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Abstract. Although air quality data is often limited by the cost and complexity 
of sensor networks, open geospatial data provides detailed information on the 
built environment, which can be used to estimate concentrations of pollutants. 
Using point-based sensor data and urban features from a pilot city, the 
research presented herein has trained and validated multiple supervised 
regression models finding that features such as tree density, building height, 
street connectivity, and infrastructure coverage can effectively predict spatial 
variation in Particulate Matter size 2.5µm, even in areas without direct 
measurements. This scalable and data-driven solution supports environmental 
monitoring and sustainable planning in cities worldwide with minimal reliance 
on primary sensor data. 

1. Introduction 

Air quality plays a fundamental role in public health and urban sustainability. Among 
the many pollutants that affect urban populations, fine particulate matter—particularly 
PM2.5 (Particulate Matter of size 2.5µm)—stands out due to its ability to penetrate deep 
into the respiratory system and its strong association with cardiovascular and respiratory 
diseases, as well as cancer (Dapper et al., 2016; WHO, 2021; Liang et al., 2023). 
Despite growing recognition of its health impacts, access to high-resolution, localized 
air quality data remains a significant challenge, especially in cities of the Global South. 
The reliance on sparse official monitoring stations often limits the ability to fully capture 
environmental inequalities and localized pollution patterns. 

​ In response to these limitations, recent advances in urban data availability and 
spatial analytics have opened new pathways for modeling air quality using secondary 
data sources. The proliferation of georeferenced information about the built 
environment—such as land use, vegetation cover, street networks, and building 
characteristics—offers an alternative means to estimate pollution levels with greater 
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spatial granularity. These data, when analyzed through data science and machine 
learning techniques, enable predictive modeling even in the absence of dense sensor 
networks (Liu et al., 2020; Tella & Balogun, 2022). 

​ This paper presents a methodology to model PM2.5 concentrations using urban 
and environmental data from Fortaleza, the fourth largest city in Brazil. While the 
model is trained and validated in this specific context, the framework is scalable and 
adaptable to other cities. Our goal is twofold: to demonstrate how urban form and 
infrastructure contribute to local air quality outcomes, and present a data-driven 
approach in promoting environmentally informed urban planning. 

2. Literature Review 

Understanding the urban environment presents several challenges, particularly due to 
the presence of multiple interdependent and often uncontrollable variables. To support 
interventions and investments in pollution mitigation actions, the development of 
predictive models and the simulation of future scenarios becomes essential. 

Historical data on air pollutant emissions have been the main source for 
analyzing this phenomenon (Xie et al., 2022; Ji et al., 2022). However, most cities do 
not have continuous pollution monitoring networks and data collection stations can be 
expensive to purchase and maintain (Li et al., 2023). This limitation makes it difficult to 
assess pollution patterns at a local scale, which reinforces the need for predictive models 
based on urban and environmental data that can be replicated in other regions. 

Computational modeling is increasingly used in environmental research to 
simulate air pollution in areas with limited data (Lou et al., 2023). Techniques such as 
regression models, random forests, neural networks, and deep learning help identify 
patterns and predict pollutant concentrations. Many models integrate machine learning 
with spatial data to increase accuracy and interpretability, offering a scalable solution for 
assessing urban air quality (Tella & Balogun, 2022). Air quality prediction can be 
improved by incorporating additional variables, such as meteorological data (Faraji et 
al., 2022), traffic volume estimates, microclimate variations, and urban thermal comfort 
data (Yang et al., 2020). Similarly, models have been studied for large-scale pollution 
forecasting using point data collected using low-cost sensors and georeferenced 
information (Liu et al., 2020; Gurjão et al., 2024). 

Human activities are widely recognized as the main drivers of change in urban 
environments, especially due to the rapid expansion of built-up areas, the increase in 
impervious surfaces, and the reduction of green spaces. In this context, urban planning 
and land use optimization are fundamental for analyzing pollution in cities (Che et al., 
2023). The relationship between building height and street width (including sidewalks) 
defines the so-called urban canyons, which are characterized as confined spaces between 
buildings with limited ventilation, high traffic intensity, and often elevated pollutant 
concentrations, suggesting an increase in surface temperature (Vardoulakis et al., 2003; 
Seaton et al., 2022). Gurjão et al. (2024) analyzed multiple urban factors and found that 
the height of buildings and the presence of urban canyons stood out as significant 
variables in predictive models of particulate matter concentration, especially when 
integrated with meteorological variables. Studies also indicate higher pollutant 
concentrations in areas near high-traffic roads or in regions with dense road networks 
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that accommodate heavy vehicles, particularly where adjacent buildings hinder pollutant 
dispersion (Silva & Mendes, 2006; Che et al., 2023). 

Vegetation can also play an important role in pollutant mitigation and thermal 
regulation in urban environments. Wooded environments help absorb solar radiation, 
tree canopies provide shade and contribute to reducing surface temperatures through 
evapotranspiration (Stache et al., 2022). In addition, urban vegetation acts as a natural 
filter, capturing pollutant particles, releasing oxygen, increasing humidity and reducing 
air temperature (Zheng et al., 2021). These mechanisms also interact with the built 
environment, influencing microclimatic conditions and pollutant dispersion dynamics. 

The literature reveals that several variables act differently on the dispersion and 
concentration of pollutants, contributing to different effects on air quality. These 
findings demonstrate the importance of connecting air quality with built environment 
indicators, using data science tools such as machine learning, remote sensing and 
geospatial analysis, as well as direct field measurements as baseline data for prediction 
(Sakti et al., 2023). 

Therefore, this study focuses on the construction of predictive models on the 
concentration of particulate matter. The emphasis is on urban variables given their 
availability in public databases in the investigated area, in addition to the possibility of 
being collected and analyzed with spatial scope in other regions. 

3. Methodology 

This study was conducted in Fortaleza, Brazil, with a focus on two urban 
neighborhoods: Meireles and Aldeota. These areas were selected due to their high 
population density, urban complexity, and the availability of primary air quality data, 
which enabled testing and training of the proposed air quality model (Gurjão, 2024). 

3.1. Data Collection and Preparation 

Primary pollution data were collected using a portable sensor capable of detecting 
concentrations of PM2.5 (see sensor specifications in Furtado et al., 2024). The sensor 
was installed on tripods approximately 1.8 m above ground level, near major roads and 
canyon-shaped street sections, where the study area ensured the safety of the team and 
equipment (Figure 1). Measurements were conducted at 11 georeferenced locations 
within the study area between August and September 2023, from Tuesday to Thursday, 
with data recorded every minute over continuous 4-hour sampling windows. 

​ The procedures performed are described in Gurjão (2024) and Gurjão et al. 
(2024), where details on sensor calibration, measurement protocol, and point selection 
are reported in full. Briefly, missing values were imputed by linear interpolation, and all 
series were aggregated into one-minute averages to match the resolution used for model 
training. 
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Figure 1. Structure and positioning of sensors in outdoor city locations. 

Environmental and infrastructure data about the built environment were obtained from 
the Fortaleza Municipal Secretary of Finances (SEFIN) via the city's official spatial data 
infrastructure portal (SEFIN, 2016). The datasets consist of: (i) Point data on individual 
tree locations; (ii) Polygon data of building footprints with associated attributes; (iii) 
Line data representing the street network, including infrastructure indicators. In this 
way, the variables considered in the models were: 2.5 Particulate Matter; Buildings 
Count; Street Connectivity; Average Building Area; Average Canyon Width; Average 
Building Height; Total Built Area; Sewage Coverage Rate; Drainage Coverage Rate; 
Street Lighting Rate; Pavement Coverage Rate; Gutter Coverage Rate; Tree Count; 
Water Coverage Rate. 

3.2. Feature Engineering 

To estimate PM2.5 concentrations across the urban area, we developed a supervised 
regression modeling pipeline based on point-level sensor data enriched with contextual 
urban features. The original air quality measurements were collected at discrete 
geographic points, each corresponding to a sensor location. To incorporate surrounding 
urban conditions, these points were spatially joined to a uniform hexagonal grid with 
200-meter resolution. This allowed each observation to inherit built environment 
characteristics from the hexagon it fell within, such as tree density, street connectivity, 
building height, built-up area, infrastructure coverage, and the canyon effect (defined as 
the height-to-width ratio of surrounding structures). 

​ The predictor variables used in the regression models capture key aspects of the 
built environment. Vegetation, represented by tree density, can act to mitigate pollutants 
and regulate the microclimate (Zheng et al., 2021; Stache et al., 2022), while building 
height and the urban canyon effect can influence pollutant accumulation and ventilation 
restrictions in urban areas (Vardoulakis et al., 2003; Seaton et al., 2022). Traffic-related 
effects were considered through road connectivity, given the established relationship 
between dense road networks and higher pollutant concentrations (Silva & Mendes, 
2006; Che et al., 2023). Finally, infrastructure coverage was incorporated to reflect 
broader urbanization processes that shape air quality dynamics (Che et al., 2023; Gurjão 
et al., 2024). 

​ Figure 2 illustrates the spatial data formats used in this study. Red points mark 
sensor locations, while the base map includes building footprints (gray), street network 
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(yellow), neighborhood boundaries (red lines), and the hexagonal aggregation grid (light 
blue). 

 

Figure 2. Study area in Fortaleza, Brazil, showing the neighborhoods where 
PM2.5 concentrations were measured. 

​ For illustration purposes, Figure 3 details some of the additional urban features 
aggregated in the hexagonal spatial grid: 

●​ Street Connectivity: computed as both the number of unique street intersections 
(3a) and the total number of street segments within each hexagon (3b). 

●​ Tree Density: calculated as the number of geolocated trees falling within each 
hexagon (3c). 

●​ Building characteristics: average height of buildings per hexagon (3d), average 
building area and urban canyon effect; derived per building as the 
height-to-width ratio to neighboring structures; values are averaged across all 
buildings in each hexagon. 

●​ Urban Infrastructure: represented by the proportion of buildings served by 
pavement, water, sewage, drainage, guttering, and public lighting infrastructure. 
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Figure 3. Spatial datasets and aggregation framework used in the analysis. 

3.3. Predictive Modeling 

The enriched dataset composed of point-level PM2.5 values and hexagon-derived urban 
indicators was used to train and compare multiple machine learning models. To evaluate 
the predictive capacity of urban features on fine particulate matter concentration 
(PM2.5), five regression models were tested: Linear Regression, Random Forest, Extra 
Trees, AdaBoost, and Gradient Boosting. All models were evaluated using five-fold 
cross-validation on the training dataset, and their performance was compared using 
three metrics: the coefficient of determination (R²), Root Mean Squared Error (RMSE), 
and Mean Absolute Error (MAE). 

4. Model Results 

Table 1 summarizes the performance results of the investigated models. The three 
tree-based ensemble models (Gradient Boosting, Extra Trees, and Random Forest) 
presented the highest performance, each achieving an R² of approximately 0.805 and 
RMSE values around 2.25. AdaBoost performed less effectively, with the lowest R² 
(0.7567) and the highest RMSE and MAE, indicating its limitations in this specific 
context. 
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Table 1. Variables to be considered on the evaluation of interaction techniques 

Model R2 RMSE MAE 

Gradient Boosting 0.805372 2.2471 1.6143 

Extra Trees 0.805371 2.2471 1.6142 

RandomForest 0.805357 2.2472 1.6138 

Linear Regression 0.801671 2.2683 1.6474 

AdaBoost 0.756733 2.5122 1.9647 

​ Among them, Gradient Boosting yielded the best overall performance, with R² = 
0.8054, RMSE = 2.25, and MAE = 1.61, and was selected as the final model for spatial 
prediction across the study area. These findings support the value of ensemble learning 
methods to model air pollution in urban settings based solely on built environment 
indicators. 

 

Figure 4. Importance of urban features employed in the Gradient Boosting 
Regressor Model. 

​ The feature importance plot (Figure 4) reveals that Building Count and Street 
Connectivity are the most influential predictors in the Gradient Boosting model for 
estimating PM2.5 concentrations, together accounting for the majority of model 
relevance. This suggests that denser and more connected urban areas tend to exhibit 
stronger associations with air pollution levels, likely due to increased built surfaces and 
traffic-related emissions. Average Building Area, Average Canyon Width, and Average 
Building Height also contribute meaningfully, indicating that morphological 
characteristics of the built environment, such as enclosed urban canyons or larger 
structures, may affect air flow and pollutant dispersion. In contrast, variables related to 
infrastructure coverage (e.g., drainage, lighting, pavement, water) and Tree Count show 
very low importance.  
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4.1. Spatial Application of the Air Quality Model 

After validating model performance, the best-performing model (Gradient Boosting 
Regressor) was applied to all hexagons in the study area, including those without sensor 
coverage (Figure 5). This final prediction step enabled spatial extrapolation of PM2.5 
concentrations based solely on the urban fabric. By linking sensor data to contextual 
features through the hexagonal framework, the method combines the granularity of 
point measurements with the scalability of spatial modeling over the full urban area. 

 

Figure 5. Comparison of measured and predicted PM2.5 concentrations across 
hexagons. 

​ The 3D visualization (Figure 6) presents a detailed perspective of how predicted 
PM2.5 concentrations vary across the urban fabric. Each building is assigned a color 
based on the predicted air quality value of the hexagon it falls within, allowing a 
block-level interpretation of environmental quality. The classification follows the 
quantile-based ranges depicted in the hexagon-level prediction map (Figure 5), which 
divides the entire distribution of predicted values into four equal groups (Q1–Q4). 
Buildings located in hexagons categorized as "Very High" (Q4) are rendered in deep 
red, signaling higher exposure to air pollution. 

​ Figure 6. 3D building visualization colored by predicted PM2.5 concentration ​
​ levels and the location of primary data collection with the sensor. 
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​ This approach bridges the aggregated spatial prediction and the physical form of 
the city, highlighting how built density and configuration relate to local air quality. It 
enhances interpretation by grounding pollution estimates in recognizable urban 
morphology. 

5. Conclusions 

The primary goal of this research was to investigate how features of the built 
environment such as density, connectivity, and morphology are structurally associated 
with pollution levels. Data analysis showed that urban form plays a critical role in 
environmental outcomes, calling for an integrated planning approach in which 
sustainable urban development becomes a key vector for improving air quality and, 
consequently, public health and well-being. 

​ It is important to note that the primary air quality data used in this study 
represent a static snapshot in time, capturing PM2.5 concentrations during a specific 
measurement period. While air pollution levels are known to fluctuate due to temporal 
factors such as weather conditions, traffic cycles, and seasonal variations, this dynamic 
aspect was not captured in the current analysis. Future model improvements could 
benefit from integrating time series data to enhance the temporal resolution of 
predictions. 

​ Additionally, the analysis of feature importance revealed that Average Building 
Area, Average Canyon Width, and Average Building Height all contributed modestly to 
the model, and are likely to be strongly correlated. Similarly, variables related to 
infrastructure, such as drainage, lighting, pavement, and water coverage, showed 
individually low importance but may collectively represent an underlying dimension of 
urban service provision. To reduce redundancy and improve model parsimony, future 
work could explore dimensionality reduction techniques such as Principal Component 
Analysis to group correlated features into composite indicators. 
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