
An Approach to Support a Flexible Feature Modeling

Eldânae �ogueira Teixeira
1
, Cláudia Werner

1
, Aline Vasconcelos

2

1
Federal University of Rio de Janeiro

COPPE - System Engineering and Computer Science

P.O. Box 68511 - Rio de Janeiro, RJ 21945-970 Brazil

2
Federal Fluminense Institute (IF-Fluminense)

Dr. Siqueira Street, 273 – Dom Bosco

Campos dos Goytacazes, RJ 28030-130 Brazil

{danny, werner}@cos.ufrj.br, apires@cefetcampos.br

Abstract. The variability of a domain in software reuse approaches can be

specified through feature modeling. This modeling can be represented with

different notations, that encompass some concepts with the same semantics,

regardless of the provided graphics and nomenclatures .In this work it was

performed a domain analysis of three meaningful notations achieving a

mapping of the concepts and properties from one notation to another. The

goal was to achieve flexibility in variability modeling applying the results of

the study in the Odyssey environment, a software reuse infrastructure based on

domain models. The Odyssey adaptation allowed it to represent different

feature notations and the possibility of transitioning between them.

1 Introduction

Domain Engineering (DE) [1][2], and one of its variants, i.e., Software Product Line

(SPL) [3], are key approaches to support software reuse, aiming to accomplish it in a

systematic way at all stages of software development. Both techniques incorporate the

Domain Analysis (DA) phase. This activity consists of collecting information and

knowledge about a class of systems (the domain), to exploit its commonality and

variability.

The results of Domain Analysis can be captured and represented in a domain

model, a high-level description of the system family. Several modeling approaches have

been developed and can be applied to represent the variability of a domain. Feature

modeling, one of the representation techniques most used in these approaches, was

originally proposed as part of the Feature-Oriented Domain Analysis (FODA) method

[4], and since then, it has been applied in a variety of approaches. This modeling seeks

to express domain requirements as features, which can be specified as prominent or

distinctive, and user-visible aspects, qualities, or characteristics of a software system or

systems [4].

First, this modeling helps in defining the scope of the class of systems or

domain, identifying relevant characteristics, which should be retained or discarded.

Later, the points and ranges of variation captured in feature models need to be mapped

to a common architecture that is representative for the family of systems.

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

81

Feature modeling can be expressed with different notations, which might be

chosen considering several factors such as higher adequacy to the modeling

requirements, greater knowledge of the development team, popularity etc. Also, an

appropriate Software Development Environment (SDE) should provide feature

modeling, with support for reuse, aiming at achieving efficiency and adequacy to the

development process. However, the tools and environments available have several

deficiencies and, frequently, do not completely fulfill the users’ need. In general, they do

not offer the opportunity to choose a more appropriate notation, being limited to the

concepts and properties offered by a single notation used in the SDE. Also, most

environments do not support the different steps of the reuse process. Moreover, they

frequently present representation deficiencies, with limitations of the graphical and

visualization aspects.

Therefore, the goal of this work is to achieve modeling flexibility in a software

reuse environment. It was conducted in the Odyssey SDE [5], a reuse environment

based on domain models, which modeling structure was fixed, providing support only

for the Odyssey-FEX notation [6], its proprietary notation. This environment supports

all phases of software reuse, encompassing the development for reuse through a Domain

Engineering process, and development with reuse through an Application Engineering

process. Moreover, it provides model consistency checking through its plugin Oraculo,

allowing application instantiation with a certain degree of reliability.

Initially, two other meaningful notations, referenced in the literature were added

to the Odyssey environment, in order to evaluate the proposed approach for modeling

flexibility and the possibility of transitioning between the feature notations, i.e. the

notation proposed by Czarnecki et al. [7][8], and the one defined by Gomaa [9].

Odyssey adaptation required a detailed study of the concepts encompassed by each

notation in order to identify their similarities and differences. Therefore, a Domain

Analysis for feature modeling was conducted. Also, the feasibility to represent different

feature notations and the possibility of transitioning between them were accomplished

by studying the environment modeling structure.

The rest of this paper is organized as follows. Section 2 reviews some concepts

related to variability and feature modeling; the proposed approach is presented in

Section 3; Section 4 details the adaptations that were made in order to apply the notation

flexibility mechanism in the Odyssey environment; Section 5 summarizes some

meaningful related work; and, finally, conclusions and future work are presented in

Section 6.

2. Background

Domain Engineering is the process of identifying and organizing knowledge about some

class of problems – the problem domain – to support the description and solution of

those problems [10]. During Domain Engineering, the commonality and the variability

of the product family is defined. Shared assets are implemented so that the commonality

can be exploited during Application Engineering. During Application Engineering,

individual, customer specific software products are ideally developed by selecting and

configuring shared assets resulting from Domain Engineering [11].

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

82

The concept of software variability seeks to explore the benefits that exist in the

similarities found in a family of systems and to manage its diversity. It is the ability of a

software system or artifact to be efficiently extended, changed, customized or

configured for use in a particular context [12]. The variability concept is defined by the

introduction of the so called variation points. A variation point defines a decision point

together with its possible choices (functions or qualities). The available functions or

qualities for a variation point are called variants [13].

The notation for variability modeling can be graphical, textual or a combination

of both forms of representation. However, there appears to be some consensus that there

is a relation between features and variability, in that variability can be more easily

identified if the system is modeled using the concept of features [12]. A major

advantage of discussing a system in terms of features is that they bridge the gap between

requirements and technical design decisions [12].

The feature modeling technique aims at capturing and managing the similarities

and differences in order to facilitate the understanding of users, domain specialists and

developers with regard to the general capacities of a domain, which are expressed by

features. Therefore, this model provides the basis for the development, configuration

and parameterization of reusable artifacts [14].

3. Feature Modeling Flexibility Approach

As mentioned before, feature modeling may be performed by applying distinct

notations. However, among the several available representations, some concepts have

the same semantics, regardless of the provided graphics and nomenclatures. The

comprehension of these different alternatives of notations is the basis for the

development of an approach that involves some kind of relationship between them.

In this work, it was decided to perform a detailed study of the concepts

encompassed by three meaningful notations, referenced in the literature. A domain

analysis of the notations was performed in order to identify their similarities and

differences. The goal was to identify which concepts have the same semantics and

which are particularities of a notation and influence the representation of the domain.

As a result of this study it was possible to establish a mapping of the concepts

and properties from one notation to another. The impacts of the transformations were

also evaluated and resulted in the identification of some loss of information that occurs

due to limitations imposed by the set of elements covered by a particular notation.

3.1. Comparative Study

This work involves the Odyssey-FEX notation [6], a proprietary notation used in the

Odyssey environment, the notation proposed by Czarnecki et al. [7][8], and the one

defined by Gomaa [9].

The study was divided into three classes of concepts: (1) feature taxonomy, (2)

dependency and mutually exclusive feature relations, and (3) other feature relationships.

The core properties of each notation were identified and a mapping between concepts

semantically equivalent was established.

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

83

To illustrate the important concepts discussed in this section, we will use an

example of the mobile phone domain represented in the three different studied

notations, using the Odyssey environment (Figure 1).

(A)

 (B)

 (C)

Figure 1. The Mobile Phone domain in the 3 notations (Figure 1 – A: Odyssey-FEX notation;
Figure 1 – B: Czarnecki’s notation; Figure 1 – C: Gomaa’s notation).

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

84

The first class of concepts deals with the feature taxonomy and the

correspondence between the multiple classifications and feature properties among the

notations. The Odyssey-FEX notation has multiple feature categories, related to the

different phases in the software life cycle. In this notation, a feature can be classified as

a functional, conceptual or entity feature, which represents the analysis phase. Also, a

feature can be classified as operational environment, domain technology or

implementation techniques, which represents the design phase and technological

aspects. These categories are explicitly represented by stereotypes related to each

feature, as shown in Figure 1 - A. In this example, Mobile Phone and Data Cable

features are examples of conceptual features, and the WAP feature is classified as a

domain technology feature related to the Internet Access feature, a functional one. There

is not any equivalence for these classifications in the other notations, where the

classification is mostly based on the variability and optionality concepts. The Odyssey-

FEX notation also represents the variability and optionality concepts, but this is an

orthogonal classification associated to the other feature categories. The optionality

concept is represented by a dashed shape in Odyssey-FEX notation and by empty circles

in the links between features in Czarnecki’s notation. In Gomma’s notation, this concept

is treated using stereotypes that classify the features as common or optional features. In

Figure 1, the feature Display Colors is a so-called mandatory feature, as well as the

Mobile Phone feature and the WAP feature. The concept of variation point can be

exemplified by the feature Connection, and its variants, Bluetooth and USB.

 The variability concept associated to the optionality concept resulted in the

mappings listed in the Table 1.

OOddyysssseeyy--FFEEXX CCzzaarrnneecckkii GGoommaaaa

Taxonomy - Variability and Optionality concept

Optional Variation point

with cardinality value as:

<0,1>/ <0,k>, k>0

Feature Group <<zero-or-one-of-feature

group>>/<<zero-or-more -

of-feature group>>

Mandatory Variation point

with cardinality value as:

<1,1>/<n,k>, n>0, k>1

Feature Group with

minimum cardinality value

as: <1,1>/<n,k>, n>0, k>1

<<exactly –one-of-feature

group>>/ <<one- or-more -

of-feature group>>

Variant in a variation point

with only optional variants

and maximum cardinality

value as one or exclusive

composition rules between

all its variants

Grouped feature in a

variation point with

maximum cardinality value

as one (<0,1>/<1,1>)

<<alternative feature>>

Variant in a variation point

with only optional variants

and cardinality value as:

<0,k>, k>1

Grouped feature in a

variation point with

cardinality value as: <0,k>,

k>1

<<optional feature>>

Variant as a default feature This concept does not have

any mapping

<<default feature>>

Table 1. Variability and optionality concepts

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

85

In the Czarnecki’s notation it is possible to address a feature as a root feature,

since the model is represented by a tree, in a hierarchical structure. Also, Gomma’s

notation has a tree model and the concept of root can be found. In the example of Figure

1, the Mobile Phone feature is classified as a root feature in Czarnecki’s notation, but

there is not any graphical representation which emphasizes this. This semantic has not

the same importance in Odyssey-FEX, which uses an acyclic graph to represent the

model.

The definition of parameter values, during the configuration phase in a SPL, is a

possibility available in Czarnecki and Gomaa’s notations. It is possible to define an

attribute, its type and its default value for a feature. In Gomaa’s notation, it is also

possible to determine a range of values related to an attribute of a feature which is

classified as parameterized feature.

The Odyssey-FEX notation also provides additional properties related to a

feature, such as the representation of an external feature, a not yet defined feature, or an

organizational feature. These properties are not represented by the other notations. An

external feature is one related to other domains, expressing the domain interfaces. A not

yet defined feature is an identified feature in the domain which is not yet refined at other

model abstraction levels. And the latter, i.e., the organizational feature, is just to ease the

domain understanding or its organization, not being concretely related to a real domain

use.

Table 2 presents a summary of concepts related to the categories and properties

presented in each notation and the correlations between them.

OOddyysssseeyy--FFEEXX CCzzaarrnneecckkii GGoommaaaa

Taxonomy / Categories

Classifications by

analysis and design

phases

This concept does not

have any mapping

This concept does not

have any mapping

 This concept does not

have any mapping

Feature with a definition

of an attribute (type,

default value)

<<parameterized

feature>>

 This concept does not

have any mapping

 (model as an acyclic

graph)

Root Feature

(model as a tree)

Common feature which

the other model features

are extended

Taxonomy /Properties

Name Name Name

Layer (domain or

technology)

 this concept does not

have any mapping

This concept does not

have any mapping

Other classifications:

Feature not-defined/

External feature/

Organizational feature

 This concept does not

have any mapping

This concept does not

have any mapping

Table 2. Concepts related to the Taxonomy class of concepts

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

86

 The second class deals with the concepts related to feature dependency and

mutually exclusive feature relationships, which are summarized in Table 3.

Odyssey-FEX notation best represents these restrictions by two types of

composition rules: inclusive and exclusive. Inclusive rules represent feature

dependencies, which means that the features involved in the rule should be selected

together. Exclusive rules represent mutually exclusive feature relationships. In this case,

the features must not be selected together for the same product. These rules can be

combined with boolean expressions, which can be composed by two or more features,

forming an expression combination. The feature dependencies can also be represented

by the dependency relationship and it is graphically represented by an arrow linking the

features as in the UML notation. The limitation of this representation is the relation

involving just two features in contrast with the multiple possible combinations possible

with the inclusive rules. In the other notations, this concept is represented by other

means. In Gomaa’s notation, relations, called require and mutually inclusive

relationships, are used to represent the concept of dependency, and types of features to

represent the concept of mutually exclusive relations. In Czarnecki’s notation, values of

cardinality are used to represent these concepts. The major weaknesses of these two last

notations related to the composition rules is the possibility to establish a relationship

involving more than two features, which is not possible in Czarnecki and Gomaa’s

notations. For example, in Figure 1 - A, the require composition rule, Data Transfer and

USB requires Data Cable can be visualized by the mark, represented with “R” in the

features involved by the rule.

OOddyysssseeyy--FFEEXX CCzzaarrnneecckkii GGoommaaaa

Dependency and mutually exclusive relation

Mutually Exclusive relation between variants

Variation point with

maximum cardinality

value as one or using

exclusive composition

rule between all its

variant

Or-exclusive feature

group <1,1>/

Or-exclusive feature

group <0,1>

<<exactly-one-of-feature

group>>/

<<zero-or-one-of-feature

group>>

Mutually Exclusive relation between invariants

Exclusive composition

rule between the

invariants

This concept does not

have any mapping

 This concept does not

have any mapping

Dependency relation

Inclusive composition

rule/

Dependency relationship

This concept does not

have any mapping

Require relationship/

Mutually inclusive

relationship

Table 3. Main results of the dependency and mutually exclusive relations class of concepts

The third and last class deals with the concept of other feature relationships.

Table 4 presents the correlation between these relationships of the notations.

It is important to note that Odyssey-FEX notation provides both UML

relationships, e.g. dependency, association, composition and generalization, and features

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

87

relations, e.g. the alternative relationship, which represents the relationship among a

variation point and its variants. In Figure 1 – A, there are some examples of these

relationships, such as an association relationship between the Data Transfer and Data

Cable features, an aggregation relationship between the Mobile Phone and Data

Transfer features, a composition relationship between Mobile Phone and Display Colors

features. Also, there is an alternative relationship between the Display Colors variation

point feature, and its variants, Monochromatic and 4.096 Colors. This expressiveness

obtained by all these relations is not achieved by the other notations, which do not

provide all of the mentioned relationships. The authors of Odyssey-FEX notation

believe that by applying rich semantics to feature relationships, it is possible to achieve

greater capacity of representation and expression for domain semantics. In Czarnecki’s

notation, the relations between features do not have any semantic associated, they are

just links between features, which can be noticed in Figure 1 - B. But the notation has a

relation that links different models, called feature reference relationship. Gomaa’s

notation has only the two dependency relations, i.e. require and mutually inclusive

relationships, which can be visualized in Figure 1 - C. But all the notations have the

concept of group provided by the link between the variation point and its variants.

OOddyysssseeyy--FFEEXX CCzzaarrnneecckkii GGoommaaaa

Relationships

Transitions: Odyssey-FEX to Czarnecki / Odyssey-FEX to Gomaa

UML relationships (e.g.

Composition, Aggregation,

Generalization, Association)

Common link between the

features (not the same

semantic – standard

mapping defined by the

study
1
)

Require relationship

(not the same semantic –

standard mapping defined

by the study
1
)

Odyssey-FEX proper relations:

Implemented by and

Communication Link

Common link between the

features (not the same

semantic – standard

mapping defined by the

study
1
)

Require relationship

(not the same semantic –

standard mapping defined

by the study
1
)

Alternative relationship (relation

between variation point and its

variants)

Relationship between the

feature group and its

grouped features

Relationship between the

feature group and its

variants

Transitions: Czarnecki to Odyssey-FEX / Czarnecki to Gomaa

Association

(not the same semantic –

standard mapping defined by the

study
1
)

Feature Reference Require relationship

(not the same semantic –

standard mapping defined

by the study
1
)

Table 4. Main results of the other relationships

The result of this study reflects the multiple alternatives to model a domain using

the technique of feature modeling and the diversity of notations. It also emphasizes the

differences between the notations and their properties, and highlights some aspects to be

1
 In this case a loss of information occurred and the study determined a standard correlation between the
notations to permit the minimal representation of the information in the target notation.

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

88

considered in order to choose a specific notation. This choice is often associated to the

possibility of support by a SDE, which provides the notation and support for the reuse

process. Thus, it is important that a certain modeling flexibility can be offered by an

SDE, so development teams can choose the notation by their preference or adequacy to

the project, not by imposition of availability in a SDE. Motivated by the lack of tools

and environments which could provide notation flexibility, this work extended the

Odyssey SDE in this regard, by adapting it to provide the three feature notations

mentioned before.

4. Modeling Flexibility in the Odyssey SDE

Odyssey development environment [5] is a software reuse infrastructure based on

domain models, which provides automated tools to support the distinct phases of a reuse

process. It has a hierarchical internal structure represented through a semantic tree of

objects. This is organized by categories of models composed by different modeling

items. The work was focused on the feature model, known in Odyssey as “Feature

View”, which used to be fixed, providing support only for its proprietary Odyssey-FEX

notation. The goal of this work was to perform the adaptations in the Odyssey structure,

allowing it to represent different feature notations and the possibility of transitioning

between them.

Its structure has been transformed, creating a basis with the common elements

among the notations, i.e. the Feature Base. This solution attempts to better structure the

concepts inside the environment, defining a transparent boundary among the

particularities of each notation and a conceptual base for sharing similarities. The

implementation was based on the State Pattern, which allows an object to change its

behavior when its internal state changes [15], and can be visualized in Figure 2.

Figure 2. Structure implemented in the Odyssey SDE

FeatureBase class saves an instance of the current state, named in this approach

as Notation Profile, which represents the notation that is being used at the moment

within the Odyssey SDE. The -otationProfile corresponds to a superclass of common

behavior encapsulation associated with profiles. The number of profiles is the number of

notations represented in the environment. Each one combines the particularities of a

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

89

notation, i.e. its specific behaviors. As the developer changes the notation in the

environment, the profile also changes to adapt its behavior and provide the information

related to the notation in use.

Figure 3. Different views of the Odyssey SDE adapted to the three notations

Tool bar Odyssey-FEX

Tool bar Czarnecki

Tool bar Gomaa

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

90

Then, the environment structure is divided into packets responsible for

conceptual representation and graphical representation. The adaptation of the semantic

structure was described in the above paragraphs. The structures related to the

visualization of the elements were also adapted. The Lexical structure is related to the

graphical representation of each element, while the Presentation structure is intended to

support graphical interfaces for configuration of the semantic elements. These structures

were also adapted to provide a specific panel with a custom tool bar according to the

notation in use, as shown in Figure 3. For each notation, different adjustments are

dynamically performed to adapt the environment and its diagramming tool to provide

the actions and the elements needed to build the model in accordance with the notation

selected by the user. The semantic and graphical representations applied in the

environment can be visually noticed in Figure 3.

The first part of Figure 3 represents the initial model. The other two represent

the results of the transitioning process from one notation to another provided by the

environment. This process intends to map the concepts related to the two notations

involved in the process, i.e. the current notation and the target one. The process is

divided in three steps, namely: (1) presentation of information about the standard

mappings and the possible loss of information identified by the approach; (2) an

interaction between process and user, altering options in the standard mappings; (3)

conclusion of the process. In the example of Figure 3, the domain was firstly modeled in

the Odyssey-FEX notation. Then a transitioning process transformed it into the

Czarnecki’s notation and to finish it was transformed into the Gomaa’s notation.

5. Related work

Some environments were evaluated considering their support to feature modeling and

reuse. In Antkiewicz & Czarnecki [16] a summary of meaningful related work is

presented. One of them is the AmiEddi the first editor to support the notation for feature

modeling described in Czarnecki & Eisenecker [17]. It does not include cardinality. His

successor, CaptainFeature includes cardinality and uses a feature diagram based on

properties defined by the Czarnecki’s notation [8]. Another tool, the ConfigEditor, was

an initial prototype, allowing application configuration based on domain features. This

functionality was later integrated into the CaptainFeature tool. However, these tools do

not support feature notation configuration, as proposed in this work.

Another tool described in Antkiewicz & Czarnecki [16] is the ReqLine tool, a

research tool which aims to integrate feature modeling with requirements engineering,

not supporting cardinality, but allowing different types of relationships between features

through a hierarchy. It also proposes model consistency checking and product

configuration through feature selection. Although this tool provides consistency

checking and feature selection for application instantiation, as Odyssey, it does not

support feature notation selection and mapping.

Pure::Variants, also presented in the Antkiewicz & Czarnecki [16], is a

commercial tool for feature modeling and configuration based on a tree structure. The

tool does not support cardinality, but offers comprehensive modeling constraints

between features based on constraints using Prolog.

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

91

Another tool, the Generic Modeling Environment (GME) [18], is a configurable

modeling environment, developed at the Institute for Software Integrated Systems at

Vanderbilt University. Its configuration can be achieved by using metamodels which

specifies the modeling paradigm of an application domain, that includes syntactic and

semantic information, i.e., concepts for construction of models, possible relationships

between the concepts, how to organize and visualize concepts and how to determine

rules to models construction. This tool, although providing feature modeling

configuration by adapting it to the domain concepts, requires an additional effort to

assemble its structure and add the functionalities that express the user needs. On the

other hand, this work already provides a structure with support for three different

notations, not requiring the user the need to configure the environment.

The analysis identified a fixed structure provided by these tools, which offer just

one notation for feature modeling, being restricted to its concepts and properties. This

drawback can limit the software development process, since the environment cannot

attend to particular requirements of the modeling needs of a team or company. The

GME tool, although configurable by a metamodel, requires that the user understands

this structure to be able to assemble its structure.

In most of the environments, restrictions on the form of modeling

representations are observed, some too rigid and difficult to be understood by the user.

Also, most of them are only modeling environments and do not provide support to the

various steps involved in a reuse process.

Therefore, a more flexible environment, which allows representing different

feature notations and the possibility of transitioning between them, supporting all stages

of software reuse, can be an important contribution for an adequate development

process.

6. Conclusions

The goal of this work was to achieve modeling flexibility in order to minimize the

constraints found in current reuse environments, helping developers in the modeling

activity. It was developed within the Odyssey SDE, including the study of its structure

and the concepts related to different notations of feature modeling.

The establishment of concept relations between the three notations addressed in

this study can be highlighted as an important contribution. The work demonstrates the

feasibility of multiple notations for feature modeling in a reuse environment, offering

the user a choice according to his criteria of adequacy and allowing the transition

between notations. Also, the approach enables extensions for future incorporation of

new notations, where the particularities of the notation will be included as a new profile

associated in the structure implemented in the Odyssey SDE.

Some limitations and needs of extensions have been identified, being considered

opportunities for future work. An example can be the extension of the Application

Engineering, an available functionality in the environment, in order to deal with the new

incorporated notations. Other possibility is to extend the criticism mechanism reachable

in the Odyssey environment. The goal is to allow the model consistency verification in

an automatic manner, verifying the need to adapt the set of rules of model formation to

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

92

meet the modeling of features represented by the other notations on the environment,

beyond the notation Odyssey-FEX. Another extension is to offer to users the possibility

of describing their own notation, by the decomposition of features of each notation

elements.

Also, the plan and implementation of evaluation studies more complete has to be

included in the future works, involving the proposed approach as a whole and the use of

the environment. As well as get the opportunity to apply the approach and tool in the

development of LPS real and large. Thus, it is possible to identify opportunities for

development and improvement of the approach and the extension of the environment

with possible desired notations.

The study of some existing notations for feature modeling, associated with the

identification of fundamental concepts in the variability modeling, may be a first step

towards understanding the needs of representation and mappings for the existing

representations, which can culminate in the unification of feature notations and a

consensus in this regard. As it has occurred with other areas, we hope to see an effort in

this direction for feature modeling.

Acknowledgments. The authors would like to thank CAPES, CNPq and FAPERJ for

the financial support.

References

1. Arango, G. F. “Domain Engineering for Software Reuse.” PhD thesis, University of

California at Irvine, 1988.

2. Griss, M. L., Favaro, J., D'Alessandro, M., 1998, “Integrating feature modelling with

the RSEB”. In: Proceedings of Fifth International Conference on Softwre Reuse -

ICSR5, pp. 76-85 Victoria, British Columbia, Canada.

3. Northrop, L., “SEI’s Software Product Line Tenets”, IEEE Software, v.19, n. 4

(July/August, 2002), pp. 32-40.

4. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S., 1990, “Feature-oriented

domain analysis (FODA) feasibility study”. Technical Report CMU/SEI-90TR -21,

Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, Nov.

1990.

5. Odyssey, "Odyssey SDE Homepage", http://reuse.cos.ufrj.br/odyssey

6. Fernandes, P., Werner, C., 2008, “Ubifex: Modeling context aware software product

lines”. In 2nd International Workshop on Dynamic Software Product Line

Conference, Limerick, Ireland, 2008, pp. 3-8.

7. Czarnecki, K., Helsen, S., Eisenecker, U., “Staged Configuration using feature

models”., Software Product Lines: Third Internacional Conference, SPLC ,

Proceedings, v. 3154, Boston, MA, USA, August 30-September 2, 2004, pp. 266-

283.

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

93

8. Czarnecki, K., Helsen, S., Eisenecker, U., “Formalizing cardinality based feature

models and their specialization”, Software Process: Improvement and Practice, v.10,

n.1 (March, 2005), pp. 7-29.

9. Gomaa, H., “Designing Software Product Lines with UML: From Use Cases to

Pattern-Based Software Architectures”, Addison-Welsey, 2004.

10. G. Arango, and R. Prieto-Diaz, “Introduction and Overview: Domain Analysis

Concepts and Research Direction”, G. Arango R. P.–D.A. (eds), Domain Analysis and

Software Systems Modeling, IEEE Computer Society Press, 1991, pp. 9-25.

11. G. Halmans, K. Pohl, “Communicating the variability of a software-product family

to customers”. Software and Systems Modeling, 2(1) 2003 15-36.

12. Svahnberg, M., Van Gurp, Bosch, J., “A Taxonomy of Variability Realization

Techniques”. ISSN: 1103-1581, Blekinge Institute of Technology, Sweden, 2002.

13. Halmans, G., Pohl, K., “Communicating the variability of a software-product family

to customers”. Software and Systems Modeling, 2(1) 2003 15-36.

14. Lee, K., Kang, K., Lee, J., “Concepts and Guidelines of Feature Modeling for

Product Line Software Engineering”, Software Reuse: Methods, Techniques, and

Tools : 7th International Conference, ICSR-7, Proceedings, Austin, TX, USA, April,

2002, pp. 62-77

15. Gamma, E., Helm, R., Johnson, R., Vlissides, J., “ Design Patterns: Elements of

Reusable Object-Oriented Design”. Addison-Wesley, Reading, MA, 1995.

16. Antkiewicz, M., Czarnecki, K., “FeaturePlugin: feature modeling Plug-in for

Eclipse”, OOPSLA’04 Eclipse Technology eXchange (ETX) Workshop, Vancouver,

British Columbia, Canada, Oct. 24-28, 2004. pp. 67-72.

17. Czarnecki, K., Eisenecker, U.W., 2000, “Generative programming: Methods, Tools,

and Applications”, Addison-Wesley, Boston, MA.

18. Lédeczi, A., Maróti, M., Völgyesi, P., “The Generic Modeling Environment”,

Institute for Software Integrated Systems, Vanderbilt University, Nashville, USA,

2001.

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

94

