
 52

π-ADL for WS-Composition: A Service-Oriented
Architecture Description Language for the Formal

Development of Dynamic Web Service Compositions

Flavio Oquendo

European University of Brittany
University of South Brittany – VALORIA – BP 573 – 56017 Vannes Cedex – France

flavio.oquendo@univ-ubs.fr

Abstract. Enabling the specification of dynamic service-oriented architectures
is a key challenge for an Architecture Description Language (ADL). This
paper describes π-ADL for WS-Composition, a novel ADL that has its roots in
the ArchWare European Project. It is a formal language specially designed
for modeling dynamic architectures based on the typed π-calculus. While most
ADLs focus on describing static architectures from a structural viewpoint, π-
ADL focuses on formally describing dynamic architectures from both
structural and behavioral viewpoints. How π-ADL for WS-Composition can be
used for specifying dynamic Web Service compositions is introduced through a
case study. Its design principles, concepts and notation are presented. The π-
ADL for WS-Composition toolset is outlined.

1. Introduction

Software architecture has emerged as an important subdiscipline of software
engineering [12][23]. A key aspect of the design of any software system is its
architecture, i.e. the fundamental organization of the system embodied in its
components, their relationships to each other, and to the environment, and the principles
guiding its design and evolution [6].

A software architecture can be characterized according to its evolution at run-time [14]:
• static architectures: the architecture does not evolve during the execution of the

system;
• dynamic architectures: the architecture may evolve during the execution of the

system, e.g. components are created, discovered, deleted, or reconfigured at run-
time.

An architecture description specifies an architecture. An architecture can be described
according to different viewpoints. Two viewpoints are frequently used in software
architecture [6][3]: the structural and the behavioral viewpoints.

The structural viewpoint may be specified in terms of:
• components (units of computation of a system),
• connectors (interconnections among components for supporting their interactions),
• configurations of components and connectors.

Thereby, from a structural viewpoint, an architecture description should provide a
specification of the architecture in terms of components and connectors and how they

 53

are composed together. Further, in the case of a dynamic architecture, it must provide a
specification of how its components and connectors can change at run-time.

The behavioral viewpoint may be specified in terms of:
• actions a system executes or participates in,
• relations among actions to specify behaviors,
• behaviors of components and connectors, and how they interact.

Architectures are described according to different architectural styles [33]. A
mainstream architectural style is Service-Oriented Architecture (SOA) [16]. SOA is an
architectural style for constructing complex software-intensive systems from a set of
universally interconnected and interdependent building blocks, called services, where
functionality is grouped around business processes.

Web services can be used to implement a service-oriented architecture. A major focus
of Web services is to make functional building blocks accessible over standard Internet
protocols that are independent from platforms and programming languages. Each SOA
building block can play one or more of the three following roles1 [35]:
• the service provider provides the Web service and publishes its interface and access

information to the service broker;
• the service broker makes the Web service interface and implementation access

information available to potential service requesters;
• the service requester discovers a Web service by locating an entry in the broker

registry, managed by the service broker, and then binds to the service provider in
order to invoke the Web service.

Web services are supported by different languages. Interfaces and access information of
Web services are described in WSDL (Web Services Description Language) [36]. In
line with WSDL, WS-BPEL (Web Services Business Process Execution Language) and
WS-CDL (Web Services Choreography Description Language) extend the service
concept by providing support for defining and enforcing respectively orchestrations and
choreographies of fine-grained services into more coarse-grained composite services.

Web service orchestration and choreography describe two ways of creating business
processes by composition of Web services. Orchestration refers to an executable
business process, including business logic and activity execution order. One Web
service orchestrates the interactions with the other services. Choreography refers to the
possible sequences of message exchanges for achieving a business goal. Orchestration
can interact with both internal and external Web services. Choreography is associated
with the public message exchanges that occur among external Web services.

Orchestration differs from choreography in that it describes a process flow between
services, controlled by a single party. Choreography tracks the exchange of messages
involving multiple parties, where no party owns the message flows [29].

Business processes, including orchestrations and choreographies, are defined using
business process modeling languages. BPMN (Business Process Modeling Notation)
[18] is a standardized visual notation for modeling business processes.

In architectural terms, in a SOA, services (which are provided, can be requested and
whose interfaces descriptions can be published and discovered) are the architectural

1 Service provider and service requester are mandatory roles in SOAs. Service broker and the registry of services

are thereby optional; however they play key roles in dynamic web service compositions.

 54

components, messaging passing connections are the architectural connectors, and
orchestration and choreography the architectural configurations of components and
connectors.

Designing a Web service-oriented architecture thereby involves different artifacts
expressed in different languages, where these languages are semi-formal and possibly
overlapping. This is a complex and error-prone task that can lead to poorly-designed
architectures and failures in the implementation of systems with the required qualities.

Formal methods are increasingly used for modeling software architectures [24][9].
Their potential advantages have been widely recognized, in particular “to design the
system right” by formally describing its structure and behavior enabling to check its
correctness with respect to qualities.

Enabling the specification of dynamic Web service-oriented architectures is a key
challenge for an Architecture Description Language (ADL). The research challenge is
therefore threefold:
• To support the description of dynamic service-oriented architectures from structural

and behavioral viewpoints. For describing dynamic architectures, the ADL must be
able to describe changing structures and behaviors of services, their discovery,
connections and compositions at run-time.

• To support the description of service-oriented architectures where business
processes are modeled in visual notations such as BPMN, orchestrations in
languages such as WS-BPEL, choreographies in languages such as WS-CDL and
interfaces in languages such as WSDL. The ADL must be able to provide a unified
foundation for describing the different SOA artifacts: business processes,
orchestrations, choreographies, and interfaces.

• To support the description of service-oriented architectures enabling to rigorously
reason about and verify their qualities, in particular related to conformance and
correctness. The ADL must be formally defined.

π-ADL for WS-Composition has been designed to meet this challenge.

The remainder of this paper is organized as follows. Section 2 introduces the approach
and core concepts of π-ADL for WS-Composition. Section 3 presents through a case
study how π-ADL for WS-Composition can be used for specifying a dynamic service-
oriented architecture. Section 4 briefly outlines the π-ADL for WS-Composition toolset
and its applications. In section 5 we compare π-ADL for WS-Composition with related
work. To conclude we summarize, in section 6, the main contributions of this paper.

2. The Approach and Core Concepts

For enabling the specification of dynamic Web service-oriented architectures, meeting
the threefold research challenge cited so far, we have designed a service-oriented
architecture description language as a new member of the π-Architecture Description
Language (π-ADL) [19][27][25] family. π-ADL provides a novel and customizable
ADL that is general-purpose and Turing-complete2. It has been designed in the
ArchWare3 European Project, to be the root of an open family of ADLs, where
members of the family are embedded domain-specific languages.

2 This means that every possible computation can be expressed in π-ADL.
3 The ArchWare European Project has been partially funded by the European Commission under

contract No. IST-32360 in the IST Framework Program.

 55

π-ADL for WS-Composition is, as a result, a service-oriented architecture description
language for the formal development of dynamic Web service composition. It is:
• service-oriented: it provides constructs directly related to the service-oriented

architecture style, including services, binding connections and their compositions by
orchestration and choreography;

• formal: it is a formal language based on the typed π-calculus [13]; a verification
toolset is provided for automated checking of service-oriented architectural
properties [10];

• practical: it provides different user-friendly concrete syntaxes – textual and visual
(via a BPMN profile) – hiding the complexity of its formal underpinnings to ease its
use by architects and engineers;

• executable: an architecture description specifies how the system behaves in terms of
service-oriented architecture concepts; its virtual machine runs SOA descriptions
step by step, randomly or in an event-driven manner at design-time (as a simulation
engine) and, if deployed, orchestrate and choreograph services at run-time (as an
enactment engine).

π-ADL for WS-Composition takes its roots in previous work concerning the use of π-
calculus as semantic foundation for architecture description languages [19][2][15] and
business process management languages [30][31][5].

Indeed, a natural candidate for expressing (run-time) behavior would be the π-calculus
as it is [13], which provides a general model of computation and is Turing-complete.
However in π-calculus, even if every computation is possible to express, this expression
becomes quite often too complex. In fact, the classical π-calculus is not suitable as an
ADL since it does not provide architecture-centric constructs to friendly express
architectures in particular with respect to architectural structures. Therefore, a language
encompassing both structural and behavioral architecture-centric constructs is needed.
π-ADL is this encompassing core language. It achieves Turing completeness and high
architecture expressiveness with a simple formal notation. π-ADL for WS-Composition
was defined as a style-specific extension of the typed π-calculus on top of π-ADL, of
which it is an embedded domain-specific language.

But why do architects need a formal service-oriented ADL? Of course, ADLs that
provide a semi-formal notation helps as the state of the practice today is mainly to use
semi-formal notations for documenting software and service architectures [3]. A semi-
formal ADL helps but it is not enough. Indeed, in order to check correctness, a formal
ADL encompassing both structural and behavioral constructs is mandatory.

π-ADL for WS-Composition is this formal yet practical ADL. It supports automated
verification of service-oriented structural and behavioral properties. In addition that, it
is executable: it is very practical to “run” the architecture descriptions in order to
validate its dynamic semantics.

For bridging the gap from business process to composition of services, it provides a
BPMN profile that eases its use and fully automates its translation to executable
specifications.

Precisely, π-ADL for WS-Composition supports description of service-oriented
architectures from a run-time perspective. In π-ADL for WS-Composition, a service-
oriented architecture is described in terms of services, connections and their
compositions. Figure 1 depicts its main constituents.

 56

value
passing

port

service

connection

behavior

unification of
connections

Figure 1. Architectural concepts in π-ADL for WS-Composition

A service is a software resource (discoverable) with an externalized service description.
This service description is available for searching, binding, and invocation by a service
requester. A service is described in terms of external ports and is provided by a service
provider specified in terms of its behavior4. Its architectural role is to specify
computational elements of a service-oriented architecture.

A port is described in terms of connections between a service and its environment. Its
architectural role is to put together connections providing an interface between the
service provider and its environment. Protocols may be enforced by ports and among
ports.

A connection is a basic interaction point. Its architectural role is to provide a
communication channel between a service requester and a service provider.
Connections may be passed or unified to enable communication.

A service can send or receive message values via connections. They can be declared as
output connections (values can only be sent), input connections (values can only be
received), or input-output connections (values can be sent or received).

Therefore, services provide the locus of computation, while connections enable the
interaction between service requesters and service providers. In order to have actual
communication, there must be a connection connecting them.

Architecturally, from a black-box perspective, only service ports (with their
connections) and values passing through connections are observable. From a white-box
perspective, service behaviors are also observable.

Services can be composed together to construct composite services, which may
themselves be services. Composite services can be decomposed and recomposed in
different ways or with different services in order to construct different compositions.

Composite services comprise external ports (i.e. observable from the outside) and a
behavior defined as a service orchestration. These external ports receive values coming
from either side, incoming or outgoing, and simply relay it to the other side keeping the
mode of the connection. Ports can also be declared to be restricted. In that case,
constituents of composite services can use connections of restricted ports to interact
with one another but not with external elements.

4 As defined by the W3C's WSA [35], a service is an abstract notion that must be provided by a

concrete behavior. The behavior (that is specified in the architecture description) is implemented by a
concrete piece of software or hardware that sends and receives message values on behalf of the
service.

 57

Architectures are described as composite services comprising a behavior defined as a
service choreography. An architecture can itself be a composite service in another
architecture, i.e. a sub-architecture.

π-ADL for WS-Composition provides primitive constructs for supporting the description
of all these service architectural concepts.

3. The Language and a Case Study

We present hereafter π-ADL for WS-Composition in more detail. Instead of providing a
formal description [26], we will illustrate its main concepts through the formal
description of a typical dynamic service-oriented architecture, including both
orchestration and choreography. We will also illustrate how BPMN can be used as a
visual notation to describe business processes that are formally translated as service-
oriented architectures using π-ADL for WS-Composition.

Figure 2 shows the description of a purchasing business process in BPMN [32]. There
are three roles – the Customer, the Broker, and the Bank – each one modeled by an
orchestration. A choreography models their interactions.

C
us

to
m

er
B

ro
ke

r

Ba
nk

Figure 2. Purchase process description in BPMN

When a customer launches the purchase process, as described in the Customer’s pool,
first there is a decision based on the price of the article. If it is lower than a threshold (in
that case € 1000), the customer pays cash. However, if it is equal or higher than € 1000,
the customer will request a broker to find a bank with the lowest interest rate at that
time. Once the customer gets the reference of a bank from the broker, s/he will request a
credit to that bank. The bank will make a decision: to accept or reject the requested
credit. Using a deferred choice, the customer will handle the reply from the bank. In
case the bank accepts, the customer will buy the article using the credit. In case it
rejects, s/he declines the purchase.

The architecture of the system supporting the purchase process is dynamic: new banks

 58

can be registered with the broker during the execution of the system. Banks are
dynamically found by the broker, and are thereby not known at design-time. The
customer knows the broker at design-time and only knows the bank at run-time
according to what was discovered by the broker. The binding between the customer and
the broker is performed at design-time and between the customer and the bank at run-
time, possibly with different banks for different purchases.

In terms of the service-oriented architecture style, the architecture is described by
orchestrations and choreographies. In each role’s pool, an orchestration describes how
different services are consumed to provide a more complex service and a choreography
describes how the different roles dynamically interact to provide the overall business
service.

In terms of control flows in the orchestration, the following BPMN constructs are used:
sequence flow, exclusive-or gateway, and event-based gateway. In terms of message
flows in the choreography, the send and receive constructs are used.

These BPMN constructs can be translated to π-ADL for WS-Composition by the
recurrent application of Workflow Patterns [34]. This mapping from BPMN to π-ADL
for WS-Composition is defined in terms of a formal transformation language, namely π-
ARL [20]. It provides a formal semantics for BPMN5 in terms of the π-calculus through
π-ADL (in a similar way to the one defined in [21] for UML2).

Figure 3. Annotated purchase process description in BPMN

Using the method proposed in [31], the business process described in BPMN in Figure
2 is annotated as shown in Figure 3Erreur ! Source du renvoi introuvable.. All nodes
and flows are annotated with unique labels (partially shown). In addition, basic type and
service information is provided.

5 BPMN lacks a formal semantics. The explicit mapping from BPMN to π-ADL for WS-Composition

explicitly assigns the semantics of a BPMN business process model in terms of the π-calculus through
π-ADL.

 59

The Customer’s orchestration described in the Customer’s pool is translated to π-ADL
for WS-Composition as follows.

 service Customer is abstraction(
 broker : connection[connection[connection[Request]]],
 shop : connection[view[buycash : connection[], buybycredit : connection[],
 declinepurchase : connection[]]], amount : Real) { type Amount is Real.
 type Accept is connection[]. type Reject is connection [].
 type Request is view[amount : Amount, accept : Accept, reject : Reject].
 port is { connection broker is connection(connectionToBank : connection[connection[Request]]).
 connection broker::connectionToBank is connection(request : connection[Request]).
 connection broker::connectionToBank::request is connection(Request).
 connection broker::connectionToBank::request::accept is connection().
 connection broker::connectionToBank::request::reject is connection().
 connection bank is connection(Request) }.
 activity Co1 is abstraction(co1 : connection[Real], amount : Real)
 behavior is { unobservable. via co1 send amount. done }.
 activity Co2 is abstraction(co1 : connection[Real], co2 : connection[Real],
 co3 : connection[Real])
 behavior is { replicate via co1 receive amount : Real.
 choose { if (amount >= 1000.00) do via co2 send amount. done
 or if (amount < 1000.00) do via co3 send amount. done } }.
 activity Co3 is abstraction(co2 : connection[Real], co4 : connection[connection[Request], Real],
 broker : connection[connection[connection[Request]]])
 behavior is { connection connectionToBank is connection(connection(Request)).
 replicate via co2 receive amount : Real. via broker send connectionToBank.
 via connectionToBank receive bank : connection[Request].
 via co4 send (bank, amount). done }.
 activity Co4 is abstraction(co3 : connection[Real], co5 : connection[])
 behavior is { replicate via co3 receive amount : Real. via shop::buycash send.
 via co5 send. done }.
 activity Co5 is abstraction(co4 : connection[connection[Request], Real],
 co6 : connection[connection[],connection[]])
 behavior is { replicate via co4 receive (bank : connection[Request], amount : Real).
 value request is view(amount = amount, accept = connection(), reject = connection()).
 via bank send request. via co6 send (request::accept, request::reject). done }.
 activity Co6 is abstraction(co6 : connection[connection[],connection[]], co7 : connection[],
 co8 : connection[])
 behavior is { replicate via co6 receive (accept : connection[], reject : connection[]).
 choose { via accept receive. via co7 send. done
 or via reject receive. via co8 send. done
 } }.
 activity Co7 is abstraction(co7 : connection[], co9 : connection[])
 behavior is { replicate via co7 receive. unobservable.
 via co9 send. done }.
 activity Co8 is abstraction(co8 : connection[], co10 : connection[])
 behavior is { replicate via co8 receive. unobservable. via co10 send. done }.
 activity Co9 is abstraction(co9 : connection[], co11 : connection[])
 behavior is { replicate via co9 receive. via shop::buybycredit send.
 via co11 send. done }.

Find Bank

Buy Cash

Request
Credit

Accept

Buy by
Credit

C
us

to
m

er

Reject

 60

 activity Co10 is abstraction(co10 : connection[], co12 : connection[])
 behavior is { replicate via co10 receive. via shop::declinepurchase send.
 via co12 send. done }.
 activity Co11 is abstraction(co5 : connection[], co11 : connection[], co12 : connection[],
 co13 : connection[])
 behavior is { replicate
 choose { via co5 receive. via co13 send. done
 or via co11 receive. via co13 send. done
 or via co12 receive. via co13 send. done
 } }.
 activity Co12 is abstraction(co13 : connection[])
 behavior is { replicate via co13 receive. done }.
 behavior is {
 -- Orchestration of the Activities
 connection co1 is connection(Real).
 connection co2 is connection(Real).
 connection co3 is connection(Real).
 connection co4 is connection(
 connection(Request), Real).
 connection co5 is connection(). connection co6 is connection(connection(),connection()).
 connection co7 is connection(). connection co8 is connection().
 connection co9 is connection(). connection co10 is connection().
 connection co11 is connection(). connection co12 is connection().
 connection co13 is connection().
 compose { Co1(co1, amount) and Co2(co1, co2, co3) and Co3(co2, co4, broker)
 and Co4(co3, co5) and Co5(co4, co6) and Co6(co6, co7, co8) and Co7(co7, co9)
 and Co8(co8, co10) and Co9(co9, co11) and Co10(co10, co12)
 and Co11(co5, co11, co12, co13) and Co12(co13) } } }

The Broker’s orchestration described in the Broker’s pool is translated to π-ADL for
WS-Composition as follows.

 service Broker is abstraction(
 broker : connection[connection[connection[Request]]],
 banklist : connection[connection[Request]]) { type Amount is Real.
 type Accept is connection[]. type Reject is connection [].
 type Request is view[amount : Amount, accept : Accept, reject : Reject].
 port is { connection broker is connection(connectionToBank : connection[connection[Request]]).
 connection broker::connectionToBank is connection(connection(Request)).
 connection banklist is connection(connection(Request)) }.
 activity Br1 is abstraction(broker : connection[connection[connection[Request]]],
 br1 : connection[connection[connection[Request]]])
 behavior is { replicate via broker receive connectionToBank : connection[connection[Request]].
 via br1 send connectionToBank. done }.
 activity Br2 is abstraction(br1 : connection[connection[connection[Request]]],
 banklist : connection[connection[Request]],
 br2 : connection[connection[connection[Request]], connection[Request]])
 behavior is { via br1 receive connectionToBank : connection[connection[Request]].
 via banklist receive bank : connection[Request].
 via br2 send (connectionToBank, bank). behavior() }.

Br
ok

er

Lookup
Banks

C
us

to
m

er Find Bank

Buy Cash

Request
Credit

Reject
Purchase

Buy by
Credit

Accept

Reject

>= 1000

< 1000

co9

co8

co7

co6

co5

co4

co3

co2

co1
Co10

Co9

Co8

Co7

Co6
Co5

Co4

Co3

Co2
Co1

co12co10
Co12Co11

co11

co13

Decline
Purchase

 61

 activity Br3 is abstraction(
 br2 : connection[connection[connection[Request]], connection[Request]])
 behavior is { replicate via br2 receive (connectionToBank, bank).
 via connectionToBank send bank. done }.
 behavior is {
 -- Orchestration of the Activities
 connection br1 is connection(connection(connection(Request))).
 connection br2 is connection(connection(connection(Request)),
 connection(Request)).
 compose { Br1(broker, br1) and Br2(br1, banklist, br2) and Br3(br2) } } }

The Bank’s orchestration described in the Bank’s pool is translated to π-ADL for WS-
Composition as follows.

 service Bank is abstraction(bank : connection[Request]) { type Amount is Real.
 type Accept is connection[]. type Reject is connection [].
 type Request is view[amount : Amount, accept : Accept, reject : Reject].
 port is { connection bank is connection(request : Request).
 connection request::accept is connection(). connection request::reject is connection() }.
 activity Ba1 is abstraction(bank : connection[Request], ba1 : connection[Request])
 behavior is { replicate via bank receive request : Request. via ba1 send request.
 behavior() }.
 activity Ba2 is abstraction(ba1 : connection[Request],
 ba2 : connection[Request], ba3 : connection[Request])
 behavior is { replicate via ba1 receive request : Request. unobservable. -- Decision by the bank
 choose { via ba2 send request. done
 or via ba3 send request. done } }.
 activity Ba3 is abstraction(ba2 : connection[Request], ba4 : connection[])
 behavior is { via ba2 receive request : Request.
 unobservable. via request::accept send. via ba4 send. behavior() }.
 activity Ba4 is abstraction(ba3 : connection[Request], ba5 : connection[])
 behavior is { via ba3 receive request : Request.
 unobservable. via request::reject send. via ba5 send. behavior() }.
 activity Ba5 is abstraction(ba4 : connection[], ba5 : connection[], ba6 : connection[])
 behavior is { replicate
 choose { via ba4 receive. via ba6 send. done
 or via ba5 receive. via ba6 send. done } }.
 activity Ba6 is abstraction(ba6 : connection[])
 behavior is { replicate via ba6 receive. done }.
 behavior is { -- Orchestration of the Activities
 connection ba1 is connection(Request).
 connection ba2 is connection(Request).
 connection ba3 is connection(Request).
 connection ba4 is connection(). connection ba5 is connection().
 connection ba6 is connection().
 compose { Ba1(bank, ba1) and Ba2(ba1, ba2, ba3) and Ba3(ba2, ba4)
 and Ba4(ba3, ba5) and Ba5(ba4, ba5, ba6) and Ba6(ba6) } } }

The overall choreography shown in the message interactions among the three roles is
translated to π-ADL for WS-Composition as follows. The customer dynamically binds to

B
an

k

Send
Accept

Send
Reject

Br1

B
ro

ke
r Lookup

Banks
br2br1

Br3Br2

B
an

k

Send
Accept

Send
Reject

ba6

ba5

ba4

ba3

ba2

Ba6Ba5

Ba4

Ba3

Ba2ba1
Ba1

 62

a Bank found by a Broker at the banklist connection if the purchase is above a threshold
value, as detailed in the orchestrations.

 architecture Purchasing is abstraction(banklist : connection[connection[Request]])
 type Amount is Real. type Accept is connection[]. type Reject is connection [].
 type Request is view[amount : Amount, accept : Accept, reject : Reject].
 port is { connection banklist is connection(connection(Request)).
 connection purchasing is connection(shop : connection[view[buycash : connection[],
 buybycredit : connection[],declinepurchase : connection[]]], amount : Real).
 connection purchasing::shop is connection(view[buycash : connection[],
 buybycredit : connection[],declinepurchase : connection[]]) }.
 behavior is { -- Choreography of the Services
 connection broker is connection(connection(connection(Request))).
 compose { Broker(broker, banklist)
 and replicate connection bank is connection(Request). Bank(bank)
 and
 replicate via purchasing receive (shop : connection[view[buycash : connection[],
 buybycredit : connection[], declinepurchase : connection[]]], amount : Real).
 Customer(broker, shop, amount)
 } } }

4. Implementation and Experimentation

A major impetus behind developing formal languages for architectural description is
that their formality renders them suitable to be manipulated by software tools. The
usefulness of an ADL is thereby directly related to the kinds of tools it provides to
support architectural description, but also analysis, refinement, code generation, and
evolution [28]. Indeed, π-ADL for WS-Composition is supported by a comprehensive
toolset for supporting service-oriented architecture formal development.

By defining π-ADL for WS-Composition as an embedded domain-specific language in
π-ADL, it inherits from its core toolset and its customizable tools [28]. The resulting
toolset is composed of:
• a visual modeling tool implemented as an extension of the Objecteering UML

Modeler that itself supports a BPMN profile;
• a callable compiler and a persistent virtual machine for “running” architecture

descriptions;
• a verification tool based on CADP, and XSB for checking architectural properties;
• a refinement tool providing a transformation framework based on the Maude

rewriting logic system;
• a code synthesizer, including π-ADL-to-Web service code generation tools.

All tools supporting π-ADL for WS-Composition are integrated using an XML-based
interchange language and web services. This comprehensive toolset is partially
available as Open Source Software.

π-ADL has been applied in practice in several software projects in France, Italy, UK,
Switzerland, and China. In particular, different features of π-ADL for WS-Composition
and its supporting toolset have been applied at Thésame Inc. (France) for architecting
and developing an agile business process management system for wide-area supply-
chain management. It is based on a service-oriented architecture and the web service

Br1

C
us

to
m

er
B

ro
ke

r

B
an

kLookup
Banks

Find Bank

Buy Cash

Request
Credit

Reject
Purchase

Buy by
Credit

Accept

Reject

Send
Accept

Send
Reject

>= 1000

< 1000

co9

co8

co7

co6

co5

co4

co3

co2

co1
Co10

Co9

Co8

Co7

Co6
Co5

Co4

Co3

Co2
Co1

ba6

ba5

ba4

ba3

ba2

Ba6Ba5

Ba4

Ba3

Ba2
br2br1 ba1

Ba1Br3Br2

co12co10
Co12Co11

co11

co13

 63

technology stack, comprising BPMN and WSDL. The π-ADL virtual machine is
directly deployed as the business process execution engine.

This experimentation has shown that π-ADL for WS-Composition and its toolset are
suitable for formally developing dynamic Web service compositions.

5. Related Work

Different ADLs have been proposed in the literature [11][8], including: AADL,
ACME/Dynamic-ACME, AESOP, AML, ARMANI, CHAM-ADL, DARWIN,
KOALA, META-H/AADL, PADL, PLASTIK, RAPIDE, SADL, σπ-SPACE,
UNICON-2, WEAVES, WRIGHT/Dynamic-WRIGHT, and ZETA.

Most of these ADLs assume that architectures are static. Some however supports the
description of dynamic features of architectures. They are Dynamic-ACME, DARWIN,
Dynamic-WRIGHT, KOALA, PLASTIK, WEAVES, σπ-SPACE, and RAPIDE. But
this support is rather limited, and in the case of Dynamic-ACME, PLASTIK and
WEAVES, they are not formally defined. Overall, none of these ADLs have the
expressive power to describe dynamic service-oriented architectures where connection
mobility is needed in order to model the dynamic discovery and invocation of new
discovered services.

Unlike these other ADLs, the support provided by π-ADL for WS-Composition is
complete with respect to expressiveness of dynamic service-oriented architectures based
on its underlying foundation, i.e. the typed π-calculus.

As a computer language, an ADL is defined by both a syntax and a formal, or semi-
formal, semantics. Typically, ADLs embody a conceptual framework reflecting
characteristics of the style or domain for which the ADL is intended.

The focus of π-ADL for WS-Composition is on the formal modeling of dynamic service-
oriented architectures, and for supporting the computer-aided formal verification and
refinement of these models.

π-ADL for WS-Composition introduces the notion of Web service and service
composition as first-class citizens in architecture descriptions, which is not the case of
other ADLs. Service compositions in terms of service orchestration and service
choreography are formally specified in terms of typed abstractions over behaviors.

Furthermore, π-ADL for WS-Composition provides a notation to express assertions as
properties of service-oriented architectures (not presented in this paper due to lack of
space) based on π-AAL [10]. It combines predicate logic with temporal logic in order to
allow the specification of both structural properties and behavioral properties.
Regarding structural properties, the property notation is based on predicate logic.
Regarding behavioral properties, it is based on modal μ-calculus Moreover, having a
unified notation for expressing both structural and behavioral properties facilitates the
specification task of architects, by allowing a more natural and concise description.

6. Concluding Remarks

In this paper, we have presented π-ADL for WS-Composition, a service-oriented
architecture description language for the formal development of dynamic Web service
compositions, including orchestration and choreography.

 64

Instead of presenting its formal underpinnings and semantics, this paper introduced π-
ADL for WS-Composition through the description of a dynamic service-oriented
architecture of a purchase management system.

π-ADL for WS-Composition is used for modeling the structure and behavior of dynamic
service-oriented architectures. It is defined as an embedded domain-specific language in
π-ADL. It complements the π-ADL family of ADLs with a formal ADL for formally
describing service-oriented architectures. It is itself user-defined and formally specified
in terms of π-ADL. It is worth noting that the definition of the language itself is open.
An architect can thereby tune π-ADL for WS-Composition for his/her specific purposes.

The use of BPMN as a visual notation for business process modeling assists in filling
the gap between semi-formal process diagrams and formal service-oriented architecture
descriptions, which can be analyzed and refined, by providing the ability to elaborate
the architecture specification.

As stated in the introduction, enabling the specification of dynamic Web service-
oriented architectures is a key challenge for an ADL. π-ADL for WS-Composition meets
this threefold research challenge:
• It supports the description of dynamic service-oriented architectures from structural

and behavioral viewpoints, in particular supporting the dynamic nature of web
service discovery and invocation.

• It provides a unified foundation for describing the different service-oriented
architecture artifacts: business processes, orchestrations, choreographies, and
interfaces. Transformation models support the translation from BPMN to π-ADL for
WS-Composition and from it to WS-BPEL and WS-CDL6.

• It supports the formal description of service-oriented architectures enabling to
rigorously reason about and verify their qualities.

Last but not least, π-ADL for WS-Composition bridges the gap between semi-formal
languages such as BPMN and formal calculus of services such as COWS [7], SCC [1],
or SOCK [4]. The former provides computer support without formal semantics, the later
formal semantics without any computer support.

Future work is mainly related with the development of a service-oriented architecture
formal method founded on [22]. This formal method, called the π-Method for SOA, like
formal methods such as B, FOCUS, VDM, and Z, aims to provide full support for
formal description and development. Unlike these formal methods that do not provide
any architectural support, the π-Method for SOA has been built to support service-
oriented architecture-centric formal software engineering.

References

[1] Boreale M. et al.: SCC: a Service Centered Calculus. Proceedings of the 3rd
International Workshop on Web Services and Formal Methods (WS-FM 2006),
LNCS 4184, Springer, Vienna, Austria, September 2006.

[2] Chaudet C., Greenwood M., Oquendo F., Warboys B.: Architecture-Driven
Software Engineering: Specifying, Generating, and Evolving Component-Based
Software Systems. IEE Journal: Software Engineering, Vol. 147, No. 6, UK,
December 2000.

6 The definition and implementation of automated transformation models from π-ADL for WS-

Composition to WS-BPEL and WS-CDL are in progress.

 65

[3] Clements P. et al.: Documenting Software Architectures: Views and Beyond.
Addison Wesley, 2003.

[4] Guidi C., Lucchi R., Gorrieri R., Busi N., Zavattaro G.: SOCK: A Calculus for
Service Oriented Computing. Proceedings of the 4th International Conference on
Service Oriented Computing (ICSOC'06), LNCS 4294, Springer, Chicago,
December 2006.

[5] Greenwood M., Balasubramaniam D., Cimpan S., Kirby N.C., Mickan K., Morrison
R., Oquendo F., Robertson I., Seet W., Snowdon R., Warboys B., Zirintsis E.:
Process Support for Evolving Active Architectures. LNCS 2786, Springer,
September 2003.

[6] IEEE Std 1471-2000: IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems, October 2000.

[7] Lapadula A., Pugliese R., Tiezzi F.: A Calculus for Orchestration of Web Services.
Proceedings of the 16th European Symposium on Programming (ESOP'07), LNCS
4421, Springer, Braga, Portugal, March 2007.

[8] Leymonerie F., Cimpan S., Oquendo F.: State of the Art on Architectural Styles:
Classification and Comparison of Architecture Description Languages, Revue Génie
Logiciel, No. 62, September 2002 (In French).

[9] Marcos E., Cuesta C.E., Oquendo F. (Eds.): Special Issue: Software Architecture.
International Journal of Cooperative Information Systems (IJCIS), Vol. 16, No. 3/4,
September/December 2007.

[10] Mateescu R., Oquendo F.: π-AAL: An Architecture Analysis Language for
Formally Specifying and Verifying Structural and Behavioral Properties of Software
Architectures. ACM SIGSOFT Software Engineering Notes, Vol. 31, No. 2, March
2006.

[11] Medvidovic N., Taylor R.: A Framework for Classifying and Comparing
Architecture Description Languages. IEEE Transactions on Software Engineering,
2000.

[12] Medvidovic N., Dashofy E., Taylor R.: Moving Architectural Description from
Under the Technology Lamppost. Information and Software Technology, Vol. 49,
No. 1, 2007.

[13] Milner R.: Communicating and Mobile Systems: The π-Calculus. Cambridge
University Press, 1999.

[14] Morrison R., Balasubramaniam D., Oquendo F., Warboys B., Greenwood M.: An
Active Architecture Approach to Dynamic Systems Co-evolution. Proceedings of
the 1st European Conference on Software Architecture (ECSA’07), Madrid, Spain,
September 2007.

[15] Morrison R., Graham K., Balasubramaniam D., Mickan K., Oquendo F., Cimpan
S., Warboys B., Snowdon B., Greenwood M.: Support for Evolving Software
Architectures in the ArchWare ADL. Proceedings of the 4th Working IEEE/IFIP
Conference on Software Architecture (WICSA’04), Oslo, Norway, June 2004.

[16] OASIS: Reference Model for Service Oriented Architecture, V. 1.0, OASIS
Standard, October 2006, URL: http://docs.oasis-open.org/soa-rm/v1.0/.

[17] OASIS: Reference Architecture for Service Oriented Architecture, V. 1.0, OASIS
Standard, 23 April 2008, URL: http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-
pr-01.html.

[18] OMG: Business Process Modeling Notation Specification, OMG Final Adopted
Specification, Ref. dtc/06-02-01, February 2006.

[19] Oquendo F.: π-ADL: An Architecture Description Language based on the Higher
Order Typed π-Calculus for Specifying Dynamic and Mobile Software

 66

Architectures. ACM SIGSOFT Software Engineering Notes, Vol. 28, No. 8, USA,
May 2004.

[20] Oquendo F.: π-ARL: An Architecture Refinement Language for Formally
Modelling the Stepwise Refinement of Software Architectures. ACM SIGSOFT
Software Engineering Notes, Vol. 29, No. 5, September 2004.

[21] Oquendo F.: Formally Modelling Software Architectures with the UML 2.0 Profile
for π-ADL. ACM SIGSOFT Software Engineering Notes, Vol. 31, No. 1, January
2006.

[22] Oquendo F.: π-Method: A Model-Driven Formal Method for Architecture-Centric
Software Engineering. ACM SIGSOFT Software Engineering Notes, Vol. 31, No. 3,
May 2006.

[23] Oquendo F.: Software Architectures. Encyclopédie de l’informatique et des
systèmes d’information, Editions Vuibert, November 2006 (In French).

[24] Oquendo F. (Ed.): Proceedings of the European Conference on Software
Architecture (ECSA’07). LNCS 4758, Springer, September 2007.

[25] Oquendo F.: Tutorial of the ArchWare Architecture Description Language,
Deliverable D1.9, ArchWare European RTD Project, IST-2001-32360, June 2005.

[26] Oquendo F.: The π-Service Oriented Architecture Description Language: Abstract
Syntax and Formal Semantics. VALORIA Technical Report, University of South
Brittany, June 2008.

[27] Oquendo F., Alloui I., Cimpan S., Verjus H.: The ArchWare Architecture
Description Language: Abstract Syntax and Formal Semantics. Deliverable D1.1b,
ArchWare European RTD Project, IST-2001-32360, December 2002.

[28] Oquendo F., Warboys B., Morrison R., Dindeleux R., Gallo F., Garavel H.,
Occhipinti C.: ArchWare: Architecting Evolvable Software. LNCS 3047, Springer,
May 2004.

[29] Peltz C.: Web Services Orchestration and Choreography. IEEE Computer, Vol. 36,
No. 10, October 2003.

[30] Pourraz F.: Diapason: An Architecture-Centric Formal Approach for the
Evolutionary Composition of Web Services, PhD Thesis, University of Savoie,
France, December 2007 (In French).

[31] Puhlmann F.: A Unified Formal Foundation for Service Oriented Architectures.
Proceedings of Methoden, Konzepte und Technologien für die Entwicklung von
dienstebasierten Informationssystemen (EMISA'06), Hamburg, October 2006.

[32] Puhlmann F.: On the Application of a Theory for Mobile Systems to Business
Process Management. PhD Thesis, University of Potsdam, Germany, 2007.

[33] Ratcliffe O., Scibile L., Cimpan S., Oquendo F.: Towards an Inductive Definition
and Evolution of Architectural Styles, Proceedings of the 17th International
Conference on Software and Systems Engineering and their Applications
(ICSSEA’04), Paris, France, December 2004.

[34] van der Aalst W.M.P., ter Hofstede A.H.M., Dumas M.: Patterns of Process
Modeling. In Process-Aware Information Systems: Bridging People and Software
through Process Technology, Wiley & Sons, 2005.

[35] W3C: Web Services Architecture, W3C Working Group Note, February 2004,
URL: http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

[36] W3C: Web Services Description Language (WSDL), V. 2.0, W3C
Recommendation, 26 June 2007, URL: http://www.w3.org/TR/2007/REC-wsdl20-
20070626.

