

On the Support and Application of Macro-Refactorings for
Crosscutting Concerns

Bruno C. da Silva1, Eduardo Figueiredo2, Alessandro Garcia3 and Daltro J. Nunes1

1 Informatics Institute – Federal University of Rio Grande do Sul (UFRGS) – Brazil

2 Computing Department – Lancaster University, United Kingdom.

3 Opus Research Group - LES, Informatics Department – PUC-Rio, Brazil.
{bcsilva,daltro}@inf.ufrgs.br, e.figueiredo@lancaster.ac.uk,

afgarcia@inf.puc-rio.br

Abstract. Crosscutting concerns hinder software stability and reuse and,
hence, refactorings have been proposed to modularise them using aspect-
oriented programming technology. However, refactoring of crosscutting
concerns is challenging and time-consuming because it involves many inter-
dependent micro-refactorings. It may also be a repetitive task as recent
studies have pointed out that most crosscutting concerns share a limited
number of recurring shape patterns. This paper presents a family of macro-
refactorings for modularising crosscutting concerns which share similar forms
and patterns. It also proposes a complementary set of change impact
algorithms which support designers on the decision whether to apply concern
refactoring. We evaluate our technique by measuring the impact of refactoring
22 crosscutting concerns in two applications from different domains.

1. Introduction
A concern is any critical or important consideration to one or more stakeholders
involved in the software development and maintenance [Robillard 2007]. The reuse and
stability of software modules is largely dependent on the ability of developers to wisely
refactor the so-called crosscutting concerns [Eaddy 2008] into software modules, such
as aspects [Kiczales 1997]. However, refactoring [Fowler 1999] of such concerns is a
non-trivial, time-consuming software maintenance task for many reasons. First,
crosscutting concerns entail many inter-related pieces of source code scattered through
multiple modules. Second, these pieces might share some properties, which means that
isolate, unordered use of existing module-driven micro-refactorings [Fowler 1999;
Hanenberg 2003; Monteiro 2006] does not suffice and is counter-productive. Third,
according to [Murphy-Hill 2009], about 40% of tool-initiated refactorings occurs in
batches. They have observed that most of refactoring sequences are applied manually
and are error-prone [Murphy-Hill 2009].

 The situation is exacerbated in crosscutting concern modularisation as
developers have to perform several co-dependent micro-changes [Silva 2009a]. Several
fine-grained refactorings [Fowler 1999; Hanenberg 2003; Monteiro 2006] need to be
applied sequentially in a short period of time to achieve the full concern modularisation.
It was also recently found that concerns exhibit recurring categories of crosscutting
shapes or patterns [Figueiredo 2009], thereby making repetitive the refactoring steps

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

95

associated with each crosscutting category. Given the widely-scoped nature of
crosscutting concerns, the decision to refactor them (or not) with aspect-oriented
programming (AOP) [Kiczales 1997] is not easy either. One of the key factors to
consider is the degree of change impact [Greenwood 2007]. In addition, recent
empirical studies [Figueiredo 2008; Greenwood 2007; Figueiredo 2009] have pointed
out that refactoring crosscutting concerns with aspects is not always beneficial.

 Several techniques have been proposed in the literature to apply aspect-oriented
(AO) refactoring into object-oriented (OO) software [Iwamoto 2003; Hanenberg 2003;
Hannemann 2005; Marin 2005; Monteiro 2006; Binkley 2006]. The problem is that they
are not concern-wise and often require a huge list of disconnected transformations to
modularise even a typical, simple crosscutting concern, such as the Observer design
pattern [Gamma 1995]. They do not guide the designer to holistically implement the set
of micro-changes related to the scattered elements constituting a crosscutting concern.
Hence, it becomes difficult to choose and apply a set of fine-grained refactorings in a
feasible order to achieve the concern modularisation.

 In this context, this paper presents a family of concern-aware coarse-grained
refactorings (or simply macro-refactorings) [Silva 2009a] based on AOP. They address
the limitation of existing micro-refactorings (Section 2) by guiding the developers to
modularise crosscutting concerns with correlated fine-grained code transformations. In
particular, this paper provides two major contributions. It extends our previous work
[Silva 2009a], which described two initial macro-refactorings for crosscutting concern
modularisation. We provide a catalogue of macro-refactorings for thirteen recently-
documented crosscutting patterns [Figueiredo 2009] (Section 3). These refactorings can
be reused every time a concern matches the crosscutting pattern addressed by the
refactoring. As part of the evaluation procedures, we also present a complementary set
of change impact algorithms to support designers on the decision whether to apply
concern refactoring or not (Section 4.1). Information about the change impact of
refactoring candidates is required when reasoning about the feasibility and cost
effectiveness of such task [Mens 2004]. We also provide a systematic evaluation of our
concern-sensitive refactorings (Section 4) and concluding remarks (Section 5).

2. A Discussion of Aspect-Oriented Refactoring Techniques
Aspect-Oriented Programming (AOP) provides explicit mechanisms for improving the
modularisation of otherwise crosscutting concerns through the notion of aspects
[Kiczales 1997]. Refactoring is one of the essential techniques used to mitigate design
flaws [Fowler 1999], such as crosscutting concerns. Aiming at improving quality
attributes of software design, refactoring practices have emerged through the use of
behaviour-preserving transformations over code units [Fowler 1999]. This section
presents a brief review and discussion of available refactoring techniques which take
into account the existence of AOP.

Existing Categories of AO Refactorings. AOP-related refactorings can be divided into
three categories: first, OO refactorings that have been extended to become aspect-aware
[Iwamoto 2003; Hanenberg 2003]; second, aspect-oriented (AO) refactorings
particularly focused on AOP constructs [Garcia 2004; Monteiro 2006]; and, third,
refactorings tailored for supporting extraction and modularisation of crosscutting
concerns [Marin 2005; Hannemann 2005]. Our proposed refactorings fit in the third

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

96

category and are used to address crosscutting code as the one exemplified in Figure 1.
Figure 1 shows code fragments realising the Exception Handling concern extracted
from a Web-based system, called Health Watcher (HW) [Greenwood 2007]. Health
Watcher is one of the target applications used in our study evaluation (Section 4). The
two frames depicted in Figure 1 consist of exception handling blocks which are clones
of crosscutting code spread through many modules of the HW system. The first one was
encountered 28 times, while the second has 7 occurrences.

try{
...
} catch (RemoteException e)
{
 throw new CommunicationException(e.getMessage());
}

try{
...
} catch (RemoteException e)
{
 e.printStackTrace();
}

28x

7x

Figure 1 – Fragments extracted from the EH concern of Health Watcher

 According to recent approaches for refactorings using AOP, there are a number
of alternatives to restructure this code using aspects. In the case of exception handling
blocks, we have some specific options: (i) Filho and his colleagues (2006) proposed a
cookbook to aspectise exception handling code; and (ii) Binkley (2006) presented
similar refactorings (Extract Exception Handling). However, these alternatives are
specific to exception handling blocks and are tightly coupled to specific programming
language mechanisms. Such refactorings are obviously specific to exception handling
and cannot be applied to other forms of crosscutting concerns which are also
implemented by replicated code. Alternatively, a designer could consider the reuse of
fine-grained refactorings from existing catalogues, such as: (i) Extract Code to Advice
and Extract Pointcut Definition [Garcia 2004]; (ii) Extract Fragment into Advice
[Monteiro 2006]; (iii) Fowler’s OO refactorings to prepare or to adapt the source code
for application of AO refactorings; and (iv) refactorings to restructure the internals of
aspects or to dealing with generalisation [Monteiro 2006].

Lack of Concern-Aware Refactorings. However, it is difficult to grasp from the
variety of available fine-grained OO and AO refactorings the ones to compose a coarse-
grained refactoring intended to modularise (or portion of) a concern. Moreover, in some
cases we have to deal with imprecise definitions of refactorings and in many situations
refactorings with overlapped intentions and similar names. In fact, fine-grained
refactorings available in the literature [Iwamoto 2003; Hanenberg 2003; Binkley 2006]
are usually defined without a standard and consistent terminology. Most of them
[Garcia 2004; Monteiro 2006] address the same situation and have similar goals. Some
examples include Extract Exception Handling [Binkley 2006], Extract Pointcut
[Iwamoto 2003], Extract Pointcut Definition [Garcia 2004], and Extract Advice
[Hanenberg 2003]. The selection of such a list of refactorings and their composition is
not a trivial task and varies on different contexts. Furthermore, once designers have
settled up a suitable composition of fine-grained refactorings to be carried out into a

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

97

specific context (for instance, the case of Figure 1), there is no guarantee they will
remember of that specific composition and reuse it in another occasion.

3. Macro-Refactorings for Crosscutting Concern Patterns
This section presents a catalogue of macro-refactorings (Section 3.1) for modularisation
of crosscutting concerns based on their recurring realisation patterns. These patterns
were identified and documented by previous work [Figueiredo 2009].

3.1. Catalogue of Macro-Refactorings

A concern can manifest itself in a variety of different ways, defined by its crosscutting
pattern [Figueiredo 2009]. Crosscutting patterns are symptoms to motivate the
application of refactorings for crosscutting concerns because they represent harmful
concern realisations. However, designers are not required to factor out every instance of
a crosscutting pattern. For instance, there are crosscutting concerns strongly coupled to
the base code that make hard or inappropriate their refactoring. In these cases, an
attempt of refactoring would cause many widely-scoped changes. Some algorithms for
change impact analysis are presented in Section 4 to support the refactoring decision,
taking modification trade-offs into account.

Table 1 – Crosscutting patterns and corresponding refactorings

Category Refactoring Name Recommended Action

Octopus It aims at moving to aspects parts of classes composing the
body or touched by tentacles of an Octopus concern.

Black Sheep It identifies classes implementing slices of the Black Sheep
concern and modularises these slices into aspects.

Flat
Crosscutting
Shapes

God Concern (*)
It tries to decompose the God Concern into several sub-
concerns. Then, the modules members realising sub-concerns
should be aspectised.

Climbing Plant (*) It eliminates the concern realisation from an inheritance tree. Inheritance-
wise Concerns Hereditary Disease Similar to Climbing Plant, but considering the existence of

disease-free nodes (modules not realising the concern).

Tsunami (*) It minimises coupling among modules where one of them,
called wave source, is coupled to all others, called waves.

Tree Root
Inversely, it minimises coupling among modules where one
of them, called trunk, receives incoming coupling connections
from other modules, called feeders.

King Snake It aims at modularise a non-cyclic chain of coupling
connections among modules realising a concern.

Communicative
Concerns

Neural Network It makes possible the aspectisation of modules composing a
network of coupling connections among them.

Copy Cat (*)
Dolly Sheep

It removes replications of concern code in modules by the
aspectisation of structural and behavioural copies.

Data Concern It tries to better modularise concerns only composed of data
(i.e., attributes and accessors operations).

Other
Crosscutting
Patterns

Behavioural Concern Complementarily, it tries to better modularise concerns totally
formed by behaviour (i.e., operations).

(*) Indicates representative refactorings to be detailed in the next sections.

 Table 1 shows macro-refactorings for crosscutting concerns in each pattern
category. All the patterns are precisely described including examples in [Figueiredo
2009]. This table also summarises the recommended action for each refactoring. In the

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

98

case of Copy Cat and Dolly Sheep, just one macro-refactoring is presented since the
latter is a specialisation of the former. Due to space constraints, we detail in the
following sections a representative macro-refactoring (marked with * in Table 1) of
each crosscutting pattern category. The presentation structure of the proposed macro-
refactorings follows well-known refactoring catalogues [Fowler 1999; Monteiro 2006].
Basically, each macro-refactorings is presented in terms of a typical situation, a
motivation, an abstract representation, recommended actions, and mechanics. Since a
macro-refactoring is composed of micro-refactorings, we selected the following set of
fine-grained refactorings from Fowler’s and Monteiro’s catalogues [Fowler 1999;
Monteiro 2006] as our set of micro-refactorings: Move Field/Method from Class to
Intertype, Extract Fragment into Advice, Change Implements/Extends with Declare
Parents, Move Method, Pull up Method/Field. Therefore, we have available this set of
refactorings to compose our macro-refactorings.

3.2. God Concern Refactoring

Typical Situation: This symptom manifests when, in addition to being scattered and
tangled over many modules, the concern also concentrates multiple intentions and
functionalities. For instance, Figure 2 presents an abstract representation of God
Concern and its respective refactoring. The left-hand side of this figure shows a God
Concern instance. The shadow grey areas of this figure indicate parts of modules
(represented by boxes) realising the concern under consideration. This figure highlights
that God Concern is a widely-scoped crosscutting concern and requires a lot of
functionality in its realisation.

Motivation: God Concern indicates a design modularity flaw because (i) it represents a
scattered and tangled concern and (ii) the concern concentrates multiple responsibilities.

Legend

Class Aspect

Concern code Crosscuts

Figure 2 – Abstract representation of the God Concern Refactoring

Recommended Action: The key action to address this problem is to try to decompose
the God Concern into several sub-concerns; each of them representing a different
modular slice of the God Concern. This decomposition aims at facilitating the
modularisation of each portion of the God Concern in a separate aspect. The abstract
representation of this refactoring shows how to modularise a God Concern instance
using classes and aspects (right-hand side of Figure 2). The aspectisation should be
done by using introductions, pointcuts, and advices as described below.

Mechanics:

1) Identify possible concern decomposition: check if it is possible to decompose the
God Concern into new sub-concerns with well-defined intentions.

2) Identify modules realising God Concern.

3) Transformation steps

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

99

a. If new sub-concerns were decomposed from God Concern, then create at least one
aspect for each new sub-concern.

b. If a class is totally dedicated to the concern, then optionally move it to an aspect.
This step is not required because that class can be considered well-modularised.

c. If a class also participates in other concerns, then separate the God Concern parts
and move them into an aspect.

d. For every attribute realising God Concern: Move Field from Class to Intertype.
e. For every method realising God Concern: Move Method from Class to Intertype.
f. For every code fragment realising God Concern: Extract Fragment into Advice.
g. For class extensions or interface implementations related to the concern realisation,

apply Change Implements/Extends with Declare Parents.

3.3. Climbing Plant Refactoring

Typical Situation: This symptom occurs when modules realising the concern are
participating in an inheritance tree. The concern affects the root of an inheritance tree
and propagates its structure to all children (also called branches) of this tree.

Motivation: This crosscutting pattern introduces implicit dependency between modules
via inheritance relationships. That is, changes in a branch can ripple through ancestral
modules to other branches of the inheritance tree. For example, changing an overridden
method could trigger changes in the abstract method definition and, as a result, further
modifications might be required to other modules overriding the same method. Such
ripple effect could be avoided if the concern is localised in one module (e.g., aspect).

Recommended Action: The following actions are used to eliminate the concern
realisation from an inheritance tree. Figure 3 presents the abstract representation before
(left-hand side) and after (right-hand side) the application of the Climbing Plant
refactoring steps. If the use of inheritance exists only for the concern realisation, then it
should be moved to aspects and introduced back by intertype declaration (Alternative
1). Otherwise, inheritance is left in an object-oriented style (Alternative 2).

Legend

Class

Aspect

Concern code

OR

(Alternative 1) (Alternative 2)

Crosscuts

Inheritance

Figure 3 – Abstract representation of the Climbing Plant Refactoring

Mechanics:

1) Identify the participating modules: the root and branches of Climbing Plant.

2) Transformation steps for the root
a. If the root is completely assigned to the concern realisation, then optionally move it

to an aspect.
b. If the root is assigned to more than one concern then it is required to separate the

Climbing Plant concern and move it to an aspect. Attributes, methods, and code
fragments realising the Climbing Plant root can be factor out to aspects using,
respectively, Move Field from Class to Intertype, Move Method from Class to
Intertype, and Extract Fragment into Advice.

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

100

3) Transformation steps for branches
a. Using a similar strategy of Step 2.b (above), each attribute, method, and code

fragment realising a Climbing Plant branch has to be refactored. For instance, Move
Field from Class to Intertype can be used to modularise concern-related attributes.

b. For class extensions and interface implementations related to the concern
realisation, we can apply Change Implements/Extends with Declare Parents. Note
that, an inheritance relationship should not be moved if it is not assigned to the
Climbing Plant concern, i.e., this relationship may be assigned to other concerns.

3.4. Copy Cat Refactoring

Typical Situation: This symptom occurs when replicated code implements the same
concern. In other words, the given concern is implemented by similar pieces of code in
different modules. Such replicated parts may be structural (field and method
declarations) or behavioural (code fragments inside methods). This situation is similar
to the duplicated code bad-smell proposed by Fowler (1999). However, Copy Cat refers
to duplications related to a specific concern realisation [Figueiredo 2009].

Motivation: These duplications can occur, for example, as a result of copy and paste
practices and they increase the overall costs of maintenance activities [Fowler 1999].
Copy Cat also occurs when pieces of code implementing such concern are almost
identical, varying only in small details. In either similar or identical code, every time
one piece of concern code is modified, other copies are likely to require similar
modifications. Such situation may affect the maintainability of the underlying concern.
Examples like this should be eliminated by concentrating a single copy into an aspect
and introducing this copy in several parts by means of aspectual mechanisms.

Recommended Action: To eliminate the replications, structural copies could be
localised into aspects and introduced back by inter-type declarations. For behavioural
copies, it is necessary to use pointcuts to pick up the appropriate joinpoints and execute
the copies’ behaviours by means of advice. Figure 4 illustrates the Copy Cat
Refactoring. Basically, the replicated concern code (labelled ‘a’ in the left-hand side of
Figure 4) is moved to an aspect (right-hand side) which, in turn, introduces the code
back to the appropriate classes.

a

a

a a
Legend

Class Aspect

Replicated concern code

Crosscuts

a

Figure 4 – Abstract representation of the Copy Cat Refactoring

Mechanics:

1) Identify the participating modules: The key elements to be identified are modules
implementing replicated concern code. We also need to distinguish structural copies
(field and method declarations) from behavioural ones (code fragments inside methods).

2) Refactoring steps for structural copies:
a. If modules have replicated methods realising the same concern and are involved

in inheritance relationships, then Pull up Method can be applied to move one copy
of the replicated concern method to a superclass. The target superclass should
realise the same concern. The replicated methods should be available to all

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

101

subclasses relying on them. The remaining copies of these concern-related
methods can then be removed.

b. If modules involved in inheritance relationships have replicated attributes
realising the same concern, then Pull up Field can be used into one of the copies
to have the replicated concern attribute available in just one place. Attributes
realising the concern have to be accessible to subclasses which rely on them.
Finally, the remaining copies can then be removed.

c. If modules which have concern copies are not involved in an inheritance tree, then
Move Field from Class to Intertype can be applied for each replicated concern
attribute and Move Method from Class to Intertype for each replicated method.

3) Refactoring steps for behavioural copies:
a. If the modules which have replicated code fragments are involved in inheritance

relationships, then Extract Method can be used to create a new method with the
replicated code fragment. Then, move the newly created concern method to a
superclass following Step 2.a above.

b. Extract Fragment into Advice can be used to extract pointcuts which pick up the
joinpoints for behavioural copies. Move copies to aspect by creating an advice to
execute the corresponding behaviour. Alternatively, Extract Method is used to
expose replicated code fragments and then, Move Method from Class to Intertype.

3.5. Tsunami Refactoring

Typical Situation: This symptom occurs when modules are coupled to each other due to
the concern realisation. Moreover, there is a core module, name wave source, which
direct or indirect connects to all other participating modules (called waves). This
situation resembles wave propagation of coupling connections (left side of Figure 5).

Motivation: The high coupling level caused by this crosscutting pattern is a typical
modularity flaw. The wave source is a highly coupled module which is difficult to
comprehend and maintain since it depends on several pattern’s participating modules.

Recommended Action: After identifying the wave source and composing waves, we
have to modularise the scattered concern code (Figure 5). Refactoring a Tsunami-
forming module is optional if this module is fully dedicated to the concern realisation.

Legend

Class Aspect

Concern code Crosscuts

Figure 5 – Abstract representation of the Tsunami Refactoring

Mechanics:

1) Identify the participating modules: the wave source and waves.

2) Transformations steps to be applied to both wave source and waves:
a. If a module is completely assigned to the concern realisation, then optionally

move it to an aspect.
b. For every attribute realising Tsunami: Move Field from Class to Intertype.
c. For every method realising Tsunami: Move Method from Class to Intertype.
d. For every code fragment realising Tsunami: Extract Fragment into Advice.

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

102

4. Evaluation
This section describes a systematic evaluation of the proposed macro-refactorings
(Section 3). We applied our technique to two medium-sized applications, named Health
Watcher [Greenwood 2007] and Mobile Media [Figueiredo 2008]. Health Watcher
(HW) is a Web-based information system for supporting healthcare-related complaints.
Mobile Media (MM) is a software product line for handling data on mobile devices. We
selected 22 concerns from the two target systems and classified them according to 13
crosscutting patterns [Figueiredo 2009]. One concern can be classified in more than one
pattern instance. From this analysis, 42 instances of crosscutting patterns were found.

4.1. Change Impact Analysis for Concern-Aware Refactorings
As part of the evaluation procedures, we have elaborated algorithms to compute
measures variations over refactoring candidates. This strategy was followed to support
change impact analysis and also to enable comparisons after the refactorings
application. A programmer could also alternatively use such algorithms to decide for
the refactoring or not. The impact is computed based on three concern metrics proposed
by [Sant’anna 2003]: Concern Diffusion over Components (CDC) which counts the
number of primary modules whose main purpose is to contribute to the implementation
of a concern; Concern Diffusion over Operations (CDO) which counts the number of
operations whose main purpose is to contribute to the implementation of a concern; and,
Concern Diffusion over Lines of Code (CDLOC) which counts the number of transition
points for each concern through the lines of code.

 We have defined an algorithm for each macro-refactoring of Table 1 (Section 3).
Besides, these algorithms use sub-routines to compute the impact of fine-grained
refactorings. Note that refactoring for crosscutting pattern modularisation is composed
of fine-grained refactorings. The algorithms for impact analysis require about seven
sub-routines to support the evaluation of the measurement variations. Due to space
constraints, we show only two algorithms (Listing 1 and Listing 2) as representative
ones. The design of other algorithms follows a similar rationale. All of them follow the
transformation steps defined for the corresponding macro-refactoring (Section 3). For
instance, if a condition appears on the transformation steps, a similar conditional
structure is defined by the algorithms. Moreover, calls to sub-routines correspond to
points where a transformation step requires the use of micro-refactoring.

 Listing 1 shows a routine which evalutes the impact of the micro-refactoring
Extract Fragment into Advice. This routine computes the CDO and CDLOC values
according to the concrete instance of the crosscutting pattern under consideration. The
CDO value is decreased by 1 unit if the operation which contains the fragment does not
have another fragment related to the concern (first IF in Listing 1). On the other hand,
CDO is increased by 1 unit if a new advice is created just for the extracted fragment
(second IF). Regarding CDLOC, this measure is decreased by 2 units depending on the
two situations indicated by the last IF and FOR EACH declarations, respectively.

 The algorithm depicted in Listing 2 evaluates the impact of the God Concern
Refactoring presented in Section 3.2. The CDC value varies at the beginning and at the
end of this algorithm. It is increased by 1 unit for each new concern decomposed from
God Concern; each new concern corresponds to a new aspect which modularises it. This

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

103

value is also decreased by 1 unit for each refactored class which has all its concern-
related parts moved to aspects. Additionally, this algorithm calls subroutines concerned
with micro-refactoring steps, such as Extract Fragment into Advice (Listing 1).
PROCEDURE evaluateImpactExtractFragmentIntoAdvice(var CDO, var CDLOC)
BEGIN
 IF the operation which contains the fragment does not have another fragment related
to the concern THEN
 CDO <- CDO - 1;
 END-IF
 IF a new advice will be created just for the extracted fragment THEN
 CDO <- CDO + 1;
 END-IF
 IF there is no code related to the concern immediately adjacent to the extracted
fragment THEN
 CDLOC <- CDLOC - 2;
 FOR EACH local variable used only by the fragment AND with no adjacent code
related to the concern DO
 <- CDLOC - 2; CDLOC
 END-FOR

END-IF
END

Listing 1 – Impact routine for Extract Fragment into Advice
PROGRAM ImpactAnalysis_GodConcernRefactoring
var
 n_modified_op, n_fragments, n_methods: Integer;
 CDC, CDO: Integer
 CDLOC: Integer;
BEGIN
 C, CDO, CDLOC, n_modified_op, n_fragments, n_metho 0; CD ds <-

IF oncern will decomposed into new ones THEN the God C be
 FOR EACH new concern DO
 <- CDC + 1; CDC
 END-FOR
 END-IF
 FOR EACH module to be refactored DO
 IF there is inheritance or interface implementation related to the concern THEN
 evaluateImpactMoveImplementsExtends(CDLOC);
 END-IF
 FOR EACH attribute related to the concern DO
 evaluateImpactMoveFieldIntoAspect(n_modified_op, n_fragments, n_methods, CDO,
CDLOC);
 END-FOR
 FOR EACH method related to the concern DO
 evaluateImpactMoveMethodIntoAspect(CDLOC);
 END-FOR
 IF there is code fragment related to the concern THEN
 FOR EACH fragment DO
 evaluateImpactExtractFragmentIntoAdvice(CDO);
 END-FOR
 END-IF
 IF every concern-related member or code fragment was eliminated from the module
THEN
 < - CDC - 1; CDC
 END-IF
 END-FOR

END

Listing 2 – Impact analysis for God Concern refactoring

4.2. Evaluation of Macro-Refactorings for Crosscutting Concerns

 Table 2 shows partial results of the impact analysis and refactoring focusing on
five concerns (the ones with the most interesting results). The complete results are
available at a supplementary website [Silva 2009b]. The numbers in Table 2 indicate
variations of the 3 concern metrics in two situations: first, according to our algorithms
for impact analysis (Section 4), before the application of macro-refactorings; and

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

104

second, according to the refactoring itself, collecting data before and after the
corresponding application to modularise the target concern. Hence, the higher the
negative numbers for CDC, CDO, and CDLOC, the better the concern modularity
results. By analysing these data, we can verify that, in general, both the impact analysis
and refactoring indicate improved separation of concerns. That is, in most cases (pair
Concern/Crosscutting Pattern) the measurement varies negatively or stays neutral.

Table 2 – Results from impact analysis and refactoring of HW and MM

Measurement Variations
Impact Analysis Refactoring System Concern Crosscutting

Pattern
CDC CDO CDLOC CDC CDO CDLOC

Abstract
Factory Climbing Plant - - - - - -

Copy Cat 0 1 0 0 1 0 Command
Climbing Plant - - - - - -

Octopus -14 -15 -54 -14 -15 -50
Copy Cat -4 -11 -44 -4 -11 -44

Climbing Plant -5 -9 -42 -5 -9 -42
Observer

Hereditary Disease -2 0 -4 -2 0 -4

HW

State Climbing Plant - - - - - -
Tsunami -6 4 -108 -4 5 -102 MM Label

Media Climbing Plant -1 1 -14 0 1 -14

Refactoring Tiny Crosscutting Patterns does not Pay off. Table 2 shows three
instances of the Climbing Plant crosscutting pattern where the impact analysis and
refactoring were not carried out. These three Climbing Plant instances refer to the
Abstract Factory, Command, and State concerns. These pattern instances were not
factored out because they involve very few elements of a concern. Hence, the effort of
refactoring these tiny pattern instances would represent overreaction with respect to
insignificant gains in terms of separation of concerns. This observation is backed up by
previous studies on aspect-oriented pattern implementations [Garcia 2005].

Positive Variation of CDO. In the HW study, an instance of Copy Cat (the Command
concern in bold, Table 2) presented a positive variation in its CDO value. This situation
is explained by the fact that some refactoring steps create either new methods to expose
joinpoints or new advices to introduce extracted code fragments from methods. In the
HW particular case, the latter (new advice) is responsible for the increase of CDO. This
situation also appears in the MM study with the Label Media concern. In both cases
there was one extra piece of advice and, therefore, CDO is increased by 1 unit.

Conflicting Measurements of Impact Analysis and Refactoring. Measurements for
change impact analysis and refactoring do not match for two crosscutting patterns:
Octopus and Tsunami, considering the Observer and Label Media concerns
respectively. In those cases (shaded in Table 2) the algorithms for change impact
analysis suggest better results compared to the actual application of refactorings. These
differences highlight the existence of specific code fragments of a concern which could
not be refactored in practice. We found two of these situations summarised as follows:
(i) concern-related code fragments which do not match any refactoring step, and (ii)
concern-related code fragments which designers decided to not refactor. For instance, in
the latter case the designer realised that a transformation would either raise new design
flaws or it could negatively impact on the modularisation of other modules or concerns.

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

105

 It is expected that the impact analysis does not always give exactly the same
numbers of the refactoring in practice. In fact, it is hard to define a precise algorithm
given the widespread characteristic of some crosscutting concerns and its several
refactoring possibilities. Nonetheless, we could not find many significant differences for
the most cases. In other words, there was not big discrepancy taking into consideration
the complexity of the problem at hand. It is important to note that even with small
differences, the overall trend remained the same as followed discussed.

Widely-Scoped Refactoring Favours Concern Modularity. We also investigated the
number of modules involved in the application of macro-refacorings for each
crosscutting pattern. Then we analysed the measurement variation per number of
refactored classes on each identified crosscutting pattern. Confirming expectations, we
have observed that a macro-refactoring restructuring a pattern composed of more
modules performs better than others restructuring fewer modules. Figure 6 supports this
observation by showing charts for the Observer and Label Media concerns (from HW
and MM systems, respectively). Each point in the charts represents a measurement for
CDC, CDO, or CDLOC, varying in the y axis. The x axis expresses the number of
refactored modules in a crosscutting pattern.

Observer (HW)

-60

-50

-40

-30

-20

-10

0
0 5 10 15 20

Refactored Modules

M
ea

su
re

m
en

t V
ar

ia
tio

n

CDC

CDO

CDLOC

Hered.
Dis. Climb. P. Copy Cat Octopus

Label Media (MM)

-200

-150

-100

-50

0

50

0 5 10 15 20

Refactored Modules

M
ea

su
re

m
en

t V
ar

ia
tio

n

CDC
CDO
CDLOC

OctopusNeural Net.Tsunami
K. Snske/
Climbing P.

Tree
Root

Figure 6 – Measurement variation per refactored modules in a pattern

 Taking the Observer concern into account (left-hand chart), the CDC variation is
-14 for the Octopus pattern (Table 2) when 15 classes are refactored. The values
corresponding to CDO and CDLOC in the Octopus case also present a high variation (-
14 and -50, respectively). By contrast, the refactoring of Hereditary Disease involved a
smaller number of refactored classes (only 3). Moreover, we observe a small variation
for all concern metrics (CDC, CDO and CDLOC) in the Hereditary Disease case. The
variations of CDC, CDO and CDLOC are -2, 0, and -4, respectively. Therefore, we
verify that, in this particular situation, the Octopus Refactoring performed better than
the Hereditary Disease one since the former involved more modules than the latter.

 The CDO variation of LabelMedia (second chart of Figure 6) could be seen as
an exception to this rule. In fact, CDO presents a slightly increase when more modules
require refactoring. This positive variation of CDO is due to new the creation of new
advices as discussed earlier in this section. However, even with the positive variation of
CDO, refactoring of more modules is still the best option when we consider trade offs
of all three metrics. For instance, both charts of Figure 6 show that the CDC and
CDLOC variations express better values for separation of concerns when more modules
are involved in the macro-refactoring. This reflects the reduction of concern scattering
and tangling when the number of refactored modules increases.

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

106

5. Conclusions and Future Work
This paper proposed macro-refactorings aiming to support the modularisation of
concerns matching some pre-defined crosscutting patterns [Figueiredo 2009]. Our
macro-refactorings extend our previous work [Silva 2009] and are composed of micro-
refactorings [Iwamoto 2003; Hanenberg 2003; Hannemann 2005; Marin 2005; Monteiro
2006; Binkley 2006]. They provide a reusable set of transformations to be applied in
recurring categories of crosscutting concerns. Besides, we have proposed algorithms to
enable the evaluation on the change impact of refactorings which can also help
designers on the decision of selecting and applying a particular refactoring. These
algorithms rely on three metrics for separation of concerns in order to assess the change
variation.

 We evaluate the macro-refactorings by performing an exploratory study
involving two target systems – Mobile Media and Health Watcher (Section 4). The
results indicated that our macro-refactorings can be successfully applied in different
concerns from those two systems. It was also possible to verify a better concern
modularisation according to the three employed metrics. Particularly, we observed that
our refactoring technique allows the composition and reuse of micro-refactorings in a
simple way to modularise recurring categories of crosscutting concerns. Additionally,
our algorithms for change impact have shown to be good indicators of refactoring
activities allowing designers to reason about the trade-offs and cost effectiveness before
actually applying refactorings. For instance, our comparison of the measurement
variations for the refactoring application and for impact analysis algorithms indicates
that they have similar results.

 For future and ongoing work, we envision (i) the extension of our technique in
order to support further crosscutting patterns which may be catalogued (ii) the
automation of refactoring steps and change impact algorithms and (iii) new
experimental studies to support or refute our preliminary findings. For example, we
have learned that it is also important to consider in future studies some information not
used in our current impact analysis such as the inter-dependence of modules through
different concerns. Our previous experience in AO software assessment [Garcia 2005;
Greenwood 2007; Figueiredo 2008] has indicated that it is an important work direction.

References
Binkley, D. et al. (2006). Tool-Supported Refactoring of Existing Object-Oriented Code

into Aspects. IEEE Transactions on SW. Eng., Los Alamitos, USA, v.32, p.698–717.

Eaddy, M. et al. (2008). Do Crosscutting Concerns Cause Defects? IEEE Transactions
on Software Engineering, 34(4), pp. 497-515.

Figueiredo, E. et al. (2008). “Evolving Software Product Lines with Aspects: An
Empirical Study on Design Stability”. In: Proc. of the 30th ICSE, pp. 261-270.
Leipzig, Germany, 10-18 May.

Figueiredo, E. et al.. (2009). “Crosscutting Patterns and Design Stability: an
Exploratory Analysis”. In: Proc. of the 17th ICPC, Vancouver, Canada.

Filho, F. et al. (2006). “Exceptions and Aspects: the Devil is in the Details”. In: Proc. of
the 14th FSE, New York, USA. ACM, p.152–162.

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

107

Fowler, M.; Beck, K.; Brant, J.; Opdyke, W. and Roberts, D. (1999). Refactoring:
Improving the Design of Existing Code. Addison-Wesley Professional.

Gamma, E. et al. (1995). Design Patterns: Elements of Reusable Object-Oriented
Software. Boston, MA, USA: Addison-Wesley Longman Publishing.

Garcia, V. et al. (2004). “Manipulating crosscutting concerns”. In: Latin American
Conference on Patterns Languages of Programming (SugarLoafPlop’04).

Garcia, A. et al. (2005). “Modularizing Design Patterns with Aspects: A Quantitative
Study”. In: 4th AOSD, Chicago, USA, 14-18 March 2005.

Greenwood, P. et al. (2007). “On the Impact of Aspectual Decompositions on Design
Stability: An Empirical Study”. Proc. ECOOP. Berlin, Germany.

Hanenberg, S.; Oberschulte, C. and Unland, R. (2003). “Refactoring of Aspect-Oriented
Software”. In: Net.ObjectDays Conference (NODE’03).

Hannemann, J.; Murphy, G.; Kiczales, G. (2005). “Role-based refactoring of
crosscutting concerns”. In: 4th AOSD, New York, USA. ACM, p.135–146.

Iwamoto, M. and Zhao, J. (2003). “Refactoring Aspect-Oriented Programs”. In: Int’l.
Workshop on Aspect-Oriented Modeling at UML’03.

Kiczales, G. et al. (1997). “Aspect-Oriented Programming”. Proc. of the European
Conference on Object-Oriented Programming (ECOOP), pp. 220-242.

Marin, M.; Moonen, L. and Deursen, A. (2005). An Approach to Aspect Refactoring
Based on Crosscutting Concern Types. Software Engineering Notes, v.30, n.4, p.1–5.

Mens, T.; Tourwé, T. (2004). A Survey of Software Refactoring. IEEE Transactions on
Software Engineering, Piscataway, NJ, USA, v.30, n.2, p.126–139.

Monteiro, M. and Fernandes, J. (2006). Towards a Catalogue of Refactorings and Code
Smells for Aspectj. Transactions on Aspect Oriented Software Development
(TAOSD), Lecture Notes in Computer Science, n.3880, p.214–258.

Murphy-Hill, E.; Parnin, C. and Black, A. P. (2009). “How We Refactor, and How We
Know It”. In Proc. of the 14th Int’l Conf. on Software Engineering, New York, USA.

Robillard, M. and Murphy, G. (2007). Representing Concerns in Source Code.
Transactions on Software Engineering and Methodology (TOSEM), v. 16.

Sant’anna, C.; Garcia, A.; Chavez, C.; Lucena, C. and Staa, A. (2003). “On the Reuse
and Maintenance of Aspect-Oriented Software: an assessment framework”. In: XVII
Brazilian Symposium on Software Engineering.

Silva, B.; Figueiredo, E.; Garcia, A. and Nunes, D. (2009). Refactoring of Crosscutting
Concerns with Metaphor-Based Heuristics. Electronic Notes on Theoretical
Computer Science, v.233, p.105–125.

Silva, B.; Figueiredo, E.; Garcia, A. and Nunes, D. (2009). Macro-Refactorings:
Evaluation. Jun/2009. http://www.inf.ufrgs.br/~bcsilva/macrorefactoring_evaluation

 SBCARS 2009
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

108

