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Abstract. An Enterprise Knowledge Graph (EKG) provides a robust foundation for
knowledge management, data integration, and advanced analytics within organiza-
tions by offering a semantic view that unifies and semantically integrates heteroge-
neous data sources from the data lake. The data integration process remains complex
and time-consuming due to schema mismatches, divergent terminologies, and incon-
sistencies in data collection practices. Recent advances in large language models
(LLMs) have shown promise in addressing these challenges by assisting with various
data integration tasks. This paper introduces a modular, agent-oriented architec-
ture that supports the incremental and interactive construction of semantic views for
EKGs. The architecture leverages LLM-powered agents in conjunction with a meta-
data graph that captures rich contextual information about each semantic view. This
metadata graph plays a central role in enabling automation, enhancing explainabil-
ity, and ensuring reusability throughout the construction process. By forming agent
decisions in structured and trustworthy metadata, the proposed framework facilitates
the development of semantic views of enterprise knowledge graphs.

1. Introduction

An Enterprise Knowledge Graph (EKG) provides a robust foundation for knowledge manage-
ment, data integration, and advanced analytics within organizations by offering a semantic view
that integrates diverse data sources from the organization’s data lake.

The primary goal of the semantic view in an EKG is to establish a unified onto-
logical framework resulting from the semantic integration of heterogeneous data sources
[Galkin et al. 2017]. This integration creates a comprehensive and coherent organizational data
environment, enabling seamless access and supporting informed decision-making.

Constructing and maintaining a semantic view in an EKG system is a complex and
time-consuming task due to schema mismatches, divergent terminologies, and inconsistencies
in data collection practices. Recent research has demonstrated the potential of LLMs in sup-
porting data integration tasks such as column type annotation, schema matching, and entity
linkage [Feuer et al. 2023, Tu et al. 2023, Kayali et al. 2023, Liu et al. 2024]. LLMs can also
answer questions about data terminology, generate transformation scripts, and assist in meta-
data enrichment—often without requiring task-specific training data. These capabilities open
new avenues for enhancing the automation and flexibility of data integration processes.

This paper introduces a modular architecture based on LLM-driven agents that supports
the incremental and interactive construction of semantic views for EKG, following the data
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design pattern DDP_SV proposed in [Vidal et al. 2024]. The DDP_SV pattern is tailored for the
logical organization of data within the semantic view of an EKG, structuring data and metadata
into four hierarchical layers. This structured approach addresses key challenges in semantic
data integration, while also simplifying maintenance and enhancing the flexibility and depth of
semantic view exploration across various contexts.

The DDP_SV framework relies on VoSV (Vocabulary of Semantic View). to annotate
the metadata associated with semantic views. The resulting VoSV-based metadata graph forms
a core component of the EKG’s semantic layer, offering detailed, machine-readable descrip-
tions of the structure, provenance, and quality of semantic view data. Through rich semantic
annotations, VoSV enables critical data governance capabilities such as lineage tracking, quality
assessment, and enhanced data usability.

Beyond documentation, the metadata graph modeled with VoSV provides a robust foun-
dation for constructing agentic systems capable of automating the synthesis of data integra-
tion pipelines. By capturing comprehensive metadata—including input sources, transformation
logic, provenance chains, and quality indicators—the VoSV-based graph serves as a structured
and reliable context provider for LLM agents. This enables more accurate reasoning, improves
explainability, and ensures principled governance throughout the integration process. We argue
that metadata takes on an even more central role in the era of generative Al. As LLMs in-
creasingly guide autonomous behaviors and decision-making, grounding their actions in well-
defined, traceable, and explainable metadata is essential for maintaining control, fostering trust,
and ensuring accountability within digital ecosystems.

The rest of the paper is organized as follows: Section 2 presents the DDP_SV frame-
work. Section 3 introduces a modular, agent-based architecture designed to support the con-
struction of semantic views in alignment with the DDP_SV framework. Section 4 discusses a
RAG-based execution pipeline integrated into the agent architecture, enabling agents to per-
form tasks by combining metadata-driven reasoning with user feedback. Section 5 discusses
related work. Finally, Section 6 outlines the main conclusions and directions for future work.

2. Constructing Semantic Views with DDP_SV Framework

This section begins presenting a data design pattern—referred to as DDP_SV—specifically de-
veloped to provide a logical organization of both data and metadata within the semantic view of
an EKG. In addition, Section 2.2 introduces VoSV, a domain-independent vocabulary designed
to capture and represent the metadata of semantic views constructed using the DDP_SV.

2.1. Four Layer Architecture for Constructing EKG’s Semantic Views

The work in [Vidal et al. 2024] introduced a data design pattern, referred to as DDP_SV, specif-
ically developed to provide a logical organization of both data and metadata within the semantic
view of an EKG. As illustrated in Figure 1, the semantic view in this architecture consists of
two interconnected knowledge graphs: a data graph that represents the integrated content, and
a metadata graph that captures the structure, provenance, and quality associated with the view.

The data graph in Figure 1(a) represents the actual integrated data within the semantic
view and works as the informational backbone of the EKG. It is structured into a four-level
hierarchical architecture, each level encapsulating a distinct stage of semantic integration:

* Exported Views Layer — Contains RDF views generated by mapping raw data sources
to a shared vocabulary defined in the Semantic View Ontology (SVO), ensuring seman-
tic consistency;
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* Linkset Views Layer — Establishes identity links (e.g., owl:sameAs) between equiva-
lent entities across exported views, enabling semantic alignment and cross-referencing;

 Unification Views Layer — Integrates semantically equivalent entities into canonical
representations, consolidating references to the same real-world objects;

* Fusion Views Layer — Resolves conflicts among unified entities, applying resolution
strategies to produce a consistent, enriched, and trustworthy view.
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Figure 1. Data Design Pattern for EKG’s Semantic Views.

The metadata graph, depicted in Figure 1(b), serves as the repository for all metadata
related to the semantic view. It plays a critical role in describing both the SVO and the views
in all levels of the DDP_SV. Crucially, the metadata graph is semantically linked to the data
graph, enabling integrated operations and contextual awareness. This tight integration supports
a holistic understanding of the semantic view, empowering metadata-driven processes such as
data discovery, quality assessment, lineage tracking, semantic governance, and view reuse.

2.2. Modeling Semantic View Metadata with VoSV

To structure and model the metadata graph, is proposed VoSV (Vocabulary of Semantic
View)—a domain-independent vocabulary that captures the metadata of semantic views built
with the DDP_SV data design pattern.

Figure 2 offers an overview of VoSV, highlighting its key components and the semantic
relationships among them. At the heart of the model lies the class vosv:SemanticView, which
conceptually aggregates all core elements of a semantic view.
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Figure 2. Vocabulary of Semantic Views (VoSV).
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Building on this vocabulary, is proposed a process to construct both the data graph and
its metadata graph within the DDP_SV framework. This process contains five ordered steps:

1. Semantic View Ontology Modeling — Defining a shared vocabulary to guide integration;
2. Exported View Construction — Mapping raw data sources to the ontology;

3. Linkset View Construction — Creating identity links across exported views;

4. Unification View Construction — Merges equivalent entities into canonical representations;
5. Fusion View Construction — Resolving conflicts to produce a consistent, enriched view.

Together, VoSV and this step-wise methodology provide a structured, semantically rich
foundation for building and maintaining high-quality EKGs.

3. A Multi-Agent based Architecture for Interactive LLM-based Semantic View
Construction with DDP_SV

This section presents a modular, agent-based architecture that supports the construction of EKG
semantic views following the DDP_SV design pattern. The architecture enables users to incre-
mentally and interactively build semantic views with the assistance of LLM-powered agents,
leveraging a VoSV-based metadata graph to promote automation, explainability, and reusability.
Figure 3 illustrates the main components of the architecture, which are described below.
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Figure 3. Multi-Agent Architecture for Interactive LLM-based Semantic View Construction.

(i) Interface Layer: Focusing on capturing user goals and mediating communication with
agents, the Interaction Component — receives instructions, typically in natural language, ex-
pressed by human-users (data architects or knowledge analysts). These are parsed by an Or-
chestrator Agent, which uses an LLM to identify the user’s objectives and decompose them
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into high-level semantic tasks to the planner agents. This component realizes the validation
and routing. Firstly, the semantic plan is generated and presented to the user for review. Upon
validation, it is dispatched to the corresponding specialized agents.

(i) Knowledge Layer: At the core of this architecture, the metadata graph, built upon VoSV,
forms a key component of the semantic layer of the EKG. It provides detailed, machine-
readable descriptions of the structure, provenance, and quality of the semantic view data.
Through rich semantic annotations, the VoSV-based metadata graph provides specialized agents
with a structured, reliable foundation that supports the automated synthesis of data integration
pipelines. By formalizing semantic view specifications and exposing them through metadata,
VoSV enables the development of agentic systems capable of dynamically constructing, vali-
dating, and managing semantic views in complex enterprise environments.

The metadata graph is connected to the data graph, which can be used to enhance and
extend metadata specifications. Metadata graph can be queried and updated at every stage,
serving as a source of traceability, knowledge reuse, future validation, and integration evolution.

(iii) Contextual Information: In the proposed architecture, the contextual workspace func-
tions as the internal memory layer that maintains dynamic, short-term information relevant
to the ongoing construction of semantic views. It includes user-defined goals, task planning
states, agent decisions, and interaction history, providing a coherent context for reasoning and
coordination among agents.

(iv) LLM: Within the multi-agent architecture, the LLM acts as a textual inference engine,
accessed on demand by agents. The LLM is triggered in a controlled manner by the agents,
who construct the context and prompts necessary for its execution. In this way, the main re-
sponsibilities of the LLLM are:

* Receives prompts dynamically generated by the agents based on the context, rules, and
specific metadata;

* Generates structured textual responses, suggestions, or candidate decisions (e.g., map-
pings, suggested classes, validations).

(v) Tool-Calling: Tool Calling supports the construction of the semantic views by allowing
agents to delegate the execution of technical tasks to external tools (APIs, services, libraries)
or programmatic functions (algorithms, heuristics) — with greater precision and reliability.

Each stage can be assisted by reusable tools called on demand. For example, to
build the SVO, Ontop [Xiao et al. 2020] (bootstrapping) can be used; for mappings — pyRML
[Nuzzolese 2025], in the same way for subsequent stages.

(vi) Agent Layer: The proposed approach adopts a hierarchical multi-agent architecture de-
signed to support the incremental, modular, and explainable construction of semantic views
within an EKG. The architecture enforces a step-by-step workflow, where each phase is exe-
cuted in a controlled, traceable, and transparent manner, with explicit human validation at every
decision point.

At the top of the hierarchy is the Orchestrator Agent, responsible for orchestrating the
overall process. It interprets the user’s high-level goals and delegates them to the appropriate
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Planner Agent. There are five Planner Agents, each corresponding to one step of the DDP_SV
framework: (i) Semantic View Ontology Modeling Agent, (ii) Exported View Construction
Agent, (iii) Linkage View Construction Agent, (iv) Unification View Construction Agent, and
(iv) Fusion View Construction Agent.

Each Planner Agent supervises a specific phase of the DDP_SV process and is responsi-
ble for decomposing its assigned goal into a sequence of fine-grained subtasks. These subtasks
are then assigned to one or more Specialized Agents, each customized to perform a particular
operation, such as schema analysis, mapping generation, alignment validation, link discovery,
or fusion logic application.

To support metadata handling across all phases, the architecture includes a dedicated
Metadata Agent that acts as a centralized support component. This agent provides the following
key services:

Respond to metadata queries from specialized agents, offering filtered, contextual meta-
data tailored to the current task;

* Ensure consistency and traceability by maintaining the metadata graph in alignment
with the DDP_SV framework and the VoSV vocabulary;

Record the outcomes of tasks performed by specialized agents;

Facilitate knowledge reuse, enabling agents to leverage decisions made previously.

By abstracting metadata access and update operations from task execution logic, the
Metadata Agent enables a clean separation of concerns, ensuring that Specialized Agents re-
main focused on their semantic reasoning tasks while maintaining robust, consistent, and trace-
able metadata management throughout the semantic view construction process. Each special-
ized agent is equipped with a structured and conversational RAG (Retrieval-Augmented Gen-
eration) pipeline. In this setup:

» Agents retrieve contextual metadata exclusively through the Metadata Agent;

* Construct LLM prompts based on the retrieved metadata, and;

» Use the LLM to generate task-specific proposals or decisions (e.g., class suggestions,
mappings, fusion strategies).

As part of the interactive design, every specialized agent enters a dialogue loop with
the user upon completing a subtask. The user is invited to review and validate the intermediate
results, with the ability to approve, modify, or reject the output. Only after explicit user confir-
mation does the system commit the result to the metadata graph and proceed to the next step in
the construction workflow.

In the proposed architecture, inference activities are not centralized in a monolithic rea-
soning component, but instead are delegated to specialized agents and the metadata agent. Each
specialized agent is responsible for applying domain-specific heuristics, rules, or logic within
the scope of its task—for example, suggesting schema alignments, resolving data conflicts, or
assessing quality constraints.

The metadata agent plays a complementary role by reasoning over the structured
metadata graph, obtaining contextual insights such as semantic consistency, reuse of exist-
ing mappings, or applicability of transformation patterns. This distributed inference strategy
enhances modularity, enables agent-specific explanations, and supports incremental, context-
aware decision-making throughout the semantic view construction process.
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4. RAG-based Pipeline Combining Metadata-driven Reasoning with User
Feedback

In the proposed framework, each Specialized Agent is equipped with its own Retrieval-
Augmented Generation (RAG) pipeline. This pipeline is responsible for contextualizing and
executing subtasks by integrating metadata and, when necessary, human feedback. It inter-
acts with the Metadata Agent to retrieve and update relevant metadata and may engage in user
interaction loops to resolve uncertainties or validate intermediate results. Figure 4 illustrates
the RAG pipeline workflow, detailing its interaction with the Metadata Agent and the user, as
outlined in the following steps.
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Figure 4. RAG-Driven Workflow for Task Execution.

The Planner Agent delegates a subtask to a Specialized Agent;
The Specialized Agent activates a RAG pipeline, which performs the following actions:
* Queries the Metadata Agent to retrieve task-relevant metadata (e.g., previous
mappings, ontology fragments, data view specifications);
* Constructs a prompt using the retrieved metadata and invokes a LLLM to generate
outputs as (e.g., match suggestion, mapping recommendation, fusion strategy).
* If the generated output is uncertain, incomplete, or ambiguous:
* The agent initiates a turn-based interaction with the user to request clarification
or validation;
* The user provides feedback, which is used to update the RAG context;
* The generation step is re-executed, now incorporating the user’s input.

. Once a final result is obtained;

* Is submitted to the Metadata Agent to be persisted as part of the metadata graph;
* The Specialized Agent notifies the Planner Agent that the task has been success-
fully completed.
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4.1. Case Study

To demonstrate this approach is proposed a case study to construct a semantic view - es-
pecifically to linkset views (LV_MusicArtists) that connects equivalent musical artists across
MusicBrainz and DBpedia data surces. To achieve this, a specialized multi-agent pipeline is
adopted. As a premise, the successful construction of the exported views to Music Brainz
(EV_MusicBrainz) and to DBpedia (EV_DBpedia) will be considered.

The Linkset View construction process is driven by a coordinated set of agents that
operate incrementally and consult the Metadata Graph (modeled with VoSV) to to provide con-
text, structure and semantic knowledge, benefiting from an organized memory so that the agent
can reason better, act more accurately, generate more useful outputs and guide future decisions.
RAG is employed to access and contextualize relevant metadata previously registered during
the Exported View construction phase to the LLM.

Phase 1: User Goal Initialization

Human Prompt:
‘ p
7

il "I want create a linkset of musical artists from MusicBrainz and DBpedia."

The Orchestrator Agent interprets the user’s intent and routes the request to Linkset
View Planner Agent, responsible for coordinating the construction of the Linkset
View.

Phase 2: Task Planning
The Linkset View Planner Agent defines task planning and delegates to specialized agents.

[
{ "step": 1, "agent": "Match Agent" }, { "step": 2, "agent": "LinksetViewGeneration Agent" }

]
Phase 3: Match Identification

Initially, the Match Agent call the Metadata Agent to query the Metadata Graph to
retrieve the Classes involved from SVO and the Exported Views.

o i Match Agent Prompt: oito Metadata Agent Retrieve:
g "Retrieve from Metadata Graph using the Response:
vocabulary in :SemanticViewOntology
classes of music artist and your superclass {
related in common by rdfs:subClassOf." "source_ev": "EV_MusicBrainz",
"target_ev": "EV_DBPedia",
"source_class": "svm:MusicArtist_MusicBrainz",
"target_class": "svm:MusicArtist_DBpedia",

"generalization_class: svm:MusicArtist".

}

From the result of the Metadata Agent, the Match Agent can now identify the
svm:MusicArtist match class that should be used to specify the linkset view. This structured
information constitutes the semantic basis for the next step, where the agent will use the LLM
to determine the appropriate Match Property class to be used in the link between instances.

Then, for the Match Agent to determine the equivalent property used to identify
in both instances (match property), it must analyze the mappings of each exported view
(EV_MusicBrainz, EV_DBPedia) stored in the metadata graph to find the corresponding prop-
erty used to define the URI templates. To do this, the Match Agent performs a request prompt
such as:
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.. ) Metadata Agent Retrieve:
TR Match Agent Prompt (to LLM): Z Response:
"Extract URI templates and subject LR {
mappings from each EV. Identify "source_field": "mphid",
which field was used to compose "target_field": "id"
the URI." }

After identifying the (source and target) fields used in the uri templates of the exported
views mappings, the Match Agent is executed with enriched context to suggest the appropriate
match property.

o: 1o Match Agent Prompt (to LLM):

2P L . . .

ﬁ%%* You are a knowledge graph expert agent specialized in analyzing URI construction metadata
to suggest equivalent linking properties

Context:

- Source Exported View: EV_MusicBrainz
- Target Exported View: EV_DBPedia

- Match Class : svm:MusicArtist

— Source URI uses field: mbid

- Target URI uses field: id

Rule:

If two classes have different properties mapped field/columns as key in a subject
identifiers (rr:template), but both represent semantically the same concept, suggest a
common property as x*match propertyxx.

Example:

— (Student Mapping) :

rr:template "http://.../student/{s_id}", rr:predicate :student_id =+ :s_id
- (Person Mapping) :

rr:template "http://.../person/{p_id}", rr:predicate :person_id =+ p_id

+ Suggestion: use ‘id‘ as generalized match property.

Instruction:
Consult the metadata graph to determine which properties were used to build the subject
URI templates for each class, using rr:template and rr:predicate.

The Match Agent presents the recommended match property and the user is then
asked to validate. Below is the output containing the validation prompt, alongside the user’s
validation choice.

2Bl
Match Agent Prompt: "‘ Human Prompt:
"Use id as the match property ﬁi "Yes, use."

(based in equivalence of mbid and id)
as linking keys?"

Phase 5: Linkset View Generation

The Linkset View Generation Agent presents a sample of the gener-
ated linkset view and queries the user for validation. Therefore, the Meta-
data Agent writes the linkset view LV_MusicArtists to the metadata graph.

RO () Human Prompt:

‘T Match A P : v/ )

T P atch Agent Prompt. e "Yes, I agree."
You agree with the generated linkset view? il

:LV_MusicArtists a vosv:LinksetView ;
vosv:linksBetween :EV_MusicBrainz, :EV_DBPedia ;
vosv:hasMatchClass svm:MusicArtist ;
vosv:hasMatchProperty svo:id ;
vosv:usesPredicate owl:sameAs
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5. Related Work

The construction of EKGs has gained significant attention as a means of semantically inte-
grating heterogeneous organizational data to support knowledge management, data analytics,
and decision-making. Despite advancements in knowledge graph engineering, traditional ap-
proaches continue to rely heavily on manual work and expert knowledge, making the process
labor-intensive and difficult to scale. Recent studies have begun to explore how LLMs can
assist in automating EKG semantic view construction, yet several limitations persist.

[Laurenzi et al. 2024] propose a six-step design-science-driven methodology for EKG
development supported by LLMs. Their approach uses LLMs in discrete tasks such as compe-
tency question formulation, ontology construction, and knowledge integration. However, their
process remains predominantly linear and human-supervised, lacking mechanisms for agent
collaboration or dynamic contextual awareness during graph development. In parallel, LLM-
based Multi-Agent Systems (LMAs) have emerged as a powerful paradigm in domains such as
software engineering. [He et al. 2024] demonstrate that multi-agent collaboration can enhance
autonomy, robustness, and scalability in complex workflows by distributing tasks among spe-
cialized agents orchestrated through shared goals and communication protocols. While their
work is primarily situated in software engineering, it lays the foundation for extending such
collaborative agent architectures to the enterprise knowledge graphs and semantic integration.

[Zhu et al. 2024] propose AutoKG, a multi-agent system in which LLLMs play distinct
roles to collaboratively construct and reason over knowledge graphs. While promising, Au-
toKG does not explicitly model to representation of semantic views nor integrate a metadata
governance mechanism. Similar in vision to Harmonia [Santos et al. 2025], our work also
leverages LLM-driven agents in integration tasks. However, while that approach focuses on
harmonizing tabular data via prompt-based workflows, our architecture targets the semantic
structuring of EKGs using a data design pattern (DDP_SV), semantic metadata (VoSV), and
multi-agent coordination to support long-term governance and semantic consistency.

6. Conclusions and Future Works

This paper presented a modular, LLM-driven multi-agent architecture designed to support the
incremental and interactive construction of semantic views in EKGs, following the DDP_SV
design pattern. At the core of the architecture is a VoSV-based metadata graph, which provides
structured, machine-readable context to enhance automation, explainability, and governance
throughout the integration process. The DDP_SV framework promotes a “pay-as-you-go” con-
struction model, making it well-suited for dynamic and evolving data environments.

This proposal is grounded in the observation that existing systems offer limited support
for the incremental and interactive construction of semantic views—particularly when it comes
to leveraging LLLMs and agent-based collaboration. This gap is precisely what this work aims
to address. By equipping each specialized agent with a RAG pipeline, the architecture enables
metadata-aware reasoning and incorporates user feedback when necessary, resulting in more
accurate, explainable, and trustworthy task execution.

While the architecture proposed here is conceptual and yet to be fully implemented, we
recognize the technical challenges ahead. Nonetheless, we believe that the articulation between
the DDP_SV framework, specialized LLM agents, and structured metadata offers a promising
direction for addressing the complexity of semantic view construction in EKGs. We view this
workshop as an ideal venue to refine and advance this proposal through community feedback
and discussion.
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