

AIPLE-IS: An Approach to Develop Product Lines for

Information Systems Using Aspects

Rosana T. Vaccare Braga
1
, Fernão S. Rodrigues Germano

1
, Stanley F. Pacios

1
,

Paulo C. Masiero
1

1
Instituto de Ciências Matemáticas e de Computação – Universidade de São Paulo

Department of Computing Systems

Caixa Postal 668 – 13560-970 – São Carlos – SP – Brazil

rtvb@icmc.usp.br, fernao@icmc.usp.br, stanley.pacios@gmail.com,

masiero@icmc.usp.br

Abstract. Product lines for information systems present variabilities both in

non-functional and functional features. Aspects are being used successfully in

the implementation of non-functional features, as they provide intuitive units

for isolating the requirements associated to this type of features. However,

aspects could also be used to implement some product line features that refer

to functional requirements. Using that approach, the instantiation of specific

products could be done by combining the desired aspects into the final

product. In this paper, we propose an approach, named AIPLE-IS, to

incrementally build a product line for information systems using aspects. The

product line core is developed first, followed by the addition of optional

features through aspects. A case study for a product line in the domain of

information systems for psychology clinics is presented to illustrate the

approach.

1. Introduction

Object-oriented Programming (OOP) is an established programming paradigm, with

well defined development processes, e.g. the Unified Process (Jacobson et al 99). On the

other hand, Aspect-Oriented Programming (AOP) (Kiczales et al, 97; Elrad et al, 01) is

a relatively new programming technique that has arisen to complement OOP, so the

software community is still exploring it and evaluating its costs and benefits.

 Research about concepts and languages for aspect orientation (AO) has already

attained a mature stage. However, processes for AO are still topics under study

(Baniassad et al, 06). Recent works by several authors (Pearce and Noble, 06; Griswold

et al, 06; Apel et al, 06) have contributed to solve specific problems of different

development phases. In particular, research focused on dealing with aspects in the early

development stages of requirements engineering and architecture design are gaining

more focus in the last few years (Baniassad et al., 2006).

 The need for techniques that help design and develop better quality software in

less time is one of the software engineering concerns. Many software products are

developed for artifacts already specified and implemented using software reuse

techniques. In this context, the software product line (SPL) approach appears as a

proposal for software construction and reuse based on a specific domain (Bosch, 00).

SBCARS 2007

17

This technique has already shown its value on OO development, and can both benefit

AO development and benefit from it.

 In this paper product line engineering is considered as the development of

software products based on a core architecture, which contains artifacts that are common

to all products, together with specific components that represent variable aspects of

particular products. Product line commonalities and variabilities can be represented as

system features (Kang et al, 90) and they can be related both to functional or non-

functional software requirements. Thus, it is interesting to investigate how aspects can

improve modularization of SPL parts, isolating interests and benefiting SPLs, allowing

the creation of more pluggable and interchangeable features.

 In this paper, we propose and approach for incrementally developing an SPL, in

which aspects are used in a systematic way to ease the introduction of functional

features in the SPL, without changing the remaining features. The approach has been

created based on a concrete product line development, which refers to a psychology

clinic control system. In brief, the motivation for developing this work is the need for

processes and techniques for aspect-oriented analysis and design; the growing interest of

the software community in early aspects; and the need for approaches to develop aspect-

oriented product lines.

 The remaining of this paper is organized in the following way. Section 2 gives

an overview of the proposed approach, named AIPLE-IS. Section 3 presents the SPL

core development in more details, while Section 4 describes the product creation phase.

A case study to illustrate the approach is presented along sections 3 and 4. Section 5

discusses related work. Finally, Section 6 presents the conclusions and ongoing work.

2. Overview of the proposed approach

Our approach for Aspect-based Incremental Product Line Engineering for Information

Systems (AIPLE-IS) is illustrated in Figure 1. It has two main phases: Core

Development and Product Creation. The Unified Modeling Language –UML (Rational,

00) is used as a modeling notation, combined with artifacts from the Theme/Doc

approach notation (Clarke et al, 05). In the first phase (Core Development), a domain

analysis is done to identify both fixed and variant points of the domain. The fixed part is

implemented in this phase and is here denoted as the SPL core assets, because they

define the minimum features that a single product of the family will have. These core

assets are implemented using aspects where necessary to ease the future inclusion of

variant features in the subsequent phase, as explained in Section 3.

 In the second phase (Product Creation) several iterations occur to develop

specific features needed to produce SPL concrete products. Each increment will result in

a set of features needed to obtain a particular product, but that can also be reused in

other products. Aspect-oriented techniques are used whenever possible to isolate

features into aspects. Products are obtained by composing aspects and base code

according to specific requirements. This activity can be executed as soon as the core

assets are implemented, as there may be products that consist only of basic

functionalities, or it can be executed later by combining basic and optional features.

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

18

Product Creation

Compose
features

Develop
Feature

Compose
features

Develop
Feature

Core Development

Domain
Analysis

Core Features
Development

Domain
Analysis

Core Features
Development

features do not exist

features exist

need for a product

domain knowledge

Figure 1. AIPLE-IS overview

3. Core Development

This phase aims at identifying and implementing the SPL core assets. It has two

activities, as shown in Figure 1: domain analysis and core features development.

3.1. Domain Analysis

The domain analysis is conducted to capture the domain knowledge, i.e., to identify the

functionality present in different applications of the same domain. This activity is

extensive and, thus, is out of the scope of this paper to describe it in detail, as any

existing domain analysis method could be used, such as those by Prieto-Diaz (1990) or

Kang et al (1990). Gomaa (2004) also presents an approach to domain analysis that

contains most of the good principles used by these authors, but his process is updated

according to more recent notations.

 The domain knowledge obtained in this phase should be properly documented to

identify the SPL features, which can be mandatory, optional, or alternative. Mandatory

features are those that should be present in all SPL members. Optional features can be

present in one or more SPL members. Alternative features form a small set of features

from which one or more are chosen to be part of an SPL member (exclusive alternative

is also possible). The features model notation (Kang et al, 90) is used and a number is

added to each feature to ease its future reference in subsequent phases. During domain

analysis, it is important to discover mainly the mandatory features, and also those that

are more likely to be needed later. More uncommon features are searched secondarily.

 The domain analysis phase is outlined in Figure 2 (using BPMI notation (Arkin,

2002)), which shows its activities and artifacts produced. As it can be observed in the

figure, the process starts with the study of one or more systems in the domain aiming at

SBCARS 2007

19

creating, for each of them, a Features Document, a Requirements Document, a Features

Model, a Conceptual Model and a Feature-Requirements Mapping. Those are named

“individual” versions, i.e., each of them represents a single system. Other domain study

activities can be used to help in the creation of these documents, as well as to eventually

help in the domain analysis or even in AIPLE-IS subsequent phases.

Figure 2. AIPLE-IS - Domain Analysis activities

 In order to complete the domain analysis, a final version of each artifact is

produced, named “domain” version, so that these domain versions encompass and

organize all the content of the individual versions. Thus, a Domain Features Model is

produced based on individual features documents and models, a Domain Conceptual

Model is produced based on individual conceptual models, a Domain Requirements

Document is produced based on individual requirements documents, and a Features-

Requirements mapping is created based on individual features-requirements mappings.

The other documents presented in Figure 2, as for example the action view and the

clipped action view, are optionally created to help clarifying to which feature a

requirement belongs to. They are based on the Theme approach notation proposed by

Clarke (2005). The difference is that Clarke uses them to represent individual systems,

while here they are used to represent the entire domain. In this phase we are not worried

about which features are crosscutting or not.

 To illustrate the usage of AIPLE-IS, we introduce an example implemented as

part of a master thesis at ICMC-USP, where AIPLE-IS was used to develop part of a

psychology clinic control system product line, here simply referred to as “PSI-PL”. The

possible products instantiated for this SPL are systems for managing several similar but

different psychologist offices, psychologist hospitals, and other similar institutions. The

PSI-PL domain analysis has been conducted based on the reverse engineering of three

systems: the first is a private small psychologist office, and the other two are different

hospitals (one private and one public) dedicated to attend psychology patients. The

reverse engineering produced several individual models that were then used as basis to

produce the domain model. A small part of the PSI-PL domain conceptual model and of

the features model are shown in Figure 3 and Figure 4, respectively. These models

illustrate several domain concepts, which can be mandatory or not (in the features model

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

20

of Figure 4, features with a filled circle are the mandatory ones, while those with a

hallow circle are optional features). Figure 5 illustrates a small piece of the Domain

Requirements Document (requirements were simplified to be presented here). Other

artifacts obtained, such as the Domain Features Document, and the Features-

Requirements Mapping are not shown here due to space restrictions.

Figure 3. Partial Domain Model

Figure 4. Partial Features Model

1 – The system should allow the inclusion, search, modification, and removal of patients from the clinic.
Patients have the following attributes: name, birth date, address, zip code, state, phone, e-mail,
identification document number.

7 – The system should allow the inclusion, search, modification, and removal of information about the
service that the patient is receiving at the clinic, with the following data: therapist name, type of service,
patient name, available dates/times, diagnosis, …

24 – The system should allow the inclusion, search, modification, and removal of appointments,
containing the following data: patient name, therapist name, room, day/time scheduled, and service to be
performed.

42 – The system should allow the management of information about the possible types of service offered
by the clinic.

Figure 5. Example of three domain requirements

Entries

date

annotations

RoomCategory

description

capacity
Promptbook

n

1

n

1
has

Relativ e

res ponsible

name

kinship

gender

age

marita lStatus

degree

job

f romCl inic

Receiv edServ ice

directed

instituition

directer

f older

schedule

av ailableHours

av ailableDay s

situation

comment

conclusion

1

1

1

1
has

Therapis t

name

birth

address

postalCode

city

state

phone1

phone2

f ax

email

n
1

n
1

works onRoom

name

description

1

n

1

n

has

Patient

name

birth

gender

address

postalCode

city

state

phone1

phone2

f ax

email

0..n1 0..n1

has

1..n1 1..n1

receives

Appointment

date

hour

showedUp

0..n
0..1

0..n
0..1

refe rs to

10..n 10..n

attended by

1

0..1

1

0..1

uses

0..1

0..n

0..1

0..n

made to

System

1. Patient 2. Therapist 3. Room 4. Appointment

9. Service

6. Finantial
Sysem

10. Approach8. Group 11. Courses

5. Equipment 7. Reports

SBCARS 2007

21

3.2. Core Features development

The core features development aims at implementing all SPL common features. It

includes activities such as defining the SPL core architecture, designing the software,

implementing, and testing it. This is an extensive activity that presents many of the

issues of developing a conventional system and, additionally, some more specific issues

that arise due to the fact that we are developing a product line using aspects. Thus, we

recommend the use of an object-oriented programming language that has an associated

extension to support aspect-oriented characteristics. In the PSI-PL case study, Java and

its aspect extension, AspectJ, have been used (AspectJ, 2006). MySQL relational

database was used for objects persistence.

 The definition of the SPL architecture depends on several factors related to the

particular project issues, such as non-functional requirements that can influence on

performance, flexibility, etc. For example, the architecture could be based on an object-

oriented framework, on a set of components, or simply on a set of objects. In a lower

level, it should be decided whether to use a layered-architecture, for example. These

decisions involve the particular interests of the organization, so we consider this phase

as being out of the scope of this paper. The PSI-PL architecture followed the MVC

pattern (Buschmann et al., 1996).

 After defining the architecture, the mandatory features are analyzed, designed,

and implemented. The features model (produced in the previous phase) is a source for

identifying the mandatory features. For example, in the PSI-PL case study, domain

engineers have determined that the product line core base should consist of features

Patient, Appointment, and Therapist. This is the minimum functionality expected from

a member of the product line, probably used in small psychologist offices. AOP is used

in this phase to provide a mechanism through which optional features are more easily

introduced in the subsequent phase.

 Even intending to isolate features, in certain moments they influence one

another, as the final system expected behavior contains the interaction among features.

The development of the features that influence other features is easier if the features that

will be influenced are already designed and implemented. If they are not, the design of

the influence is postponed until they appear in the design. So, a practical advice is to

create first the features that are more independent of others. For example, in the PSI-PL

case, requirement #1 of Figure 5 describes the Patient feature and it is easy to see that it

is independent of other features, so it should be created first. The same is true for feature

Therapist. On the other hand, as can be seen on requirement #24 of Figure 5,

Appointment depends on both Patient and Therapist, so its creation should be delayed.

To identify the influence among features, the clipped action view diagram developed in

the analysis phase can be used, as exemplified in Section 4.1.

 To ease the isolation of features and the identification of their dependencies,

AIPLE-IS suggests the development in three steps involving analysis and design, as can

be seen in Figure 6. Each step produces a part of the feature design. The first step

creates the design part that deals with the feature interest more strictly and exclusively

as possible, i.e., free of other features influence. To make this possible, the requirements

associated to the feature are rewritten to withdraw any behaviors that might refer to

other features. Then, the analysis and design proceed, creating use cases, class diagrams,

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

22

collaboration diagrams, etc., similarly to conventional OO analysis and design.

Information about the feature is obtained from the artifacts resulting from domain

analysis phase. The numbering present in the features model is used, together with the

features-requirements mapping, to find the corresponding detailed requirements.

Figure 6. AIPLE-IS – Features Development activities

 As an example, consider the design of the feature relative to requirement #24. It

could be rewritten so that only Appointment is mentioned, i.e., citations to Patient and

Therapist are withdrawn. The result is the requirement “The system should allow the

inclusion, search, modification, and removal of appointments, containing the following

data: room, day/time scheduled, and service to be performed”. This requirement is used

as basis for creating use cases, class diagrams, etc.

 The second step creates the feature design part that exists due to the presence of

other features. Here, the requirements are reviewed to consider those that have

interests tangled and scattered in the requirements document. A refined design is created

for the same feature, now considering the presence of other features. It is at this point

that AOP begins to act. Once the elements to be added by other features are known, they

are designed separately, allowing a modular implementation using AOP. Special

annotations are done in the class diagrams and collaboration diagrams to denote the

presence of aspects. We do not show this here due to space limitations, but any

extension of UML to deal with aspects can be used. In the PSI-PL example, aspects are

used in this step to create the associations between Appointment and Patient and

between Appointment and Therapist. This aims at easing possible subsequent changes in

associations, as explained in Section 4.1 and is according to the idea of relationship

aspects introduced by Pearce and Nobel (2006).

 The third step creates the feature design part that exists due to the new feature

influence in the rest of the system. In order to find out exactly which influence the

SBCARS 2007

23

feature causes in the rest of the system, it is required to have the design of the rest of the

system. This is obtained using the composition of base themes (also according to the

Theme approach). All existing features of the SPL are composed together to obtain this

design, which is named as the “System” theme. Having the design of the System theme,

it is possible to identify how the feature under development will be composed with the

rest of the system. In the PSI-PL example, as we are beginning the development, we do

not have a System yet, so this step is skipped. If we had a system, we would have to

check how Appointment influences the rest of the system.

 There are some guidelines that have to be followed to implement the features.

They are summarized in Section 4.1, as they are common both to mandatory and

optional features, and can be found elsewhere in more detail (Pacios et al, 06).

4. Product Creation

This phase aims at creating the concrete products and increasing the features repository.

It has two activities, as shown in Figure 1: develop feature and compose features. The

products are created on demand, and optional features are developed only when

requested by a specific product.

4.1. Develop Feature

This activity is responsible for incrementally adding new features to the product line,

using aspect techniques when appropriate, until all variable features identified in the

domain analysis are developed. In fact, this phase can be extended as needed to add new

features identified after the domain analysis, as part of the product line evolution. To

implement a particular feature, the following general guidelines have been proposed

(Pacios et al, 06):

� G1 - New classes: if a feature implies in the creation of one or more new classes,

these should be implemented as conventional classes (with no need to use AOP);

� G2 - New attributes and/or methods: if the feature implies in the creation of new

attributes or methods in existing classes, they could be introduced into the existing

classes through intertype declarations, but other mechanisms could be used, for

example, the properties pattern (Yoder et al., 2001);

� G3 - Change in the behavior of existing methods: if the feature existence implies

in the modification of existing methods, this is done with aspects and advices;

� G4 - New association: if the feature implies in creating new associations between

existing classes, or between a new class and an existing one, they are implemented

with aspects, to guarantee the connectivity with the feature and its removal if

necessary. N to 1 associations are generally implemented through an attribute

included in one of the classes (the N side) to represent the reference to the other

class (the 1 side). So, guideline G2 is applicable here.

� G5 - Removal of existing associations: if the presence of one feature requires

removing one or more associations between existing classes (probably to add other

different associations), then a mechanism is needed to remove them. To make that

possible, the existing associations should have been included through aspects, so

that just omitting the aspect that included it, is enough to remove the association.

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

24

 As an example, consider the PSI-PL again. After the core features were

implemented, it was decided to include the “Room” feature, which consists of allowing

the control of rooms where appointments occur. This was an optional feature (see Figure

4), and it implied in the creation of two new classes, Room and RoomCategory. Room is

associated to an existing class, Appointment. The implementation of this new feature

was quite simple to execute using aspects. Following guideline G1, a new class, Room,

was created, together with an aspect to introduce the new attribute (roomNumber) in the

Appointment class to represent the association between Appointment and Room (G4).

 More specific guidelines that need to be observed during the features

implementation are summarized next. They are more suitable for the development of

information systems, considering that in this work the three-tier architecture has been

chosen (with an interface layer, a business application layer, and a persistence layer),

and persistence is done using relational databases.

 For each existing class of the business application layer that receives new

attributes or methods, an aspect is created to: introduce new attributes and respective

methods; supply the initial value for the new attributes; guarantee that the class methods

that handle its attributes also handle the new attributes; and treat possible business rules

associated to these new attributes.

 To ease the introduction of new attributes and their treatment, meta-attributes

can be used: one named “fields” and another named “values” (these can be vectors

whose elements are strings with the fields and values names, respectively). The use of

meta-attributes makes it possible for the aspects to introduce their new attributes in the

corresponding meta-attribute, avoiding having to create an advice or intertype

declaration to include new attributes. Functions that receive all object attributes by

parameters, or that return all these attributes, are modified to receive and return objects

of vector type. A particularly common case of functions of these types are the database

query functions. On the other hand, by using meta-attributes the advantage of static

variable checking is lost. Other possible solutions would be to use the Java language

reflection or active object models (Yoder et al., 2001).

 This same guideline can be applied to include associations between classes. The

association is represented by a reference from one class to the other. So, a field can be

added in both vectors to deal with the referential attribute. The additional methods

necessary to handle the new attributes are included through intertype declarations.

 The interface layer has to reflect the modifications that occur in the application

business classes that they represent. In the particular case of information systems, most

application classes have a corresponding graphical user interface (GUI) class, which

might need new widgets placed on them due to the inclusion of new attributes. So, a

mechanism to introduce these widgets in GUI classes is needed. A possible solution is

to divide the construction of the GUI screen in several parts, so that it is easy to identify

pointcuts where to place the new widgets and the respective treatment. For example, the

GUI creation method should have at least four parts: create variables, initialize

variables, position the widgets on the screen, and treat events related to the widgets.

Thus, an aspect can be created for each GUI class, and advices can be used to introduce

the treatment of the new attributes in each method.

SBCARS 2007

25

 Returning to the PSI-PL example, in terms of its GUI, after introducing the new

“Room” feature, it is necessary to include an additional widget so that the final user can

choose the room where the appointment is scheduled. This can also be done with an

aspect, which adds this widget and corresponding behavior to the GUI class responsible

for entering the appointment data.

 So, this first evolution of the PSI-PL produced an increment that allows the

creation of two different products: simple psychology office and office with room’s

allocation. The second iteration to evolve the PL considered that a patient can be

scheduled not only to one therapist, but to a service that is performed by a therapist.

This implies that one patient can be registered in several different services offered by a

hospital, each of which is attended by a different therapist. For example, he or she can

participate in a career advice therapy and in a couple therapy, so that different

appointments are made for them. Service is an optional feature of PSI-PL (see Figure 4).

 To design this feature, initially its requirements are rewritten to withdraw any

behavior that do not belong to Service itself, as for example requirement #7 of Figure 5

is re-written as “The system should allow the inclusion, search, modification, and

removal of information about the service received at the clinic, with the following data:

type of service, available dates/times, diagnosis, …”. This is enough to develop a

complete design for the Service feature itself, without the influence of other features

(Patient and Therapist in this case). Then, the artifacts Action View and Clipped Action

View, obtained in the domain analysis, are used to help visualizing which part of the

functionality results from the influence of other features. Figure 7 (a) shows the Action

View corresponding to the Service feature, described in requirements 7 and 42, but also

mentioned in requirement 24 (which deals with Appointment). It can be observed that

features Patient and Therapist affect the Service feature directly through requirement 7.

 When the features-requirements mapping was built, it was decided that the

Service feature is dominant in requirement 7, so Patient and Therapist features will

affect the Service feature. This decision is reflected in the clipped action view of Figure

7 (b). In requirement 24, the dominant feature is Appointment, as service is just one

more detail in its main goal, which is to make an appointment. The creation of the

clipped action view is the right moment to review decisions related to features-

requirements relationships. The clipped action view indicates that Service will influence

Appointment.

 Finally, to finish the Service feature design, a comparison is done with the rest of

the system to detect any intersections. In this case, this intersection is empty, as all

classes are new and thus should be implemented simply using OO classes.

 Regarding the organization of the product line code, to improve reuse of the

features separately, code artifacts (such as classes and aspects) that refer to one feature

should be put together in one or more packages. New classes can be placed in a separate

package, and a package could be created for each new association among different

features. That way, it is easier to reuse the new classes or just the associations. A

features-packages mapping can be created to ease the subsequent features composition.

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

26

(a)

(b)

Figure 7. Action View (a) and Clipped Action View (b) for Service Feature

4.2. Compose Features

In this phase, concrete products are instantiated from the product line. The software

engineer needs to choose the variabilities of a particular product and then use

composition rules to join the base code with the code of each optional feature

implemented in the product line. As aspects are used in the product line development, a

special tool may be necessary to make this composition. In this work, the AJC compiler

and byte-code weaver for AspectJ and Java were used.

 Each feature chosen to be part of the product must be present in the features

model. Then, the features-packages mapping is consulted to determine if the chosen

feature requires other features. Thus, the total set of features that must be present on the

product is obtained. Among these features, it is verified which are already implemented

in the repository. Features that are still not implemented must be so (see Section 4.1), as

they are developed on demand for the product instantiation.

 Besides implementing the features, in the PSI-PL example it was necessary to

implement the main interface of the system, which is not associated to any feature, but is

required to allow the access to the system functionalities. It was also necessary to

implement a persistence layer to persist objects into the MySQL relational database.

 Several product instantiations were done to evaluate the proposed approach. The

combination process was done manually, and several different products were obtained

by combining the base code with the optional features produced so far.

Appointment

Therapist

R 24

Patient

Service

Room

R 7

R 42

Appointment

Therapist

R 24

Patient

Service

Room

R 7

R 42

SBCARS 2007

27

5. Related Work

Several works have been proposed that relate aspect-oriented programming and product

line development. Alves et al. (2004) describe an incremental process for structuring a

PL from existing mobile device game applications, in which continuous refactoring of

existing code is done using aspect-oriented programming to isolate commonality from

variability within the products. In our approach, several refactorings mentioned by Alves

et al. can be used as a means of isolating the aspects from the original code, but we do

not impose the existence of a code, as our reverse engineering step aims at extracting

knowledge about the domain instead of code itself. Another relevant difference here is

that our work considers features in a high granularity level (for example Appointment is

a feature) while in Alves work a feature could be a very fine-grained characteristic of a

game, for example the way images are loaded.

 Loughran et al. (2004) propose an approach that joins framing and aspect-

oriented techniques to integrate new features in product lines. This allows

parameterization and reconfiguration support for the feature aspects. The framing

technology has the disadvantage of being less intuitive, besides needing previous

knowledge of the subsequent features. An advantage is to parameterize aspects at

runtime. Although these techniques are applicable only in the coding phase, we plan to

investigate how they could fit our process.

 Apel et al. (2006) propose the integration of aspects and features at the

architectural level through aspectual mixing layers (AMLs), also aiming at incremental

software development. Our approach uses the same idea of integrating aspects and

features at the architectural level, and our composition of core features and optional

features can be thought of as a way, although very simplistic, of having the same effects

of using AMLs. However, we do not make use of special language constructs and we do

not treat the problem of aspects dependency and precedence.

 Mezini and Ostermann (2004) present an analysis of feature-oriented and aspect-

oriented modularization approaches with respect to variability management for product

lines. Their discussion about weaknesses of each approach indicate the need for

appropriate support for layer modules to better attend the development of software for

product families, improving reuse of isolated layers. Even using AspectJ in our

approach, we try to make it flexible to allow the use of other languages that support

AOP and overcome AspectJ limitations.

 Although all these approaches have points in common with our approach, our

focus is on proposing a systematic process through which product lines for information

systems can be built using AOP, so parts of these approaches can be incorporated into

our process. For example, crosscut programming interfaces (XPIs) (Griswold at al,

2006) could be used to decouple aspect code from the advised code; and languages like

Caesar or the concept of AMLs could be used instead of simply using AspectJ.

6. Concluding Remarks

AIPLE-IS allows incremental development of product lines using aspects. It is

composed of a sequence of short, well-defined and reproducible steps, with well-defined

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

28

activities and artifacts. It considers the product line features as the main application

assets, so the features are isolated, encapsulated, and designed with aspect orientation.

 AOSD techniques facilitated the SPL features implementation. With the

encapsulation supplied by AO, features become more cohesive, easier to be combined,

and reusable. The very nature of aspect-oriented programming is responsible for easing

features combination. OOAD techniques have been combined with AOSD to optimize

design with separation of concerns. The approach has integrated AOSD with AO

implementation, i.e., it supplies the basis for creating the whole product design, and also

AO implementation techniques (guidelines) that can be used aiming at a good code with

high cohesion and low coupling, reinforcing reusability.

 The guidelines for AO implementation can also be used independently of other

approach activities. However, it is more guaranteed to have a good code having a good

design. This also means that the approach deals with the aspects problem in the

development initial phases. For example, the requirements are already grouped by

features. This problem is being largely discussed nowadays in the software community

(e.g. Baniassad et al, 06).

 Although the incremental nature of AIPLE-IS is an advantage, the code can

become more complex with the introduction of new features that may involve

modification of associations among existing features. This causes the code to have less

intuitive meaning, which can be a disadvantage and imply in more difficult

maintenance. Ongoing work is being done to tackle with this problem.

 To help instantiating products, application generators could be used. A master

dissertation research is being conducted with this goal. Captor (Shimabukuro et al, 06)

is an application generator that automatically builds applications based on high level

specification languages persisted in a repository. It is being extended to allow aspect

oriented composition. Finally, other case studies should be performed to validate

AIPLE-IS with other examples, possibly in other domains.

References

Alves, V., Matos Jr, P., and Borba, P. (2004) “An Incremental Aspect-Oriented Product

Line Method for J2ME Game Development”, Workshop on Managing Variability

Consistently in Design and Code (in conjunction with OOPSLA´2004).

Apel, S., Leich, T., Saake, G. (2006) Aspectual Mixin Layers: Aspects and Features in

Concert. In: Proc. of International Conference on Software Engineering, p. 122-131.

Arkin, A., 2002. Business Process Modeling Language (BPML), Version 1.0.

http://www.bpmi.org/ (last access: december, 2006)

AspectJ. The AspectJ Project. Disponível para acesso na URL:

http://eclipse.org/aspectj/, em 10/11/2006.

Baniassad, E. L. A., Clements, P., Araújo, J., Moreira, A., Rashid, A.; Tekinerdogan, B.,

2006. Discovering Early Aspects. In IEEE Software, v. 23, n 1, p. 61-70.

Bosch, J., 2000. Design and Use of Software Architectures: Adopting and Evolving a

Product Line Approach. Pearson Education (Addison-Wesley & ACM Press), ISBN

0-201-67494-7.

SBCARS 2007

29

Buschmann F. et al., 1996. Pattern-oriented software architecture: A System of Patterns,

Wiley.

Clarke, S.; Baniassad, E. L. A., 2005. Aspect Oriented Analysis and Design. Addison-

Wesley Professional, ISBN 0321246748.

Elrad, T.; Filman, R. E.; Bader, A., 2001. Aspect Oriented Programming,

Communications of the ACM, 44(10), October.

Gomaa, H., 2004. Designing Software Product Lines with UML: From Use Cases to

Pattern-Based Software Architectures. Addison-Wesley.

Griswold, W. G.; Shonle, M.; Sullivan, K.; Song, Y.; Tewari, N.; Cai, Y.; Rajan, H.,

2006. Modular Software Design with Crosscutting Interfaces. IEEE Software, vol.

23, no. 1, p 51-60.

Jacobson, I.; Booch, G.; Rumbaugh, J., 1999. The Unified Process. IEEE Software

(May/June).

Kang, K., et al., 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study

(CMU/SEI-90-TR-21, ADA 235785). Pittsburgh, PA: Software Engineering

Institute, Carnegie Mellon University.

Kiczales, G. Lamping, J. Menhdhekar, A. Maeda, C. Lopes, C. Loingtier, J. M. Irwin, J.,

1997. Aspect-oriented programming. In: Proc. of the European Conference on

Object-Oriented Programming, Springer-Verlag, p. 220–242.

Loughran, N., Rashid, A., Zhang, W., and Jarzabek, S. (2004) “Supporting Product Line

Evolution with Framed Aspects”. Workshop on Aspects, Components and Patterns

for Infrastructure Software (held with AOSD 2004).

Mezini, M. and Ostermann, K. (2004),Variability Management with Feature-Oriented

Programming and Aspects, Foundations of Software Engineering (FSE-12), ACM

SIGSOFT.

Pacios, S. F.; Masiero, P. C.; Braga, R. T. V., 2006. Guidelines for Using Aspects to

Evolve Product Lines. In: III Workshop Brasileiro de Desenvolvimento de Software

Orientado a Aspectos, p.111-120.

Pearce, D. J.; Noble, J., 2006. Relationship aspects. In: Proc. of the 5th international

conference on Aspect-oriented software development, p. 75-86.

Prieto-Diaz, R.; Arango, G., 1991. Domain analysis and software system modeling.

IEEE Computer Science Press Tutorial.

Rational, C., 2000. Unified Modeling Language. Available at:

http://www.rational.com/uml/references (last access: December, 2006).

Shimabukuro, E. K.; Masiero, P. C.; Braga, R. T. V., 2006. Captor: A Configurable

Application Generator, Proceedings of Tools Session of the 20th Simpósio

Brasileiro de Engenharia de Software, p.121-128 (in Portuguese).

Yoder, J.W.; Balaguer, F.; Johnson, R., 2001. Architecture and Design of Adaptive

Object Models. SIGPLAN Not. 36, p. 50-60.

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

30

