
 10

Recovering and checking software architectural properties

based on execution tree analysis

Thiago H. Braga1, Marcelo de A. Maia2, Roberto da S. Bigonha1

1Departamento de Ciência da Computação– Universidade Federal de Minas Gerais (UFMG)

Campus da Pampulha – 31270-010 – Belo Horizonte – MG – Brazil

2Faculdade de Computação – Universidade Federal de Uberlândia (UFU)

Campus Santa Mônica – Bloco B – 38400-902 – Uberlândia – MG – Brazil

{thiagohb,bigonha}@dcc.ufmg.br, marcmaia@facom.ufu.br

Abstract. The specification of the software architecture is an important arti-

fact produced during software design. However, traditional specification tech-

niques do not provide support for guaranteeing that architectural properties of

the specification are valid for the implemented software. We propose an ap-

proach to recover and specify architectural properties based on execution con-

straints. The proposed approach is based on specifying constraints as queries

in execution trees of software systems. The constraints are generated as annota-

tions and verified against the implementation with a dynamic verifier. We have

implemented a tool for Java systems and we argue that our approach presents

some benefits over similar ones.

1. Introduction

The lack of intermediate abstractions that link user requirement features to the concrete

implemented features has always been an important concern for software developers. The

structural design is an important intermediate level of abstraction that can be represented

by the software architecture, which role consists of describing: 1) how the whole system

has been partitioned, 2) how those parts relate with each other, 3) how those parts can be

cooperatively developed, and 4) how those parts can be grouped to solve a whole problem

[Clements et al. 2002].

Some problems can arise in software development regarding its architecture. In

some cases, the software is implemented without any predefined architecture. The im-

plementation can be accelerated, but for a long-term project, its maintenance will be

impaired because understanding design decisions looking only at the source code will

be harder than it would be with a documented system. There are other cases, where the

software architecture has been specified, but it may be inconsistent with the current im-

plementation because of source code changes. In this case, an important question is how

to identify if the architectural specification is outdated. In other words, the developer

needs to guarantee that the system implementation is consistent regarding its architecture

specification [Yan et al. 2004]. Application frameworks are almost-done applications for

specific domains, that generally define several hot-spots that can be specialized according

to domain-specific problems. They enable rapid construction of whole systems. But an

important issue that remains is to verify if an instantiation obeys constraints imposed by

the framework.

 11

Figure 1. Overview of the proposal

These problems are significant because an implementation that does not obey the

architecture specification nullifies the benefits of architectural design.

This work aims at defining mechanisms that enables the specification of con-

straints on the interaction between components of the system architecture. These con-

straints can be identified and specified during the process of analyzing the execution tree

generated from a scenario execution of the system. The imposed constraints on the sys-

tem architecture should be verified against its implementation whenever the source code

changes. If the changes affect the constraints, the developer is warned. Then, it is up to

him to decide either to fix the changes, or to change the architectural to conform to the

new version.

This paper is organized as follows. Section 2 presents our solution to recovering

and checking architectural properties. In Section 3, we define a methodology for using

our approach and apply it in two systems. Section 4 presents the discussion and related

work. Finally, in Section 5 the concluding remarks are presented.

2. The proposed solution

This section presents the elements of our approach. The approach is based on the idea

of defining queries and constraints in the execution tree of the target system. We have

designed and implemented custom languages to specify these queries and constraints that

will be shown in Sections 2.2 and 2.3, respectively.

The queries in the execution tree are used to help the developer finding the main

components of the software architecture, as well their relationships with each other. The

queries enable the developer to observe the creation of objects and their method call in-

teractions.

The constraints in the execution tree are specified with a language similar to the

language used to specify queries. They are transformed into annotations that are incorpo-

rated in the source code and verified after each program execution by a dynamic verifier

implemented as an AspectJ aspect. Figure 1 depicts our approach.

2.1. Execution trees of Java programs

We define a model to represent the execution of Java programs, called execution tree,

using some join points definitions of AspectJ [Kiczales et al. 2001]. We are interested in

the following execution points: 1) all operations that occur inside a block of a method; 2)

 12

all operations that occur inside a block of a constructor; 3) all operations that occur inside

the static initialization block of a class. We will use the term execution points considering

only these three possibilities.

The scope of the above three execution points defines the execution context that

can be either: a class context related to the static initialization blocks and to the static

methods of a class, or, an object context related to the constructors and non-static methods

of a class. The context is used to identify instances of possible components of the system

architecture and the execution points are used to represent interactions between these

components. Contexts are important to differ several instances of the same class, because

each one can have a different role or can perform a different function during the system

execution.

The execution tree of a Java program is a tree G(V,E) such that:

• v ∈ V ⇔ v = (c, p):
– c is a context for the execution of point p;

– p is an execution point.

If the execution point is non-static then the context is a class instance. If the

execution point is static, the context will be represented by an object of the type

Class corresponding to the class of the current instance.

• for each started Thread t, there is a node vt = (t, java.lang.Thread.run());
• there is an edge e ∈ E from v0 = (c0, p0) to v1 = (c1, p1) if during the execution

of p0 in the context c0, the point p1 has been executed in the context c1.

The execution tree creator was implemented in AspectJ and is an aspect that is

weaved with the target system intercepting the three types of execution points considered

in this approach.

2.2. Query language for the execution tree

Execution trees have a large number of nodes, even for the execution of small programs.

The main goal of querying execution trees is enabling users to specify queries that filter

information about the system execution and to help them identifying what are the main

components of the software architecture and their interrelationships. The language allows

two types of queries:

• Query of consecutive execution points: after the execution of ExecutionPatternr

in ContextPatternr, the execution point ExecutionPatternc is immediately executed

in the context ContextPatternc. The user writes:

(ContextPatternr, ExecutionPatternr) --> (ContextPatternc, ExecutionPatternc)

• Query of adjacent execution points: if there is a path in any execution subtree of

the program, where the point ExecutionPatternr in the context ContextPatternr is

the root and the point ExecutionPatternc in context ContextPatternc is a reachable

node. The user writes:

(ContextPatternr, ExecutionPatternr) -+> (ContextPatternc, ExecutionPatternc)

The initial rules of the query language are:

S → Vr --> Vc

| Vr -+> Vc

V → (ContextPattern , ExecutionPattern)

 13

ContextPattern → TypePatternExpr

TypePatternExpr → OrTypePatternExpr

| TypePatternExpr && OrTypePatternExpr

OrTypePatternExpr → UnaryTypePatternExpr

| OrTypePatternExpr || UnaryTypePatternExpr

UnaryTypePatternExpr → BasicTypePatternExpr

| ! UnaryTypePatternExpr

| (TypePatternExpr)

BasicTypePatternExpr → void

| BaseTypePatternExpr DimsOpt PlusOpt

DimsOpt → DimsOpt [] | λ
PlusOpt → + | λ

BaseTypePatternExpr → PrimitiveTypePatternExpr

| NamePatternExpr

PrimitiveTypePatternExpr → boolean | . . . | double
NamePatternExpr → SimpleNamePatternExpr

| NamePatternExpr PackageSep SimpleNamePatternExpr

SimpleNamePatternExpr → *

| identifier

| identifierpattern

PackageSep → . | ..

Figure 2. Grammar for specifying context patterns in queries

The patterns of the query language were inspired in AspectJ join points. The main

difference is that our language explicitly separates type patterns from execution point

patterns. AspectJ users can gain even more rapid understanding of the pattern rules.

A ContextPattern is an expression that defines a type pattern. These expressions

can use the wilcard ‘*’. Some examples of simple context patterns are:

• com.my.Clazz: matches with the type Clazz defined in the package com.my;

• com.my.*Interface: matches with any type that ends with Interface defined in the

package com.my;

• com..*: matches with any type defined below package com.

The wildcard ‘+’ can be used to select subtypes of the specified pattern. Some

examples are:

• java.io.InputStream+: matches with any type that extends java.io.InputStream, in-

cluding itself;

• java.sql.Statement+: matches with any type that implements java.sql.Statement.

The query language also allows composing context patterns using the logical op-

erators &&, || or !, and grouping them with parenthesis. The wildcard .. can be used to

match inner types. Some examples are:

• java.io.*Stream && !java.io.Output*: matches with any type in package java.io that

ends with Stream and do not start with Output;

• *..*Filter || *..*Filtro: matches with any type that ends with Filter or Filtro

inside any package.

The detailed rules for context patterns are shown in Figure 2.

An ExecutionPattern matches an execution point. There are 4 types of execu-

tion point patterns: 1) method: the visibility modifiers are optional, and the return type,

 14

ExecutionPattern → OrExecutionPattern

| ExecutionPattern && OrExecutionPattern

OrExecutionPattern → UnaryExecutionPattern

| OrExecutionPattern || UnaryExecutionPattern

UnaryExecutionPattern → BasicExecutionPattern

| ! UnaryExecutionPattern

BasicExecutionPattern → BaseExecutionPattern

| (ExecutionPattern)

BaseExecutionPattern → ?

| staticinitialization

| MethodPattern

| ConstructorPattern

MethodPattern → ModifiersOpt BasicTypePatternExpr

MethodNamePattern (FormalParametersOpt)

ConstructorPattern → ModifiersOpt new (FormalParametersOpt)

MethodNamePattern → *

| identifier

| identifierpattern

ModifiersOpt → ModifiersOpt Modifier | λ
Modifier → public | . . . | volatile

FormalParametersOpt → FormalParameters | λ
FormalParameters → FormalParameter

| FormalParameters , FormalParameter

FormalParameter → ..

| BasicTypePatternExpr

Figure 3. Grammar for specifying execution patterns in queries

method name and formal parameters are mandatory; 2) constructor: the visibility modi-

fiers are optional, the reserved word new and the formal parameters are mandatory. The

wildcard .. is substitute for the latter; 3) class static initializer: the reserved word

staticinitialization is mandatory; 4) ?: wildcard that matches any of the above execu-

tion point. The detailed rules for execution point patterns are shown in Figure 3.

2.3. Architectural constraint language

The architectural constraint language is a subset of the query language. Logical compo-

sition operators for patterns are not present. This language enables the specification of

constraints that will be used for checking architectural properties. There are two types of

constraints, similar to the query language:

• Constraint on consecutive execution points: the execution point matched with

ExecutionPatternr in the ContextPatternr must be followed by (considering only

nodes in the execution tree) an execution point matched with ExecutionPatternc in

the context matched with ContextPatternc. The constraint is written as:

(ContextPatternr, ExecutionPatternr) --> (ContextPatternc, ExecutionPatternc)

• Constraint on adjacent execution points: there must exist an execution point that

matches with ExecutionPatternr in context ContextPatternr, from which there

is a linear path, in the execution tree, to an execution point that matches with

ExecutionPatternc in context ContextPatternc.

(ContextPatternr, ExecutionPatternr) -+> (ContextPatternc, ExecutionPatternc)

The detailed rules the architectural constraint languages are not shown because

of the lack of space, but they are similar to those of the query language, except for the

 15

Figure 4. Key points of architectural constraint

absence of logical operators.

2.4. Annotation generator

The annotation generator is the component responsible for introducing annotations related

to the key points of the source code that have architectural constraints. Key points are ex-

ecution points that match with any architectural constraint specified with the architectural

constraint language. An architectural constraint has two key points: source and target.

Let be the following architectural constraint:

(fw.web.Action+, execute(..)) -+> (fw.bs.Business+, new())

The source point is defined as a call to the method execute() with any parameters,

called from objects whose class extends the class Action, and the target point is a call to

the constructor without parameters of any class that implements the interface Business.

Figure 4 shows an instance of code that satisfies the constraint. The execution tree is

shown in the lower part of the figure.

The annotation generator reads a file with the architectural constraints and writes

a file with extension .aj. The generation process has to:

1. generate an aspect containing the specification of annotation types and respective

declarations for system key points, containing
(a) code for annotations types of the source key points;

(b) code for annotations types of the target key points;

(c) declaration of the annotations generated in source key points;

(d) declaration of the annotations generated in target key points.

For the i-th architectural constraint in the file, the names of the annotations are

generated as in the following table:

Execution Point type Source annotation name Target annotation name

Method SourceMethodCall i TargetMethodCall i

Constructor SourceConstructorCall i TargetConstructorCall i

Class static initializer SourceStaticInitialization i TargetStaticInitialization i

Wildcard ”?” SourceMethodCall i TargetMethodCall i

SourceConstructorCall i TargetConstructorCall i

SourceStaticInitialization i TargetStaticInitialization i

 16

It is necessary to generate annotation types for each key point because a key point

may belong to several architectural constraints and Java allows only one annotation of

same type for a key point type.

Consider the constraint (fw.web.Action+, ?) -+> (fw.bs.Business+, new(..)).

For step 1a, we have that source execution point is defined as ?, so the three fol-

lowing annotation type declarations must be generated:

• Method:
@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.METHOD)

public @interface SourceMethodCall_1 {

String constraint() default

"(fw.web.Action+, ?) -+> (fw.bs.Business+, new(..))";

}

• Constructor:
@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.CONSTRUCTOR)

public @interface SourceConstructorCall_1 {

String constraint() default

"(fw.web.Action+, ?) -+> (fw.bs.Business+, new(..))";

}

• Class static initializer:
@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.TYPE)

public @interface SourceStaticInitialization_1 {

String constraint() default

"(fw.web.Action+, ?) -+> (fw.bs.Business+, new(..))";

}

For the step 1b, the target execution point is a constructor, and thus will generate

only one annotation type declaration

• Constructor:
@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.CONSTRUCTOR)

public @interface TargetConstructorCall_1 {

String constraint() default

"(fw.web.Action+, ?) -+> (fw.bs.Business+, new(..))";

}

For the step 1c, the generator will produce AspectJ declare statements for the
annotation types generated in step 1a:

declare @method :

* fw.web.Action+.*(..) :

@SourceMethodCall_1();

declare @constructor :

fw.web.Action+.new(..) :

@SourceConstructorCall_1();

declare @type :

fw.web.Action+ :

@SourceStaticInicialization_1();

For the step 1d, the generator will produce the declare statement for the target
annotation:

declare @constructor :

fw.bs.Business+.new(..) :

@TargetConstructorCall_1();

2.5. Conformance checking

The conformance checking takes place executing the program with two aspects:

• the aspect containing the annotation types and their declarations for the key points

of the system, and

 17

• the aspect of conformance checking.

Just like the execution aspect, the conformance checking aspect also builds the execution

tree and after the execution, the aspect verifies if all constraints are satisfied in the execu-

tion tree. Since the constraint is written like a query, intuitively, a constraint is satisfied

if the result of the corresponding query is non-empty. In other words, a constraint source

--> target is satisfied if for some matched source there exists a matching target as a imme-

diate son in the execution tree, and a constraint source -+> target is satisfied if for some

matched source there exists a matching target that can be reached below in the execution

tree.

3. Application

This section presents some guidelines to recover architectural restrictions and we apply

them on two case studies: RegSys e CUP.

3.1. Guidelines to recover architectural constraints

This section presents guidelines that helps the developers to recover important architec-

tural constraints from the source code.

The first step is obtaining artifacts that will help to understand the main com-

ponents and conectors of the system architecture: the source code that will be used to

execute the system weaved with the Execution Aspect that builds the execution tree; the

system user guide that helps the developer undertanding the main system entities and the

functionalities related to those entities; and the system technical specifications, that also

help identifying the main components of the system.

The next step is to execute the system with the Execution Aspect that intercepts the

execution points and creates the execution tree. It is recommended to execute a scenario

that covers the main use cases.

Once the execution tree is created, the next step is to analyze this tree aided by the

query language presented before. Some actions are recommended:

1. The expansion of the execution tree analyzing the number of threads.

2. The execution of queries that filter interesting information about the main compo-

nents of the system:
• When instances of these components are created:

(java.lang.Thread, public void run()) -+> (*.*MainComponent1 ||

*.*MainComponent2, new(..))

• Which classes use these components:

(*, ?) --> (*.*MainComponentX, ?)

• Which classes these components use:

(*.*MainComponentX, ?) --> (*, ?)

• Data input and output (files, databases, etc):

(*, ?) --> (java.io.File, new(..))

• The main conectors of the architecture:

(*,?) --> (java.io.PipedWriter, void connect(java.io.PipedReader))

3. The definition of system architecture using some architecture description lan-

guage, such as, Acme[Garlan et al. 2000] or UML.

4. The definition of the architectural constraints using the queries that helped finding

the conectors of the architecture.

 18

3.2. Case study 1: Regsys

The system RegSys
1 was presented in [Yan et al. 2004]. RegSys has architectural style Pipes

and Filters. It is a small application with 4 classes and 355 LOC. For the sake of under-

standing, follows an overview of the classes:

• SplitFilter: reads data of one student in the input file and verifies if his course is

Computer Science. If so, the data is sent to a pipe, else the data is sent to another

pipe.

• PassFilter: verifies if the student has prerequisites to enroll on courses. If so, the

student data is sent to the next pipe, else the data is discarded.

• MergeFilter: reads the two data flows of the two PassFilters and writes a result file.

• RegSys: creates and initialize execution of filters. The input and output file path is

provided for the main method.

After obtaining the source and analyzing the documentation in [Yan et al. 2004],

the next step is to execute the system with the execution aspect to obtain the execution

tree. The execution scenario is the simplest one: just run without user interaction.

During the exploration of the execution tree, five threads are detected, each one

with its respective execution tree.

• main: [1] java.lang.Thread@1 - public void run()

• SplitFilter: [1] v1.SplitFilter@20 - public void run()

• PassFilter: [1] v1.PassFilter@27 - public void run()

• PassFilter: [1] v1.PassFilter@31 - public void run()

• MergeFilter: [1] v1.MergeFilter@33 - public void run()

We can see that Filter components ends with suffix Filter. Initially we can sup-

pose these components were created in the main thread. This can be verified with the

following query:

(java.lang.Thread, public void run()) -+> (*.*Filter, new(..)).

The query actually returns the creation of all components that ends with Filter.

An important observation is that two objects PassFilter were created. The next step can

be the identification of the input and output files. The following query identifies what

java.io.File objects are created during program execution:

(*, ?) --> (java.io.File, new(..)).

The query returns two files created during the execution of the method void

main(String[]): java.io.File@5 and java.io.File@7.

At this point, we do not know if they are input or output files. Another query can

be issued to identified the file roles: (*, ?) --> (*, new(java.io.File)).

Figure 5 shows the results of the query. The first file, java.io.File@5, is used for

data entry because it is used to create an java.io.FileReader object; the creation of the

FileReader object occurs during the execution of the method void run() of the component

v1.SplitFilter@20. This is a strong indication that this component reads data from the

input file; the second file java.io.File@7, has a data output role because is used to create an

java.io.FileWriter object; the creation of the FileWriter object occurs during the execution

 19

Figure 5. Result for (*, ?) --> (*, new(java.io.File))

Figure 6. Result for (*,?) --> (java.io.PipedWriter, void

connect(java.io.PipedReader))

of the method void run() of the component v1.MergeFilter@33, strongly indicating that this

component writes the output file data.

The hypothesis that the component v1.SplitFilter@20 reads the input file could be

confirmed with the query:

(v1.SplitFilter, public void run()) -+> (java.io.FileReader, * read*()).

Unfortunely, this query has no results. We can rewrite it more generally:

(v1.SplitFilter, public void run()) -+> (java.io.Reader+, * read*()).

Now the query returns a result because the reader object is from class

java.io.BufferedReader@40 and not from java.io.FileReader. A similar query can be used

to confirm that the component v1.MergeFilter@33 writes the output file:

(v1.MergeFilter, public void run()) -+> (java.io.Writer+, void write*(..)).

The next steps are related with the recovery of conectors. In the execution tree can

be found some objects java.io.PipedWriter and java.io.PipedReader, probably having roles

of a pipe. The following query identifies the creation of these objects:

(*, ?) --> (java.io.PipedWriter || java.io.PipedReader, new()). The query returns the

several objects of PipedWriter and PipedReader classes, created during the execution of void

main(String[]).

The next query identifies which java.io.PipedReader objects were conected to

java.io.PipedWriter objects:

(*,?) --> (java.io.PipedWriter, void connect(java.io.PipedReader)).

The results of this query are shown in Figure 6. During the creation of the

component SplitFilter@20, the object java.io.PipedReader@10 is conected to the object

java.io.PipedWriter@8 and the object java.io.PipedReader@14 is conected to the object

java.io.PipedWriter@9. These facts are evidences that the component has two output ports;

during the creation of the component PassFilter@27, the object java.io.PipedReader@12 is

conected to the object java.io.PipedWriter@11. So this component has one output port.

during the creation of the component PassFilter@31, the object java.io.PipedReader@13 is

1Available in: http://able.fluid.cs.cmu.edu:8080/Able/DiscoTect/PipeFilterExample.zip

 20

conected to the object java.io.PipedWriter@15. This component has also one output port.

The next query shows that the component SplitFilter@20 writes in the two output

ports:

(v1.SplitFilter, ?) -+> (java.io.PipedWriter, * write(..)).

The result of the query confirms this showing that the method write is called in

context of objects java.io.PipedWriter@8 and java.io.PipedWriter@9. Now it is necessary

identify from where components v1.PassFilter read their data. The following query can

be used:

(v1.PassFilter, ?) -+> (java.io.PipedReader, * read(..)).

The result show that is java.io.PipedReader@14.

The next query shows that PassFilter components writes in their output ports:

(v1.PassFilter, ?) -+> (java.io.PipedWriter, * write(..)).

Since this query is not null, we have the confirmation. Now, we need to know

from where the component v1.MergeFilter@33 reads its data:

(v1.MergeFilter, ?) -+> (java.io.PipedReader, * read(..)).

The result shows that is java.io.PipedReader@12. We conclude that: there is

a pipe between the components PassFilter@27 and MergeFilter@33, because the object

java.io.PipedReader@12 was conected to the object java.io.PipedWriter@11 and the com-

ponent MergeFilter@33 reads its data from port java.io.PipedReader@12; and there is

a pipe between the components PassFilter@31 and MergeFilter@33, because the object

java.io.PipedReader@13 was conected to the object java.io.PipedWriter@15 and the compo-

nent MergeFilter@33 reads its data from port java.io.PipedReader@13.

The complete description of the recovered architecture was written in Acme and

shown in Figure 7 and is equivalent to the description presented in [Yan et al. 2004].

Some possible architectural constraints that can be imposed on this architecture are de-

rived from the conectors of the architecture. These constraints, if satisfied in future soft-

ware changes, will preserve the Pipe-Filter architectural style.

(*.SplitFilter, void run()) -+> (java.io.FileReader+, * read*())

(*.MergeFilter, void run()) -+> (java.io.Writer+, void write*(..))

(*.SplitFilter, ?) -+> (java.io.PipedWriter, * write(..))

(*.PassFilter, ?) -+> (java.io.PipedReader, * read(..))

(*.PassFilter, ?) -+> (java.io.PipedWriter, * write(..))

(*.MergeFilter, ?) -+> (java.io.PipedReader, * read(..)).

Figure 7. Architectural description of RegSys

 21

3.3. Case study 2: CUP

This section summarizes a case study of recovering architectural constraints of CUP, an

LALR parser generator. The implementation has 40 classes and 5623 LOC.

The main class of CUP was executed with the Execution Aspect for a simple gram-

mar and the execution tree was generated. Only one thread was created. The main events

in the executin tree are:

1. (java cup.Main@2, void parser args(java.lang.String[]@3): this method receives the

same arguments of the main.

2. (java.io.BufferedInputStream@32, BufferedInputStream(java.io.InputStream@26):

this event is a strong indicative that the object BufferedInputStream@32 is the stream

of the input file. The following query confirms this hypothesis:

(java cup.Main, void main(java.lang.String[])) -+> (java.io.InputStream+,

new(..)).

The identification of the responsible component for reading the input file can use

the following query: (*, ?) --> (java.io.InputStream+, * read*(..))

The result shows that the component java cup.lexer@3711 is responsible for reading

the file, and the empty result of the following query shows that this is the only component

responsible for reading:

(!java cup.lexer, ?) --> (java.io.InputStream+, * read*(..)).

The identification of a client for the lexer can use the following query:

(*, ?) --> (java cup.lexer, ?).

Many results are shown, including:

• java cup.parser@3705;

• java cup.lexer@3711.

Thus, the java cup.lexer@3711 invoke its own methods. The following query reduces the

result for analysis:

(!java cup.lexer, ?) --> (java cup.lexer, ?).

The new result reveals an important relationship between java cup.parser@3705 and

java cup.lexer@3711: the call to java cup.runtime.Symbol next token(). Thus, we can con-

clude that java cup.parser@3705 is the parser component.

The following query identifies file writing in Cup:

(*, ?) --> (java.io.OutputStream+, new(..)).

The result shows the creation of output streams for 2 files: java.io.File@21227 and

java.io.File@21235. Supposing files would be written with the API of java.io.OutputStream

we could try the following query:

(*, ?) --> (java.io.OutputStream+, void write*(..)).

However, the result is empty. Another try would be java.io.Writer:

(*, ?) --> (java.io.Writer+, void write*(..)).

Again, the result is empty. So, we can try to discover which constructor call

received instances of java.io.OutputStream as parameters:

(*, ?) --> (*, new(java.io.OutputStream+)).

 22

The results shows that was a java.io.PrintWriter constructor. Now, the identifica-

tion of the component responsible for writing output files can use the query:

(*, ?) --> (java.io.PrintWriter, * print*(..) || * write*(..)).

The results shows that java cup.emit@27 writes output files. The following query

shows that it is the only component to write output files, because its result is empty.

(!java cup.emit, ?) --> (java.io.PrintWriter, * print*(..) || * write*(..)).

The architecture of CUP is shown in Figure 8. Indeed, architectural constraints

for CUP can be derived from the connectors, similarly to the RegSys case.

Figure 8. Architecture of CUP

4. Discussion and Related work

Several results have already been achieved in architecture recovery and dynamic anal-

ysis of software [Feijis et al. 1998, Safyallah and Sartipi 2006, Xiao and Tzerpos 2005,

Vasconcelos and Werner 2005, Gorton and Zhu 2005].

Our work is more related to Discotect [Yan et al. 2004] and ArchJava

[Aldrich et al. 2002]. The recovery of architectural properties was inspired in Discotect:

the creation of a state machine to observe the creation of objects and their interaction

using method calls. However, instead of creating a state machine, we propose a query

language with operators similar to those of AspectJ. We highlight the operator + that veri-

fies if the context of an execution point is subtype of the specified pattern, and the wilcard

? that matches with any execution points. Such operations are not available in Discotect.

Another contribution compared with Discotect is that after executing the general

scenario of the system, the user can specify queries about the system execution. This

facilitates refinements of execution tree to identify the relevant events for the system ar-

chitecture. In Discotect is necessary to build a new state machine for each refinement step

and then reproduce the same scenario execution. This can be an arduous task.

Our proposed guidelines for identifying important architectural events suppose

that the user will spend some time investigating the documentation about the main compo-

nents of the system. This information will help to produce better queries. Since Discotect

does not allow query definition, it does not make this assumption.

Likewise Discotect, our solution is strongly tied to the names of components and

operations. Changing names in the source code can invalidate a query that identifies an

architecture component.

An important tool for conformance checking is ArchJava. Although ArchJava is

a new programming language and thus provide more expressiveness, our approch is more

pragmatic because it is not strongly coupled and intrusive as ArchJava. In our approach

the architectural properties are not scattered inside the source code. Our architecture is

 23

specified in a separate higher-level document, containing only the main components and

conectors of the system. Our approach uses a custom language to specify architectural

constraints that is a subset of the query language. This facilitates specifying constraints on

systems that had their architecture recovered with execution queries. This separation also

enables two types of development roles: the architect role that writes architectural con-

straints, generate annotations in the key execution points and verifies the conformance of

system, and developer role that has to implement the system according to the architecture

properties specified by the architect.

5. Conclusions

The software architecture has an important role both for the project and for the develop-

ment and maintenance of software. Moreover, several software systems are implemented

without having a predefined architecture. In other situations, the architecture of the sys-

tem was designed in advance, but may be outdated in relation to actual implementation.

This work presents the following solution to these problems:

1. a language to assist in the recovery of the software architecture of programs writ-

ten in Java. The language enables queries in the execution tree of the program;
2. a methodology for recovering the software architecture using the tool above;
3. a language to specify architectural constraints between components of the soft-

ware architecture description;
4. a mechanism to verify conformance between the architecture and implementation

of the system.

Future work includes developing automatic techniques to generate interesting

queries and automatically generating the system architecture, performing case studies in

larger systems, and formal specification of the query and constraint languages.

References

Aldrich, J., Chambers, C., and Notkin, D. (2002). Archjava: connecting software architecture to

implementation. In Proc. of ICSE ’02, pages 187–197.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., and Stafford, J.

(2002). Documenting Software Architectures: Views and Beyond. Addison-Wesley, 1st ed.

Feijis, L., Krikhaar, R., and Ommering, R. V. (1998). A relational approach to support software

architecture analysis. Software – Practice and Experience, 28(4):371–400.

Garlan, D., Monroe, R. T., and Wile, D. (2000). Acme: Architectural description of component-

based systems. In Foundations of Component-Based Systems, pages 47–68. Cambridge.

Gorton, I. and Zhu, L. (2005). Tool support for just-in-time architecture reconstruction and evalu-

ation: An experience report. In ICSE - Intl. Conf. on Software Engineering.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G. (2001). An

overview of AspectJ. In ECOOP ’01.

Safyallah, H. and Sartipi, K. (2006). Dynamic analysis of software systems using execution pattern

mining. In Proceedings of the 14th IEEE Intl. Conf. on Program Comprehension (ICPC’06).

Vasconcelos, A. and Werner, C. (2005). Um conjunto de heurı́sticas de agrupamento de classes

para apoiar a recuperação da arquitetura de software. In Proc. of WMSWM’2005, pp. 34–49.

Xiao, C. and Tzerpos, V. (2005). Software clustering based on dynamic dependencies. In Proc. of

the 9th European Conference on Software Maintenance and Reengineering (CSMR’05).

Yan, H., Garlan, D., Schmerl, B., Aldrich, J., and Kazman, R. (2004). Discotect: A system for

discovering architectures from running systems. In Proc. of ICSE ’04, pages 470–479.

