
Core Assets Development in Software Product Lines - 
Towards a Practical Approach for the Mobile Game Domain 

Leandro Marques do Nascimento1,2, Eduardo Santana de Almeida1,3, Silvio 
Romero de Lemos Meira1,2 

1Reuse in Software Engineering Group – RiSE, Recife, PE, Brazil 

2Federal University of Pernambuco – UFPE, Recife, PE, Brazil 

3Federal University of Bahia – UFBA, Salvador, BA, Brazil 
{lmn2,srlm}@cin.ufpe.br, esa@rise.com.br 

Abstract. Software Product Lines (SPL) approaches are gradually being 
adopted as a powerful strategy for achieving high productivity and increasing 
quality in software engineering. A particular domain where the adoption of 
such approach may bring relevant benefits is the mobile game domain given 
the big diversity of handsets and the large number of commonalities among 
these games. However, applying SPL approaches in such domain is not trivial 
because of some restrictions, such as reduced memory and application size. In 
this context, this work presents a practical approach to implement core assets 
in a SPL in the mobile game domain combining good practices from previous 
work and briefly describing a case study performed with three mobile games. 

1. Introduction 
One of the key factors for improving quality, productivity and consequently reducing 
costs in software development is the adoption of software reuse – the process of 
creating software systems from existing software rather than building them from scratch 
[Krueger, 1992]. Several researches have been done describing techniques, methods and 
processes in the software reuse area [Almeida et al., 2007] and different efforts have 
been made to apply the concepts of this area in practice with successful results [Product 
Line Hall of Fame, 2008], including big companies such as Hewlett-Packard, Motorola 
and Bosch. 

An approach commonly cited in the software reuse area is Software Product 
Line (SPL), which is defined as “a set of software-intensive systems that share a 
common, managed set of features satisfying the specific needs of a particular market 
segment or mission and that are developed from a common set of core assets in a 
prescribed way”, [Clements and Northrop, 2002]. In other words, a SPL enables the 
instantiation of new applications based on a set of core assets, developed from the 
analysis of commonalities and variabilities of a specific domain or market segment. 

In addition, a particular market segment that is in high-growth during the last 
years is the mobile applications market, especially the mobile games. According to 
iSuppli1

1 iSuppli Corporation: Applied Market Intelligence: 

, the prediction is that the worldwide mobile gaming market will be worth $6.1 

http://www.isuppli.com/  

                                                    SBCARS 2009 
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

124

http://www.isuppli.com/�


billion in 2010 – up from $1.8 billion in 2005. However, this market involves much 
more complex challenges, mainly because of the variety of handsets and manufacturers, 
besides many platform restrictions and different hardware configurations. For example, 
a game produced by Meantime2

In the SPL research field, different efforts have been made [Weiss, 1999] [Bayer 
et al., 1999] [Atkinson et al., 2000] [Clements and Northrop, 2002] [Pohl et al., 2005] 
[Gomaa, 2005] [Almeida, 2007] applying various techniques in different contexts. 
Despite all of this relevant work mentioned, there is still a lack of details in the phases 
of the SPL processes related to domain implementation (or core assets development), 
such as: how features can be mapped on components and correspondingly on code; how 
variability can be managed in code level; or guidelines to apply variability 
implementation techniques. The lack of details in domain implementation phases can 
make SPL approach unaffordable especially when taking into account the restrictions of 
mobile game domain, such as memory size, processing power, different screen sizes and 
different API implementations. Because of these characteristics involving the mentioned 
domain, the adoption of a SPL should be supported by as many details as possible at 
domain implementation phase. 

 (our industrial partner), called My Big Brother, had to 
be deployed for almost fifty devices and the game had to support variations across those 
devices, such as: different screen sizes, different ways of handling HTTP protocol and 
different keypad configurations [Alves et al., 2005]. This scenario demands well defined 
software processes to build applications compatible with as many handsets as possible. 
Therefore, SPL can be a suitable option in this case. 

Considering these aspects, the purpose of this work is to establish a practical 
approach for implementing assets in a SPL applied to mobile game domain and validate 
its applicability through a case study involving, firstly, three adventure mobile games 
developed with Java Micro Edition (ME) technology, and next, the production of a 
fourth game exploring the common features among them. This approach applies 
different techniques for variability implementation, providing guidelines for mobile 
game developers within a SPL context, once the focus of this work remains on domain 
implementation level. 

This paper is organized as follows: Section 2 presents the related work, Section 
3 discusses the proposed approach, which is subdivided in three phases: Component 
Modeling, Component Implementation and Component Testing. In the sequence, a 
brief description of the case study with a practical application of this approach is 
described in Section 4. Finally, Section 5 presents the concluding remarks and future 
work. 

2. Related Work 
As it was already mentioned in the last section, several researches have been performed 
in the areas of software reuse and SPL. Most of the work published in these areas 
commonly present SPL based on the three essential activities: core asset development, 
product development, and management [Clements and Northrop, 2002]. These efforts 
can be characterized as model-based processes with common concepts such as: feature 

2  Meantime Mobile creations, available on http://www.meantime.com.br  

                                                    SBCARS 2009 
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

125

http://www.meantime.com.br/�


modeling, domain (or product line) architecture, component modeling and composition 
and product instantiation based on the domain components. Examples of those 
processes are: PuLSE [Bayer et al., 1999], KobrA [Atkinson, et al., 2000], Software 
Engineering Institute’s framework for SPL [Clements and Northrop, 2002], SPL 
Framework [Pohl et al., 2005] from Pohl, Bockle, and van der Linden, PLUS [Gomaa, 
2005], and RiDE [Almeida, 2007]. 

 On the other hand, other researchers take advantage of generative programming, 
such as FAST [Weiss, 1999], applied successfully in industrial cases such as Lucent 
Technologies and Avaya Labs.  

All the previous work mentioned can be applied on different contexts, however, 
in the particular case of the mobile domain, adaptations in the processes should be done 
to make them address properly the restrictions of the domain. It happens mainly because 
some of the processes are too general or handle with technologies that are not well 
established in mobile domain, such as OSGi [OSGi Alliance, 2008]. Some efforts were 
made in order to adapt a SPL process to the mobile game domain, such as the GoPhone 
Project [Muthig et al., 2004], an adaptation of PuLSE and KobrA. This project did not 
consider common restrictions in the mobile domain, such as screen size and different 
API implementations according to different vendors.  

In addition, another related work defines refactoring tools for extracting product 
lines from different versions of the same product, for instance, FLIP [Alves et al., 
2008]. As a common practice in the mobile applications domain is to adapt an 
application for different handsets (porting), FLIP is intended to analyze the code of 
those different versions of the same application and then generate a product line based 
on aspect-oriented programming, mapping the cross-cutting concerns into aspects 
[Kiczales et al., 1997]. In the case of mobile game domain, for example, a cross-cutting 
concern can be screen size, because this characteristic of a handset affects different 
parts of the code at different levels. This kind of tool can be extremely useful when the 
product line is defined by a single product and different versions of it must be 
implemented to support different families of handsets, as the Abstraction Level 1 shown 
in Figure 1. 

Commonality and Variability Analysis of All Products

Product Line ABC

3 Versions of Prod. A

Product A Product CProduct B

5 Versions of Prod. B 4 Versions of Prod. C
Abstraction 

Level 1

Abstraction 
Level 2

 
Figure 1. Abstraction levels in software product lines applied to mobile game 
domain.  

However, not only is our approach intended to consider the different versions of 
the same product as potential variabilities to be used in other products, but it addresses 

                                                    SBCARS 2009 
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

126



the commonality and variability of different products in the same domain at a higher 
level of abstraction, as Abstraction Level 2 shown in Figure 1. 

3. A Practical Approach for Implementing Core Assets in SPLs applied to 
the Mobile Game Domain 
Based on the good practices from different domain engineering and SPL processes 
[Almeida et al., 2005] added to our industrial experience, we structured an approach to 
cover the main specific aspects of mobile applications domain, as shown in Figure 2.   

The approach is focused on the domain implementation phase of a SPL, 
abstracting the previous phases of domain analysis and design. The process is iterative, 
although the Figure 2 does not show it clearly to avoid complexity and 
misunderstandings. 

 
Figure 2. Overview of the proposed SPL approach for the mobile game domain 
focused on domain implementation phase. 

Three distinct phases can be highlighted in the process: Component Modeling, 
Component Implementation, and Component Testing. From the former steps of 
domain analysis and domain design four mandatory artifacts are expected to be 
provided because they are used as input for the domain implementation and also 
throughout the three phases. These artifacts are:  

Product portfolio. It describes all the product families. In this approach, it is 
considered that the product families are the target handsets in which the game must run. 
Each family has a base member, which is used as a reference for the entire family. 
Table 1 demonstrates an example of product portfolio. 

Product map. It holds information about main capabilities of products, 
including the restrictions inherent to the mobile domain. It also maps the reference 
members of the families from product portfolio to the main capabilities of products. 
Table 2 shows an example of a product map. It describes the devices’ general 
capabilities considering their main configurations, shown in the table as Variation 
Levels. It is important distinguish the handset capabilities from features, which are 

                                                    SBCARS 2009 
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

127



represented in the domain feature model. In addition, Table 3 shows an example of how 
to map families of handsets to their respective main capabilities. 

Table 1. Example of product portfolio including priorities among families of 
handsets. 

 

Table 2. Example of product map. 

 

Table 3. Example of mapping handset families to their main capabilities in the 
product map. 

 
Domain architecture. Modeled in terms of a well accepted notation, such as 

UML, the domain architecture is used to guide the development of new applications in 
the target domain. It holds information about the initial structure of application code and 
models the SPL extension points.  

Feature model. Described in terms of a visual model and based on well 
accepted notation, such as FODA [Kang et al., 1990], this artifact shows the 
relationships among domain features. The feature model can also be used to guide on 
identifying components and refining product map/portfolio. 

In order to properly apply the approach proposed in this work, it is highly 
recommended that all the artifacts’ information is fully provided, following the given 
examples. Java Micro Edition (JME) is adopted as the base technology for all examples. 

                                                    SBCARS 2009 
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

128



If any other technology is chosen, those artifacts should be reviewed to reflect the 
possible restrictions of the technology. Figure 1 also shows five different roles present 
in the approach: domain expert, domain analyst, domain architect, developer and tester. 

3.1. Component Modeling 
The main goal of this phase is to obtain the component detailed design (or component 
specification). For this purpose, the domain architect is the most important role, 
responsible for analyzing the architecture and modeling the identified components. This 
work does not focus on component identification based on domain architecture and 
feature model, but it can be observed as an important research field [Almeida, 2007. 

During component modeling, the architect must take into consideration all 
information described in product portfolio and product map, because these artifacts may 
bring up some restrictions that must be addressed in components’ internal design, such 
as, a family of handsets with reduced memory available.  

Before defining the internal component structure, the domain architect must 
decide which implementation technique will be used to handle the variation levels (or 
variation points) in product map (example in Table 2). One of the most common 
implementation techniques applied to mobile domain is conditional compilation [Alves 
et al., 2005]. This technique can be easily applied to cut off unnecessary code and 
reduce the final application size. Although conditional compilation tags can reduce the 
code readability, there are tools to perform refactoring steps [Alves et al., 2008] helping 
on remaining the code readable. The use of conditional compilation tags does not 
exclude the use of any other variability implementation technique, such as, inheritance, 
delegation or aspect-oriented programming (AOP). 

In order to add the conditional compilation tags for each respective variation 
level, the example product map and also the mapping of handset families and their main 
capabilities are refined. 

To start performing the component specification, the KobrA approach 
[Atkinson, et al., 2000] is used as a reference and adapted. KobrA approach was chosen 
to be adapted because it describes a component using two levels of abstraction (internal 
and external point of views) and this makes it easier for developers and component 
users (integrators) to understand the component behavior. A KobrA is based on 
specification and realization models. Both models are composed by a general set of 
UML models: specification – functional model, behavioral model, structural model and 
decision model; realization – interaction model, execution model, structural model and 
decision model. 

In this approach, the use of textual models is discouraged, such as the decision 
model, and only the use of a structural model is suggested. Doing it this way may avoid 
misunderstandings with textual representations and maintenance problems, if the textual 
model has to reflect the large number of handset families. On the other hand, the use of 
the structural model is encouraged, which is the base for component implementation, 
combined with <<variant>> stereotype to indicate a variant part of the component 
internal design. The domain feature model is used to help on identifying where the 
<<variant>> stereotype should be applied. Product portfolio and product map help 
while designing components to make them complaint to the game domain restrictions. 

                                                    SBCARS 2009 
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

129



Moreover, the components can contain any of the conditional compilation tags listed in 
product map. In this situation, the component internal design should be complemented 
with additional information referent to which tags are being used by any specific 
component. Figure 3 shows an example of component internal design with 
<<variant>> stereotype and additional information of tags being used by the 
component. 

 
Figure 3. Example of component internal design with <<variant>> stereotype 
and additional information of the applicable conditional compilation tags. 

3.2. Component Implementation 

Once the components internal design has been accomplished, the developers are 
responsible for implementing these components using information from components’ 
internal design (structural models), product portfolio descriptions, product map 
constraints and domain feature model. 

As the developers have participated in the Component Modeling phase, they are 
supposed to be familiarized with internal component design and so can start 
components implementation. The major concern at this point is to code the domain 
restrictions and variability within the components specified using the already known 
techniques for variability implementation in product lines [Anastasopoulos and Gacek, 
2001]. These techniques are: conditional compilation, aggregation / delegation, 
inheritance, dynamic class loading, properties, static libraries, overloading, 
parameterization, design patterns, aspect-oriented programming (AOP), reflection and 
dynamic link libraries (DLLs). Among these techniques, only two of them, reflection 
and dynamic link libraries (DLLs), are not applicable to mobile domain because the 
current versions of MIDP/CLDC 2.1/1.1 respectively, still do not support them. 

In the sequence, for each applicable technique mentioned, guidelines and good 
practices of programming are presented through example scenarios to help developers 
during component implementation. Detailed information about these guidelines and 
example scenarios with respective code snippets can be found in [Nascimento, 2008]. 

Conditional Compilation. It enables control over the code segments to be 
included or excluded from a program compilation defined by pre-processing symbols. 
This technique is largely used in mobile domain, mainly because it takes out of the 
application scope all unnecessary code leaving the application as compact as possible to 
be deployed to different handsets with completely different capabilities. The major 
weak point of this technique is related to maintenance, once the code may become hard 

                                                    SBCARS 2009 
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

130



to read and also not compilable in some environments. To mitigate this issue, support 
tools can be used to manage conditional compilation tags and then make it easier to 
build applications in the environment they are being deployed. Conditional compilation 
can become a powerful technique to be used when correctly combined with others 
techniques and good programming practices. Throughout the description of the other 
variability implementation techniques next, conditional compilation will be also 
explored, showing how to combine this technique with the others. 

Example Scenario for Conditional Compilation. One common situation where 
conditional compilation can be used is when it is needed to add an optional feature to a 
specific product in the product line without increasing the other products size. For 
example, if one specific customer needs to add its logo on the first screen game of the 
game, usually called “splash” screen. The code responsible to instantiate the logo image 
and paint it on screen should be embraced by conditional compilation tags. Doing it this 
way, will not cause the other products to have its final size increased. 

Aggregation/Delegation. Aggregation is an object oriented technique which 
enables objects to virtually support any functionality by forwarding requests they can 
normally not satisfy to so-called delegation objects which provide the requested 
services. Delegation is commonly used with facade design pattern. 

Example Scenario for Aggregation/Delegation. This technique is usually 
necessary when a given object has different functionalities and needs to delegate some 
services to another object. For example, if it is needed to isolate sound component and 
delegate specific functionality to a sound controller and a player controller. The 
suggested approach to use Aggregation/Delegation is to combine it with conditional 
compilation tags and isolate these tags in delegated object, embracing its whole method 
bodies. Try to maintain the tags only inside these methods. Other methods that call the 
delegated one must not be embraced by the tags to avoid spreading tags all over the 
code. The following code snippet (double columned) represents delegation technique 
combined with conditional compilation tags. 
 
public class SoundFacade { 

  public void playSnd(String filename) { 

    // No tags in here 

    SoundCtrl.playSnd(filename); 

  }   

} 

 

 

 

 

 

class SoundCtrl { 

  static void playSnd(String filename) { 

    // Delegated method body embraced by   
    // tags 

    //#ifdef sound_player_block 

      //sound code 1 

    //#elif sound_player_thread 

      //sound code 2 

    //#endif 

  } 

}

Inheritance. It is used to assign basic functionality to super classes and 
extensions to subclasses. Inheritance should be used carefully in mobile domain because 
the basic functionality present on super classes has to be actually applicable for all 
subclasses to avoid unused methods. 

Example Scenario for Inheritance. Consider a game where projectiles are shot in 
the direction of the player and they can make a straight or curve path, according to the 
handset screen size in which the game will run. An abstract super class Projectile and 

                                                    SBCARS 2009 
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

131



two subclasses, Fireball and Missile, are defined. In this typical situation, it is 
recommended that the entire subclasses’ bodies are embraced by conditional 
compilation tags according to the target handset screen size. 

Dynamic Class Loading. It is an automatic function of Java and allows loading 
a class in memory only at the first time the class is going to be used. To avoid 
unnecessary classes loaded in memory, factory design pattern can be used to manage 
objects in memory according to the specific product of the SPL. 

Example Scenario for Dynamic Class Loading. One typical situation where 
dynamic class loading is applied is when a method call of some specific class is made 
inside an “if” block. If no other methods of that class had been previously called, then 
the class has not been loaded into memory yet. Therefore, to save application size 
resources, the “if” block must be replaced by conditional compilation tags. 

Properties. Properties files can be used as a powerful technique to group all 
characteristics of a given device. For example, the set of conditional compilation tags, 
the name of resources folder, the set of all handsets in that specific family, all these 
information can be in a property file to be read during application deployment or even 
at runtime to execute certain functions. 

Example Scenario for Properties. A common example of use of properties file is 
when the mobile application needs to be translated to different languages. All 
application texts are stored in a properties file. 

Static Libraries. One of the most powerful ways to apply software reuse is to 
maintain a static library of methods/functions and/or components. The library can 
contain mathematical functions, network connections manager components, image 
processing functions, among others, and it can be properly applied to a mobile 
applications context without restrictions. Tools can be used to cut off unused methods in 
the deployment process. 

Example Scenario for Static Libraries. Mounting a static library in the mobile 
game domain is usually necessary when the required functionalities are not present in 
the native API, for example, Calendar class to manipulate dates or complementary 
String and Image manipulation. 

Overloading. This is a useful technique to reuse a method name by changing its 
signature. Just as parameterized methods, overloaded method bodies should be 
embraced by conditional compilation tags. 

Parameterization. The behavior of the method being called is determined by 
the values of the parameters that are being set. Parameterization should be used 
carefully, once it can generate code that represents OO anti-patterns. To not increase the 
complexity of the parameterized method, it should delegate the correspondent 
functionality to a specific method and this last is responsible for executing the requested 
functions. 

Example Scenario for Parameterization. One example where the 
parameterization can be a good solution is when there is a method responsible for 
playing different types of sounds according to the content type passed as parameter. As 
it was mentioned, in order to avoid complexity, the method checks the parameter and 
then delegates the operation for each specific method. In summary, the use of 

                                                    SBCARS 2009 
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

132



parameterization technique is recommended to be combined with delegation and 
conditional compilation tags. The following code snippet illustrates this scenario. 
class Sound { 

  public void playFile(int contentType, 

      String file) { 

    switch (contentType) { 

        case CONTENT_TYPE_MIDI: 

            this.playMidi(file); 

            break; 

        case CONTENT_TYPE_MP3: 

            this.playMp3(file); 

            break; 

    } 

  } // Class body continues 

  private void playMidi(String file){ 

    //#ifdef sound_type_mid 

      /*method body*/ 

    //#endif 

  } 

  private void playMp3(String file){ 

    //#ifdef sound_type_mp3 

      /*method body*/ 

    //#endif 

  } 

} 

Design Patterns. As it was already mentioned, some design patterns may be 
used in conjunction with other techniques to manipulate variability at code level, such 
as: factory, delegate, facade, among others. 

Example Scenario for Design Patterns. Typically in the mobile game domain, 
factory design pattern can be used with dynamic class loading to provide lazy 
instantiation of resources in memory. Mobile games usually make use of many images 
and frequently needs to load and unload image resources in memory. The following 
code snippet shows and example of factory pattern with lazy instantiation of images in 
memory. The dispose method provides a way to unload resources from memory. 

 
public class ImageFactory { 

  private Image menuBackground; 

  private Image fireball; 

  public Image getMenuBackground() { 

   if (this.menuBackground == null) {  

     // Lazy image instantiation 

   } 

  return this.menuBackground; 

  } 

 

 

  public Image getFireball() { 

   if (this.fireball == null) {  

     // Lazy image instantiation 

   } 

  return this.fireball; 

  } 

  private void disposeImages() { 

    this.fireball = null; 

    this.menuBackground = null; 

  } 

}  

Aspect-Oriented Programming (AOP). Applying AOP to mobile product lines 
can be an interesting approach to reduce development efforts while porting applications 
mainly because the major restrictions of mobile domain are related to cross-cutting 
concerns, such as, display size. AOP demands the use of tools to extract aspects from 
different versions of the same application and produce product lines [Alves et al., 2008]. 

Besides the described techniques, one approach that is commonly mentioned in 
combination with reuse and SPL research fields is OSGi [Almeida et al., 2008]. 
However, the Java Specification Request (JSR) 232, which enables OSGi platform for 
the mobile environment, has not got many adopters, mainly because, deep changes 
would be necessary in the MIDlet life cycle manager to enable OSGi and let two 
different JME applications share the same resources, such as a shared component 
library. For now, few JSR-232 capable handsets have been announced by the current 
main manufacturers making the usage of OSGi in the mobile applications environment 
not practical. 

                                                    SBCARS 2009 
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

133



Based on component specification (structural model) as mentioned in the last 
section, and also on the product portfolio and product map descriptions considering the 
conditional compilation tags, the developers can implement the reusable components 
(SPL core assets) following the guidelines described in this section.  After 
implementation, developers should update components’ documentation with the 
following information: groups of conditional compilation tags of each component and 
the respective dependencies among them; memory usage; total component size in JAR 
file. This documentation may be very useful during component maintenance and SPL 
expansion to deploy new products based on the developed infrastructure. 

3.3. Component Testing 
Once the components have been implemented, they must be tested to ensure they are 
working properly. The main inputs for this phase are: the components code, example 
applications used to integrate and test those components and a Test Design (TSTD) 
document. An example application can be either an instantiated product of the SPL or a 
simple application developed to test component basic functionality. This information 
about how a specific component is going to be tested should be provided in the TSTD.  

The TSTD should be structured based on the information of product portfolio, 
product map, domain feature model and requirements, usually represented as a Game 
Design Document in a game project. It is suggested that the tests are focused on the 
base members of the families, once it is not viable to test all the members of all families. 
It is implicit that if a component is working fine in the base member of the family, it 
will work properly on the other members of that family. At least, it is what is expected 
from the handset manufacturers when they produce different handsets of the same 
family and usually with the same hardware platform.  

In order to better organize the TSTD, it is suggested that two different 
documents are produced: one responsible for holding domain tests, which can be used 
to test different components across different handset families; and other responsible for 
testing each application derived from the SPL. Detailed information about the testing 
approach can be seen in [Nascimento, 2008], as the main focus of this paper in on 
component implementation phase. Other research efforts have been made specifically 
focused on component testing, such as one in RiSE3

4. Case Study 

 Group shown in [Silva et al., 
2009]. 

In order to evaluate the described approach, we performed a case study following the 
organization proposed in [Wohlin et al., 2000]. We used three games of the same 
domain from Meantime: Monga, American Dad – Roger’s Escape and Zaak. Based on 
the commonalities and variabilities of these three games, we defined a SPL, using the 
approach described in this paper, and produced a fourth game, called Smart Escape. The 
basic domain architecture has been implemented with 6489 non-commented source 
lines of code (NCSLOC) distributed in 277 methods. 

3 RiSE – Research in Software Engineering Group – www.rise.com.br  

                                                    SBCARS 2009 
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

134

http://www.rise.com.br/�


 
Figure 4. Screenshots of the games in case study. A) Monga. B) American Dad 
– Roger’s Escape. C) Zaak. D) Smart Escape. 

The fourth game derived from SPL has basic common features from all of the 
three previous games but adds a different way of interaction. The main goal of the game 
is to reach the door placed at the top of the screen without being noticed by the enemies 
spread through the floors. No form of weapon is used, unlike the three other games.  

We used the GQM [Basili et al., 1994] approach in the case study to validate our 
process efficiency regarding the quality of core components. Thus, we defined three 
metrics: Component Complexity – uses cyclomatic complexity [McCabe, 1976]; 
Domain Restrictions Management – indicates the percentage of components with 
domain restrictions mapped to code level; Traceability – indicates the percentage of 
components specifications that can be mapped to domain features and to code 
(respective conditional compilation tags). We defined null hypotheses for the three 
metrics according to GQM, as summarized in Table 4. 

Table 4. Summary of Metrics and their respective null hypotheses. 
Metric Null Hypotheses 

Component complexity 
- McCabe Cyclomatic Complexity (CC) 

 
CC >= 21 

Domain Restrictions Management 
- NFA:  %Product families that have the restriction of application size mapped to code level 
 - NFS:  %Product families that have the restriction of different screen sizes mapped to code level 
 - NFI:  %Product families that have the restriction of different API implementations mapped to code level 

 
NFA <= 50% 
NFS <= 50% 
NFI <= 50%  

Traceability 
- TCF: %Components that can be mapped to domain features 
 - TCC: %Components that can be mapped to code (respective conditional compilation tags) 

 
TCF <= 70% 
TCC <= 70%  

After collecting the metrics of the case study, all the null hypotheses could be 
rejected. Detailed information about the whole case study, including complete 
explanation of all null hypotheses, can be found in [Nascimento et al., 2008]. At the 
end, four components were developed, each of them with an average of 397 NCSLOC. 
The results of the case study have shown that the approach can be suitable for the 
mobile domain and some lessons were learned. 

4.1. Lessons Learned 
One of the strongest points of this approach is the facility of applying conditional 
compilation tags in code, mainly when the product map explicitly maintains all 
information about handsets capabilities and their respective tags. On the other hand, the 
use of these tags can become problematic if the number of product families grows too 
much. In our case, we did not face this problem because we used 3 product families 
from 3 major mobile phone manufacturers.  

                                                    SBCARS 2009 
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

135



The main threat that could be identified in the case study execution is related to 
the staff. As the staff in this study has previous experiences in the mobile games, it may 
be difficult to find another group with the same characteristics to execute a new study. 

Considering the values used for null hypotheses in case study, we realized that it 
may be necessary to perform new case studies to calibrate these values because we had 
no reference value from previous studies at project start. Considering specifically the 
Component Complexity metric value, we also realized that it may be slightly affected 
due to the number of conditional compilation tags. The calibration of these values may 
reveal that it is necessary to use some adjustment factor to component complexity 
metric in terms of the number of tags. 

During project execution, it was noticed that a tool for managing all conditional 
compilation tags would be very useful to automatically deploy different products 
according to different families. 

5. Concluding Remarks and Future Work 
Software product lines are being explored in different domains and contexts with many 
successful cases. In addition, a market segment that is drawing industry’s and 
academia’s attention is the mobile game domain, mainly because of its high-growth. 
This domain presents specific characteristics, especially because of the great diversity 
of handsets and the need of ubiquitous applications running in as many handsets as 
possible. Thus, some efforts have been made to apply SPL approach to mobile game 
domain. However, the current work in SPL area does not address properly the 
mentioned characteristics of the domain, mainly in domain implementation phase. In 
this paper, we described a practical approach to develop core assets in a SPL providing 
details at code level and then performed a case study with three mobile games. The case 
study results have shown that the approach can be suitable for the mobile domain. 

As future work, we are planning to evolve this approach and take into 
consideration the principles of Domain-Specific Languages (DSLs). Moreover, we plan 
to increase the number of product families and consequently the number of domain 
restrictions to perform a case study in a more challenging scenario. 

Acknowledgments 
This work was partially supported by the National Institute of Science and Technology 
for Software Engineering (INES4

References 

), funded by CNPq/FACEPE, grants 573964/2008-4 
and APQ-1037-1.03/08 and Brazilian Agency (CNPq process number 475743/2007-5). 

Almeida, E. S. (2007) “RiDE: The RiSE Process for Domain. Engineering”. Ph.D. Thesis, Brazil. 
Almeida, E. S., Santos, E. C. R., Alvaro, A., Garcia, V. C., Lucrédio, D., Fortes, R. P. M., Meira, S. R. L. 

(2008) “Domain Implementation in Software Product Lines Using OSGi”. In: 7th International 
Conference on Composition-Based Software Systems (ICCBSS), Spain. 

Almeida, E. S., Alvaro, A., Garcia, V.C., Mascena, J.C.C.P., Burégio, V.A.A., Nascimento, L.M., 
Lucrédio, D., Meira, S.R.L. (2007) “C.R.U.I.S.E: Component Reuse in Software Engineering”. 
C.E.S.A.R e-book, Available on http://cruise.cesar.org.br/, Brazil, accessed in June, 2009. 

4 INES - http://www.ines.org.br 

                                                    SBCARS 2009 
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

136

http://www.ines.org.br/�


Almeida, E. S., Alvaro, A., Lucredio, D., Garcia, V.C., Meira, S.R.L. (2005) “A Survey on Software 
Reuse Processes”. In: IEEE International Conference on Information Reuse and Integration (IRI), 
USA, IEEE Press. 

Alves, V., Cardim, I., Vital, H., Sampaio, P., Damasceno, A., Borba, P., Ramalho, G. (2005) 
“Comparative Analysis of Porting Strategies in J2ME Games”. In: 21st IEEE International 
Conference on Software Maintenance (ICSM’05), pp. 123-132. 

Alves, V., Calheiros, F., Nepomuceno, V., Menezes, A., Soares, S., Borba, P. (2008) “FLiP: Managing 
Software Product Line Extraction and Reaction with Aspects”. In: 12th Software Product Line 
Conference (SPLC’2008), Ireland, pp. 354-354. 

Anastasopoulos, M., Gacek, C. (2001) “Implementing Product Line Variabilities”. In Symposium on 
Software Reusability: Putting Software Reuse in Context, Canada, pp. 109-117, ACM Press. 

Atkinson, C., Bayer, J., Muthig, D. (2000) “Component-Based Product Line Development: The KobrA 
Approach”. In: 1st Software Product Line Conference (SPLC), USA, pp. 289-309. 

Basili, V. R., Caldiera, G., Rombach, H. D. (1994) The Goal Question Metric Approach, Encyclopedia of 
Software Engineering, Vol. 02, pp. 528-532. 

Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., DeBaud, J. (1999) 
“PuLSE: A Methodology to Develop Software Product Lines”. In: Symposium on Software 
Reusability (SSR), USA, pp. 122-131. 

Clements, P., Northrop, L. (2002) “Software Product Lines: Practices and Patterns”. Addison-Wesley, 
pp. 608. 

Gomaa, H. (2005) “Designing Software Product Lines with UML: From Use Cases to Pattern-Based 
Software Architectures”. Addison-Wesley, pp. 701. 

Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A. (1990) “Feature-Oriented Domain Analysis 
(FODA) Feasibility Study”. (Technical Report CMU/SEI-90-TR-21), Software Engineering Institute. 

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes, C., Loingtier, J.M., Irwin J. (1997) 
“Aspect-Oriented Programming”. In: 11th European Conference on Object-Oriented Programming 
(ECOOP 1997), Finland, Lecture Notes in Computer Science 1241, Springer-Verlag, pp. 220-242. 

Krueger, C.W. (1992) “Software Reuse”. ACM Computing Surveys, Vol. 24, No. 02, pp. 131-183. 
McCabe, T. J. (1976) “A Complexity Measure”. IEEE Transactions on Software Engineering, pp. 308-

320. 
Muthig, D., John, I., Anastasopoulos, M., Forster, T., Doerr, J., Schmid, K. (2004) “GoPhone - A 

software product line in the mobile phone domain”. (Technical Report, 025.04/E), Fraunhofer IESE. 
Nascimento, L. M., Almeida, E. S., Meira, S. R. L. (2008) “A Case Study in Software Product Lines - 

The Case of the Mobile Game Domain”. In: 34th IEEE Euromicro Conference on Software 
Engineering and Advanced Applications (SEAA), Italy. 

Nascimento, L. M. (2008) “Core Assets Development in Software Product Lines - Towards a Practical 
Approach for the Mobile Game Domain”. M.Sc. Dissertation, Brazil. 

OSGi Alliance (2008) Available on http://www.osgi.org. Accessed in April, 2009. 
Pohl, K., Bockle, G., van der Linden, F. (2005) “Software Product Line Engineering: Foundations, 

Principles and Techniques”. Springer, pp. 468. 
Product Line Hall of Fame (2009). Available on http://www.sei.cmu.edu/ productlines/plp_hof.html, 

accessed in May, 2009.  
Silva, F. R. C., Almeida, E. S., Meira, S. R. L. (2009) “An Approach for Component Testing and Its 

Empirical Validation”. In: 24th  Annual ACM Symposium on Applied Computing (SAC), USA. 
Weiss, D. M., Lai, C. T. R. (1999) “Software Product-Line Engineering: A Family-Based Software 

Development Process”. Addison-Wesley, pp. 426. 
Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., Wesslén, A. (2000) “Experimentation in 

Software Engineering: An Introduction”. Kluwer Academic Publishers, pp. 204. 

                                                    SBCARS 2009 
III Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

137


