spatial data formats used in this study. Red points mark
sensor locations, while the base map includes building footprints (gray), street network
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(yellow), neighborhood boundaries (red lines), and the hexagonal aggregation grid (light
blue).
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Figure 2. Study area in Fortaleza, Brazil, showing the neighborhoods where
PM2.5 concentrations were measured.

For illustration purposes, Figure 3 details some of the additional urban features
aggregated in the hexagonal spatial grid:

e Street Connectivity: computed as both the number of unique street intersections
(3a) and the total number of street segments within each hexagon (3b).

e Tree Density: calculated as the number of geolocated trees falling within each
hexagon (3c).

e Building characteristics: average height of buildings per hexagon (3d), average
building area and urban canyon effect; derived per building as the
height-to-width ratio to neighboring structures; values are averaged across all
buildings in each hexagon.

e Urban Infrastructure: represented by the proportion of buildings served by
pavement, water, sewage, drainage, guttering, and public lighting infrastructure.
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Figure 3. Spatial datasets and aggregation framework used in the analysis.

3.3. Predictive Modeling

The enriched dataset composed of point-level PM2.5 values and hexagon-derived urban
indicators was used to train and compare multiple machine learning models. To evaluate
the predictive capacity of urban features on fine particulate matter concentration
(PM2.5), five regression models were tested: Linear Regression, Random Forest, Extra
Trees, AdaBoost, and Gradient Boosting. All models were evaluated using five-fold
cross-validation on the training dataset, and their performance was compared using
three metrics: the coefficient of determination (R?), Root Mean Squared Error (RMSE),
and Mean Absolute Error (MAE).

4. Model Results

Table 1 summarizes the performance results of the investigated models. The three
tree-based ensemble models (Gradient Boosting, Extra Trees, and Random Forest)
presented the highest performance, each achieving an R? of approximately 0.805 and
RMSE values around 2.25. AdaBoost performed less effectively, with the lowest R?
(0.7567) and the highest RMSE and MAE, indicating its limitations in this specific
context.
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Table 1. Variables to be considered on the evaluation of interaction techniques

Model R? RMSE MAE
Gradient Boosting 0.805372 2.2471 1.6143
Extra Trees 0.805371 2.2471 1.6142
RandomForest 0.805357 2.2472 1.6138
Linear Regression 0.801671 2.2683 1.6474
AdaBoost 0.756733 2.5122 1.9647

Among them, Gradient Boosting yielded the best overall performance, with R? =
0.8054, RMSE = 2.25, and MAE = 1.61, and was selected as the final model for spatial
prediction across the study area. These findings support the value of ensemble learning
methods to model air pollution in urban settings based solely on built environment
indicators.

Building Count

Street Connectivity
Average Building Area
Average Canyon Width
Average Building Height
Total Built Area

Sewage Coverage Rate
Drainage Coverage Rate
Street Lighting Rate
Pavement Coverage Rate
Gutter Coverage Rate
Tree Count

Water Coverage Rate
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Figure 4. Importance of urban features employed in the Gradient Boosting
Regressor Model.

The feature importance plot (Figure 4) reveals that Building Count and Street
Connectivity are the most influential predictors in the Gradient Boosting model for
estimating PM2.5 concentrations, together accounting for the majority of model
relevance. This suggests that denser and more connected urban areas tend to exhibit
stronger associations with air pollution levels, likely due to increased built surfaces and
traffic-related emissions. Average Building Area, Average Canyon Width, and Average
Building Height also contribute meaningfully, indicating that morphological
characteristics of the built environment, such as enclosed urban canyons or larger
structures, may affect air flow and pollutant dispersion. In contrast, variables related to
infrastructure coverage (e.g., drainage, lighting, pavement, water) and Tree Count show
very low importance.
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4.1. Spatial Application of the Air Quality Model

After validating model performance, the best-performing model (Gradient Boosting
Regressor) was applied to all hexagons in the study area, including those without sensor
coverage (Figure 5). This final prediction step enabled spatial extrapolation of PM2.5
concentrations based solely on the urban fabric. By linking sensor data to contextual
features through the hexagonal framework, the method combines the granularity of
point measurements with the scalability of spatial modeling over the full urban area.

Measured PM2.5 Predicted PM2.5

A §

[ Low (Q1) [0 Moderate (Q2) I High (Q3) M Very High (Q4) [ No data

Figure 5. Comparison of measured and predicted PM2.5 concentrations across
hexagons.

The 3D visualization (Figure 6) presents a detailed perspective of how predicted
PM2.5 concentrations vary across the urban fabric. Each building is assigned a color
based on the predicted air quality value of the hexagon it falls within, allowing a
block-level interpretation of environmental quality. The classification follows the
quantile-based ranges depicted in the hexagon-level prediction map (Figure 5), which
divides the entire distribution of predicted values into four equal groups (Q1-Q4).
Buildings located in hexagons categorized as "Very High" (Q4) are rendered in deep
red, signaling higher exposure to air pollution.

Low (Q1) Moderate (Q2) High (Q3) Very High (Q4)

Figure 6. 3D building visualization colored by predicted PM2.5 concentration
levels and the location of primary data collection with the sensor.

739



Companion Proceedings of the 40t" Brazilian Symposium on Data Bases October 2025 — Fortaleza, CE, Brazil

This approach bridges the aggregated spatial prediction and the physical form of
the city, highlighting how built density and configuration relate to local air quality. It
enhances interpretation by grounding pollution estimates in recognizable urban
morphology.

5. Conclusions

The primary goal of this research was to investigate how features of the built
environment such as density, connectivity, and morphology are structurally associated
with pollution levels. Data analysis showed that urban form plays a critical role in
environmental outcomes, calling for an integrated planning approach in which
sustainable urban development becomes a key vector for improving air quality and,
consequently, public health and well-being.

It is important to note that the primary air quality data used in this study
represent a static snapshot in time, capturing PM2.5 concentrations during a specific
measurement period. While air pollution levels are known to fluctuate due to temporal
factors such as weather conditions, traffic cycles, and seasonal variations, this dynamic
aspect was not captured in the current analysis. Future model improvements could
benefit from integrating time series data to enhance the temporal resolution of
predictions.

Additionally, the analysis of feature importance revealed that Average Building
Area, Average Canyon Width, and Average Building Height all contributed modestly to
the model, and are likely to be strongly correlated. Similarly, variables related to
infrastructure, such as drainage, lighting, pavement, and water coverage, showed
individually low importance but may collectively represent an underlying dimension of
urban service provision. To reduce redundancy and improve model parsimony, future
work could explore dimensionality reduction techniques such as Principal Component
Analysis to group correlated features into composite indicators.
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