Towards an Effective Component Testing Approach
Supported by a CASE Tool

Fernando Raposo da Camara Silval’z, Eduardo Santana de Almeida 3, Silvio
Romero de Lemos Meira '~

! Federal University of Pernambuco (UFPE)
2SERPRO - Servico Federal de Processamento de Dados, Recife — Brazil

3 C.E.S.A.R — Recife Center for Advanced Studies and Systems, Brazil

frcs@cin.ufpe.br; {esa, silvio}@cesar.org.br

Abstract. Sometimes information about how to reuse a software component is
ineffective or absent. One of the main challenges of component testing is how
can component consumers understand candidate components sufficiently in a
way they can check if a given component fulfills its goal. This is hard though,
because information about component behavior is limited to component
consumers. An approach to reduce the lack of information between component
producers and component consumers is presented to improve
understandability and support component testing activities. The approach is
covered by a CASE tool integrated in the development environment.

1. Introduction

Software componentization is one possible approach to promote software reuse. As a
consequence, component-based development (CBD) appeared not only as an action to
standardize the construction of components with the premise of software reuse as well
as an answer to the claim that CBD allows the reduction of cost and time to market,
while increasing software quality.

The literature contains several work related to CBD methods and approaches,
however, the main consolidates CBD methods [D’Souza et al. 1999, Atkinson et al.
2000 and Chessman et al. 2001] are more aware in demonstrating component
development as a feasible approach, while other important activities, for instance related
to quality and, more specifically, testing, are sometimes neglected.

According to Apperly [Apperly 2001], in CBD we have a produce-manage-
consume process where producers are focused on producing and publishing components
to be reused and consumers are concentrated on finding and reusing components to
reduce development cost. Component consumers need to be sure that the component
they intend to plug to their systems fulfill their needs, while component producers try to
distribute, as much as possible, easy-to-find, easy-to-understand and easy-to-integrate
components.

However, one of the main barriers of CBD is related to component integration.
Component consumers cannot properly conduct tests to ensure that a candidate
component does what it is intended to do before deciding upon its integration. This

68

limitation is a consequence of the limited access to information that is normally
available to testers when working on a project totally developed in-house.

In external component integration, events like meetings with requirements staff
are unrealistic, resources such as functional requirements sheet, sequence diagrams or
any type of documentation that describes what the component under test does may not
be provided too. In addition, the source code of the component is frequently omitted
sometimes due to legal restrictions.

This lack of information can inhibit CBD and the benefits of software reuse
because it increases the effort of component consumers to understand how to use a
component in order to test it. Moreover, component producers cannot have its effort to
develop a reusable component too increased because activities to produce information to
support consumers were added. Thus, it can inhibit the use of CBD to develop reusable
software.

Thus, this paper presents a workflow of activities at the component producer
side to support producers to provide information about the component to third-party
testers; and at component consumer side to aid consumers to understand a component in
order to test it before its integration. In addition, these workflows are covered by a
CASE tool integrated to the development environment.

This paper is organized as follows. A motivation for component testing is
presented in Section 2. Section 3 presents some issues of current component testing
approaches and describes the workflow of activities at both sides: component producers
and component consumers. Section 4 presents detailed description of the workflows and
a tool integrated in the development environment to covering the activities of the
workflows. A preliminary analysis is presented in Section 5, followed by related works
in Section 6. Concluding remarks and future directions are presented in Section 7.

2. Motivation for Component Testing

It is mandatory to provide components with a minimum level of quality to promote
software reuse and take the benefits provided by them [Councill 1999]. According to
Szyperski [Szyperski 1998]: “Testing of software components (and component based
software systems) is possibly the single most demanding aspect of component
technology”. This means component testing is one of key aspects of components
quality.

However, components are heterogeneous by nature. There are open-source
components, COTS components, components presented in different programming
languages, besides components presented with or without source code. In addition, the
level and quality of information varies from component to component.

Testing components does not mean simply to execute tests and correct defects.
While components can be used in different contexts, sometimes the context that the
component producer has used to validate its component is different from the component
consumer’s one [Gao et al. 2003]. Component testing is less trivial than traditional
COTS testing in which the acceptance criteria of the customer are clearly translated into
acceptance criteria of functional and non-functional requirements.

69

In addition, according to Krueger [Krueger 1992], the second software reuse
truism is: "For a software reuse technique to be effective, it must be easier to reuse the
artifacts than it is to develop the software from scratch". That truism encourages
component consumers to reduce the time spent analyzing if a given component properly
fulfills its goals, however, this decision can directly impact the quality of the
component-based systems which consumers intent to build.

As a result, it is necessary to reduce the heterogeneity of information provided
by producers to consumers in order to achieve effective component testing; also it is
necessary to support consumers when understanding and testing candidate components
before its integration. The creation of components hard to find, complicated to
understand, difficult to adapt and poor testable could lead the reuse culture, in a long-
term, to never be well established.

3. Improving Software Components Testing

3.1. Component Testing Issues

Approaches to test components normally address a specific issue of component testing.
Some of them, such as [Harrold et al. 1999, Liu et al. 1999, Beydeda et al. 2001],
address the problem of the lack of information between component producers and
consumers providing means to improve the quality level of information collected and
provided by producers, while others, such as [Wang et al. 1999, Bundell et al. 2000, Gao
et al. 2002, Atkinson et al. 2002, and Rocha et al. 2008], try to promote architectural
solutions to construct components with high testability. Next, some issues of current
component testing approaches are discussed.

Component misunderstanding problem. According to a recent research on open-
source component (OSC) integration by Merilinna et al. [Merilinna et al. 2006]
“Primary problems in practice were issues concerning vertical integration and the lack
or impreciseness of documentation.” This indicates that even if source code cannot be
provided as well as requirements specification to support testing, the focus of
component testing approaches should be on providing useful information to consumers
in a way they can understand how external components behave, how to test them and
how to adapt them to their needs;

Programming overhead of architectural solutions. There are approaches that rely on
easily testable architectures to overcome component testing difficulties such as [Wang et
al. 1999, Gao et al. 2002 and Atkinson et al. 2002]. They are founded on software
testability that is considered by Voas et al. [Voas et al. 1995] one of the three pieces of
the reliability puzzle. But exclusively architectural solutions have some shortcomings
like its increased complexity (and programming overhead associated), memory usage
issues, maintainability issues and, unless older components from repositories were re-
engineered to adapt their architectures to provide testability, they have applicability
limitations. In addition, among agile methods adopters, that according to [Highsmith et
al. 2001] consider the simplest solution usually the best solution; complex architecture
may find some resistance;

Customer acceptance criteria. Some Built-in Testing approaches such as [Atkinson et
al. 2002 and Wang et al. 1999] are founded in static data, with a pre-defined set of test

70

cases. Consumers may change the input of the pre-defined test cases and check output
data but this is not enough to validate a component. Consumers have their own needs
and expectations related to a candidate component, i.e., this means they must be able to
create their own tests to validate components under their own criteria and context of use,
not the one provided by the producer;

Lack of tool support. Component testing is only part of a workflow of activities that
aim at constructing a system with the benefits of software reuse. Tools like Component
Test Bench [Bundell et al. 2000], to verify test case pattern and FATESc tool [Teixeira
et al. 2007] for structural tests are stand-alone applications. This may reduce the
possibility to consumers elaborate tests linking the candidate component and other
resources like libraries and other components. However, currently, many development
environments such as Eclipse' and Together™ can concentrate system modeling,
programming interface and testing. A better integration with development environments
would improve productivity on both producer and consumer sides.

3.2 Component Testing Workflow

Based on surveys of component testing [Beydeda et al. 2003 and Rehman et al. 2006],
and the issues analyzed previously, it can be noticed that the current approaches are not
well integrated with the workflow of activities related to component testing. In general
they are focused on a specific issue. Integration is important because it is the same
bridge that connects, in traditional software development, the system architects to
software programmers, requirements staff to testers. However, this bridge is missing in
CBD, component producers and consumers can be complete independent teams without
any communication channel.

Analyzing existent issues of component testing and solutions for component
testing covered by existent approaches, a workflow of activities performed by
component stakeholders at both sides is presented followed by a description of each
phase.

3.2.1 Component Producer Workflow

Figure 1 presents the workflow of activities at component producer side using SADT
notation [Ross 1997]. The workflow is not necessarily a waterfall, because in practice,
some activities can be executed interleaved or skipped, whereas others can be fully tool
automated to reduce the time spent by producers to provide test information to
consumers.

1. Collect Information: In this stage, component producers collect resources available
that can improve the understanding level of someone that was not involved with the
development of the component. Examples of this type of information can be
requirements sheet, sequence diagrams, class diagrams or test cases among others;

2. Restrict Information: At this moment, an analysis of the information collected is
conducted. If there are any restrictions of information to be provided to consumers, for
instance, copyright restrictions or confidential data, the information should be discarded;

! http://www.eclipse.org/
2 http://www.borland.com/us/products/together/

71

3. Analyze Information: This phase represents the tasks related to component
producers to consolidate the data from previous activity. This may compound the
application of tools to extract specific data, elaboration of component usage manuals,
creation of generic test cases or implementation of some testable infrastructure to be
provided to consumers;

4. Publish Information: Corresponds to the act of attaching to the component the
information to be provided to consumers or publishing somewhere else the information
that third-party testers may use to validate the component.

Restrictions/
—_— D Criteria L:uen%mtrcl
e Information ¢ ™
Re uirementsl—b Ceollset A nput utput
T Information Information

rﬁ Restriqt . Mechanism
45 Information Information
Class Analyze for Testers
Diagram - i —=
. am T Information Publish — %
Component - ifformtion Component
Producer +
TestCases Component - T Info. for Testers
Producer -
Tool Component
Support Producer Component
Producer

Figure 1 — Workflow of Activities at Component Producer Side

3.2.2 Component Consumer Workflow

Figure 2 presents the workflow of activities at component consumer side. Some
activities can be executed simultaneously (and not exclusively by testers) and others can
be fully tool automated/ tool supported to reduce the effort of component consumers.

Consumer (%S
Necessities N Legend:
Reuse Points E Cartral
Map Input ulpul
|cdlentify R Points | Information
Reuse Points [|| eusex omnts %?k .
Functionalities Understand
%yﬁt;eT $ Provided Component & | Test Cases Integrate
Developent - T Elaborate Test Execute & |Component
p Cases L Evaluate ¥

Test Cases s DO NOT

L
Component—— 'nl

i Integrate
Consumer Candidate
Component ~ Component - Component

Consumer @ I"I -
Tool Component @ IHI

Support Consumer Too] Component
Support Consumer

Figure 2 — Workflow of Activities at Component Consumer Side

1. Identify Reuse Points: In this phase, component testers identify where the system
under development ends and where the component under test will be plugged to the
system. For instance, for an on-line store system, after customers complete registration,
an e-mail is sent to them with password and other information to confirm the provided

72

data. The reuse point identified will be the point to invoke an email component to send
the e-mail after user registration;

2. Map Reuse Point to Component Functionality: At this moment, a mapping of the
selected reuse points of the system under development and functionalities provided by
the candidate component will be performed. Detailed component description provided
from producer is a key aspect because they will help consumers to check if the candidate
component has chances of fulfilling its needs;

3. Understand Component and Elaborate Test Cases: In this phase, component
testers should understand candidate component usage, method call dependencies and
pre-conditions of operation. Based on this understanding, testers will analyze necessities
of some glue-code or stubs to create tests to validate basic functionalities of the
candidate component and tests with their own acceptance criteria to check integration
with the system under development;

4. Execute and Evaluate Test Cases: The test cases created are executed and the
results are evaluated.

4. Towards an Effective Component Testing Approach

In order to overcome the difficulties of component testing we suggest an integrated
approach incorporated to component development focused on both sides. It covers the
activities performed by component producers to prepare a component to be tested
elsewhere; and also supports component testers at consumer side to understand the
candidate component and analyze it against consumer’s acceptance criteria.

A tool focused on reducing the effort of both stakeholders for testing
components (component producers and consumers) and integrated to the development
environment was implemented too. It covers activities from the defined component test
workflows at both sides and applies a combination of techniques (automatic, computer-
assisted and manual) to reduce programming overheads. Next sections will describe in
detail how to support component testing activities.

4.1. Providing Information to Component Consumer Tester

Current component testing approaches present a variety of information types that can be
captured by component producers for further testing. [Beydeda et al. 2001] proposed
finite state machine representation; [Teixeira et al. 2007] capture data for coverage
analysis and [Wang et al. 1999] create parameterized test cases. However, before
consumers are able to create their own test cases to validate a component they must
understand their functionalities, dependencies among interface method calls and usage
assumptions. This demonstrates that the abstraction level provided to consumers should
be at functionality level in spite of test case level.

Our tool, named PUG (Producer Usage Generator), is an Eclipse plug-in that
accepts as input source code snippets to capture information about functionalities of the
component. Its strategy is to capture as much as possible information producers are able
to provide to consumers combining an algorithm to capture usage information and
functionality descriptions provided by producers. The information collected is
consolidated in a standard format XML file that can be attached to the component
before its publishing. Its usage has three steps that can be associated to the three last

73

steps of the presented workflow (Figure 1) at component producer side (the first two, we
consider to be performed manually). Next, how the workflow at component producer
side is covered by the tool is presented.

(i) Usage Capture: PUG tool parses methods from provided code snippets and uses an
algorithm similar to program slicing approach, as described by Harrold et al. [Harrold et
al. 1999], and component retrospectors as presented by Liu et al. [Liu et al. 1999]. It
extracts functionality descriptions from JAVADOC, dependencies among variables and
correct order of method calls to accomplish a functionality of a component. It always
skips unrepresentative usage commands like System.out.println, or local
variable definition, for instance.

To reduce programming overhead, we suggest producers to reuse high-level
component unit tests with little adjustments in case they were created during component
development. High-level unit tests are those conceived while producers are developing
the component to validate general functionalities from component’s main interface, not
the ones to test get XXX () and setXXX () methods of a single class.

(ii) Additional Information Decoration: After some functionality usages were
captured by the algorithm, the tool enables producers to decorate the captured
functionalities with additional information in an input form. This information is data
that affects the state of the functionalities and can be used by consumers to understand
the behavior of the component and create their own test cases. For instance, in an email
component, for sendSimpleMessage functionality, an input address such as
“test@@address” is classified as “incorrect usage” that posses the message:
“INVALID EMAIL ADDRESS” as expected result. This additional information is
optional to producers, however, according to IEEE Standard for Software Test
Documentation [IEEE Std 829-1998], textual descriptions are generally provided to
testers.

(iii) Information Publishing: After usage information and additional information were
collected, the data is consolidated in a XML file called Usage Manifest that the PUG
tool generates in an area specified by the producer. XML is used by other approaches to
format the data provided to consumers. However, PUG tool has the advantage to
generate the file automatically whereas other approaches such as [Bundell et al. 2000]
suggest creating the XML file using a XML editor. Finally, producers can attach the
Usage Manifest file to the component object code (for instance, the *jar file) before
publishing the component.

Figure 3 presents how component producers can capture information to be
provided to consumers. The source code snippet (at Figure 3, mark 1) specifies the
usage of a component that has a functionality to write a string of characters in a cell of
an OpenOlffice spreadsheet file. This snippet is a JAVA method inside a JAVA class
from where the algorithm captures JAVADOC as description of writeFunc
functionality and the ordered sequence of method calls to successfully execute a write
operation in a cell. The println command will be skipped by the algorithm as well as
any other non necessary information.

After the algorithm is processed, a window (at Figure 3, mark 2) appears to let
producers decorate the functionality captured with possible input groups and its

74

expected results. It is possible to associate more than one input group to a functionality,

and type, value and description to each input.

The flow is concluded with the tool generating a usage-manifest.xml file
which producers can attach to its component before publishing to market or open-source

repositories.

1 import Root.ODSReadiWrite;
: public class PUGTest {

& Test Data Decoration

Add Test Data to Functionality: writeFunc

(2

4
5 0 : ikl Ul
Type: [boclean v| Vale: [False
Description: | to test condition|
: Add |
* Thi of ck mpo
& B TYPE [wawe [oescrietion |
7 St char W set mode
2 Sting no file provided
public void writeFunc() { String C column
14 ODS5ReadWrite ods = ODSReadiirite. String 34 line:
getInstancel): String “something” some text
ods.setMode ('w') Expected Result:
ods.openBuffer ("c://file.ods"); ERROR, no file ;
i provided d i
System.out.println("Writing..."): ;l SRR

ods.pushData("A", "12", "Test"):

ods.closeBuffer () ;

| 1D 1 Number of Parameters Expected Result |

Ok | Cancel |

Figure 3 — Preparation of a Component to be Tested Elsewhere

4.2. Supporting Component Consumer Tester

Approaches to directly support consumers to test external components are presented
from static built-in tests [Wang et al. 1999] to frameworks such as [Bertolino et al.
2003], to execute a fixed test suite with consumer acceptance criteria over different
candidate components. In some cases, they can contribute to validate a candidate
component, but on the other hand, they are focused solely at specific activities such as
like test case creation and test execution but not the whole process.

According to Andrews et al. [Andrews et al. 2002], component testers must
understand how a component behaves in order to test it. [Boehm et al. 1978] stressed
that understanding software components is a specialized case of software understanding.
It is specialized since the objective is not to understand the code itself, but how the
component works in high-level, how it can be (re)used and how it needs to be adapted.

In order to support component consumers to understand and test a component,
and assuming they have received a candidate component with a Usage Manifest
attached, a tool integrated with Eclipse development environment was implemented.
The tool called CTP (Component Test Perspective) combines visual and analytical
support to guide testers at component consumer side to validate a component.

CTP covers steps of the defined workflow of activities at component consumer
side. It has features to register reuse points of the system under development, a pattern
verifier to check if a test case under construction contains the commands to accomplish

75

a functionality, a visual representation of the functionalities provided in the usage
manifest, functionalities to improve component understanding level and code assist
support to facilitate when testers are creating integration and basic test cases to validate
a candidate component. Next, the usage of CTP is described in detail.

(i) Reuse Points Identification: The place in a system under development where
consumers should plug external components can already be clearly specified in a form
of internal interfaces. Thus, only some glue code can be necessary to invocate
functionalities of the candidate component. However, given the current diversity of
CBD methods, these reuse points may be missing or not clearly defined yet. They can
vary from functional requirements described in natural language to use cases that were
elaborated but not realized. This issue can impact on the quality of the test cases created,
specifically those focused on testing the integration of the component and the target
system. To support the identification of reuse points that consumers should conduct,
CTP provides means to users register the exact reuse points that should be covered by
external candidate components.

In addition CTP allows users to register their expectations related to each reuse
point. These expectations can be restrictions that the functionality of the component to
be plugged should address, or non-functional requirements the candidate component
must realize. These restrictions are important to aid the definition of expected results of
the test cases created. In Figure 4 is presented how consumers can register reuse points
of the system and expectations that external functionalities should cover of each reuse
point;

(ii) Mapping Reuse Points to Functionalities Provided: After the parts of the system
where external components can be plugged are identified, an association to
functionalities of the candidate component that probably addresses the reuse points
identified should be conducted. This is important for two reasons: The first reason is
that generally not all the functionalities of a candidate component are used by
consumers, but a subset from the total of functionalities provided. The mapping
identifies the functionalities of the candidate component that should the tested to check
if they work as designed from the functionalities that should be discarded to be tested.
For instance, in an email component, if consumers just want a component to send
simple text messages, only sendSimpleMessage should be tested whereas a
functionality to send emails with attachments, for instance,
sendMessageWithAttachment should be ignored. The second reason is that the
mapping identifies interactions between the system and candidate components. This can
help consumers to identify future integration tests.

CTP tool supports, as depicted in Figure 4, the mapping of what is provided by
the candidate component to requirements of the system under development. In addition,
types of strategy to test a functionality of the candidate component can be registered.

(iii) Component Understanding and Test Case Creation: Next, consumers should
understand how candidate components work to avoid component misuse problem.
According to [Liu et al. 1999], component misuse problem happens when a component
is used in a way different from what the component producer expects. For instance, if a
hypothetic component y has methods a() and b() in its main interface, and the
invocation of method b(') reads a variable that must be set by method a() beforehand,

76

this is a case of dependency between a() and b(). If the consumer is unaware of that
dependency, the lack of clarity may lead to component failure. Eventually, component
consumer will reject componenty. The information provided from producers about the
component is fundamental to reduce the lack of information between component
producers and consumers.

After component usage is internalized by consumers, they should elaborate test
cases to validate the provided functionalities and the interaction between the system and
the candidate component.

CTP tool uses the Usage Manifest provided within the candidate component to
support component consumers to understand the functionalities provided and to
elaborate test cases. Testers can access information about a component by accessing
features that provide: Component Information - to access different types of
information about the component, including its main interface and functionalities
descriptions; Test Template - to be presented to a test template of the functionalities;
and Test Data - to access the input data, if the producers have decorated the Usage
Manifest with additional data.

In addition, CTP provides pattern verification to check if the set of method calls
that represent correct usage of a functionality is present in the test case under
construction. This functionality is useful to support testers when many method calls are
required to be executed in some sequence due to variable or context dependencies. Also,
when creating integration tests it helps testers to ensure the adherence of the test case to
the functionality under test.

Test case creation is also aided by code assist support. Code assist is present in
many development environments. It reduces the typing/analytical effort of programmers
providing suggestions of probable next commands to be written. However, one issue of
content assists is the generality of the suggestions provided, normally in lists with many
items. CTP manipulates Eclipse’s content assist to provide better suggestions based on
the functionality selected in the tree view.

(iv) Test Case Execution and Evaluation: Finally, consumers should execute the
elaborated test cases and perform an analysis of the results. The results can indicate that
the candidate component fulfills the quality standards of consumers and can be
considered to be integrated to the system, or on the contrary, can be discarded.

To execute test cases and evaluate results existing frameworks such as JUnit and testNG
can be applied with CTP completing all the workflow activities related to component
testing.

5. Preliminary Analysis

It is a consensus that quality plays an essential role to stimulate software reuse and
attack the “Not Invented Here” syndrome. However, there is no defined standard that
tests components and assures its quality.

To analyze the efficiency and effectiveness of the proposed workflows in
conjunction with the tools we have an on-going experiment. As preliminary results, we
can enumerate the following:

77

Project Association ! = |0 x| | Add/Edit a Reuse Paint

Associate a Project to this Perspective D: [l_
{Exampbproject Choose Project... Requirement:
Icwdruwlte'jar —Choose Sk Meed to write the statistic data in an OpenOffice E
Spreadsheet For Further processing,
IV dd this Componen to Project Classpath Acceptance Criteria | Restrictions:
Test Framewoarks 11| | The: comlponent shoould suppart writing in big files J
> 1GE
[V Use JUnit within this Project [Use testiG within this Project_Lyp! () #
" | Possible Reuse Point:
“Reuse Poirts - | . " g
maybe pushData method of the component ;!
1D | Requirement | Tested | Detail IWnte down the Funtionality or property of the current component I
1 Need to write statistic data to an Open(i... v that may Fulfil this re.qwre.menl,
2 Need to send e-mail to our customers r Moe..| Companent Test Technique
‘T'_’ ! " Random ' Boundary Yalue " other
Validation
€ Partition Al

Figure 4 — Linking a Candidate Component to a JAVA Project

e The main advantage of our approach in comparison with other approaches is
to cover the activities related to testing both component stakeholders
(producers and consumers);

e Candidate components can be selected in a repository, for instance, by natural
language descriptions. However, its specificities will only arise when mapping
its provided functionalities to consumer necessities and then -creating
integration tests. This activity is valuable information that is covered by the
workflows and is not explicitly addressed by other approaches;

e The proposed workflows are architecture independent. Thus, they can be
applied independently of programming language or CBD process adopted;

e Unlike other component test approaches based on self-testability where most
of the effort of testing is concentrated on consumer to implement self-testable
components, our approach can be applied to components older than our
approach (legacy components);

e Although information about the component can be provided in interface
specifications or user manuals, the approach is focused on providing minimal
resources to support component testing independently of any other
information that can be provided because other information may be out-dated
or incorrect;

e Another benefit in comparison with other approaches is the use of tools at
both sides to aid stakeholders. This can reduce the effort of producers to
prepare a component to be tested elsewhere; and also reduce the effort of
consumers to create integration tests checking how candidate components and
the system under development work together.

6. Related Work

A number of researches presented approaches attacking the problems related to
component testing. One possible classification of component test approaches, as

78

suggested by [Beydeda et al. 2003], is to classify approaches in two categories related to
how they take into account the lack of information between component producers and
consumers.

Approaches focused on the causes of lack of information try to minimize the
dependence of component consumers on the information provided by component
producers. In this way, the general strategy behind is to aggregate valuable information
to the component in order to facilitate test activities at component consumer side. [Liu et
al. 1999] proposed an algorithm to capture information related to the usage of the
component inside source code. Similarly, [Harrold et al 1999] suggested the use of tools
to capture component summary information like program dependencies among its
statements, information about exceptions handling that can help consumers to elaborate
test cases and data-flow information and to measure test-suite coverage.

On the other hand, approaches aiming at the effects of lack of information to
support testing at component consumer side try to increase component testability by
adding executable test cases that are built in the component together with the normal
functions; or try to equip the component with a specific testable architecture that allows
component consumers to easily execute test cases. [Wang et al. 1999] presented the
Built-in Test approach that is based on the construction of test cases inside component
source code as additional functionalities. In the same way, [Gao et al. 2002] proposed
the testable beans approach. A testable bean has two parts, one containing the
functionalities that can be reused and another supporting component testing.

Analyzing current approaches, it can be noticed that current approaches only
address specific activities of the workflow related to component testing such as
information collection or test case execution not the whole workflow starting at
component producers and ending at component consumers.

7. Concluding Remarks and Future Directions

Theoretically, a component has the known benefit of reliability because the use of a
component in several systems increases the chance of errors being detected and
strengthens confidence in that component. However, after examples of reuse with
catastrophic results such as Ariane project, [Jézequel et al. 1997], component consumers
must have confidence in the component they plan to reuse. Nowadays, the reuse
community is active® and focused on solving this issue.

Even so, it is clear that, to evaluate components properly and guarantee
reliability, component testers has tremendous difficulties of developing test suites for
candidate components due to the lack of low-level understanding. According to
Weyuker [Weyuker 1998], necessary insights are not available and lack of access to
needed artifacts prevents certain types of testing.

We have presented in details two workflows that describe necessary activities to
be conducted by producers to prepare a component to be tested by third party; and the
activities performed by component consumers to elaborate and execute test cases to
support de decision of integrating candidate components to a system under

3 RESAFE’08 - International Workshop on Software Reuse and Safety

79

development. In addition, tools integrated in the development environment were
developed to support both component producers and consumers to accomplish the
presented workflows.

Beyond our preliminary analysis; our work is not finished yet. An experiment is
being developed to measure the impact when applying the proposed workflows
combined with the tools at both sides.

Acknowledgements

This work is sponsored by Brazilian Agency (CNPq process number: 475743/2007-5).

References

Andrews, A. Ghosh, and S., Choi, E. (2002) “A Model for Understanding Software
Components”, 18th IEEE International Conference on Software Maintenance, pp.
359- 368.

Apperly, H. (2001) “Component Industry Metaphor In: Component-Based Software
Engineering: Putting the Pieces Together”, Addison Wesley, pp. 513-526.

Atkinson, C. and Gross, H. G. (2002) “Built-In Contract Testing in Model-Driven,
Component-Based Development”, 7th International Conference on Software Reuse.

Atkinson, C., Bayer, J., Laitenberger, O., and Zettel, J. (2000) “Component-Based
Software Engineering: The KobrA Approach”, First Software Product Line
Conference (SPLC), Kluwer International Series in Software Engineering and
Computer Science, pp. 289-3009.

Bertolino, A., and Polini, A. (2003) “A Framework for Component Deployment
Testing”, 25th International Conference on Software Engineering, pp. 221-231.

Beydeda, S., and Gruhn, V. (2003) “State of The Art in Testing Components”, 3rd
International Conference on Quality Software, pp. 146-153.

Beydeda, S., and Gruhn, V. (2001) “An Integrated Testing Technique for Component-
Based Software”, ACS/IEEE International Conference on Computer Systems and
Applications, pp. 328-334.

Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., MacLeod, G. J. and Merritt M. J.
(1978) “Characteristics of Software Quality”, North-Holland Publishing Company.

Bundell, A., Lee, G., Morris, J. and Park, K. (2000) “A Software Component
Verification Tool”, International Conference on Software Methods and Tools,
pp-137-147.

Chessman, J., and Daniels, J. (2001) “UML Components: A Simple Process for
Specifying Component-Based Software”, Addison-Wesley Publishing Co., pp. 208.

Councill, W. T. (1999) “Third Part Testing and the Quality of Software Components”,
IEEE Software, Vol. 16, No. 4, pp. 55-57.

D’Souza, D. F., and Wills, A. C. (1999) “Objects, Components, and Frameworks With
UML - The Catalysis Approach”, Addison-Wesley Publishing Company, pp. 215.

80

Gao, J., Gupta K., Gupta S., and Shim, S. (2002) “On Building Testable Software
Components”, 1st Int. Conference on COTS-Based Software Systems, pp. 108-121.

Gao, J., Tsao, J. H. S., and Wu, Y. (2003) “Testing and Quality Assurance for
Component Based Software”, Artech House, pp. 476.

Harrold, M. J., Liang, D., and Sinha, S. (1999) “An Approach to Analyzing and Testing
Component-Based Systems”, 21st International Conference on Software Engineering,
pp. 134-140.

Highsmith, J. and Cockburn, A. (2001) “Agile Software Development: The Business of
Innovation”, Computer, vol. 34, no. 9, pp. 120-127.

IEEE Std 829-1998 IEEE Standard for Software Test Documentation.

Jézequel, J. M. and Meyer, B. (1997) “Design by Contract: The Lessons of Ariane”,
Computer, vol. 30, no. 1, pp. 129-130.

Krueger, C. W. (1992) “Software Reuse”, ACM Computing Surveys, vol. 24, no. 2,
pp. 131-183.

Liu, C., and Richardson, D. (1999) “Towards Discovery, Specification, and Verification
of Component Usage” 14th IEEE International Conference on Automated Software
Engineering, pp. 331-334.

Merilinna, J. and Matinlassi, M. (2006) “State of the Art and Practice of Open-Source
Component Integration”, 32nd EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), pp. 170-177.

Rehman, M. J., Jabeen, F., Bertolino, A. and Polini, A. (2006) “Software Component
Integration Testing: A Survey”, Journal of Software Testing, Verification, and
Reliability (STVR), Vol. 17, No. 2, June, pp.95-133.

Rocha, C. R. and Martins, E. (2008) “A Method for Model Based Test Harness
Generation for Component Testing”, Journal of the Brazilian Computer Society, v.
14, pp. 7-23.

Ross, D. T. (1997) “Structured Analysis (SA): A Language for Communicating Ideas”,
IEEE Transaction on Software Engineering, Vol. 03, No. 01, pp. 16-34.

Szyperski, C. (1998) “Component Software: Beyond Object-Oriented Programming”,
Addison-Wesley, pp.588.

Teixeria, V. S., Delamaro, M. E. and Vincenzi, A. M. R. (2007) “FATESc - A Tool to
Support Component Structural Tests” (In Portuguese), I Brazilian Symposium on
Software Components, Architectures, and Reuse, pp. 25-32.

Voas, J. M. and Miller, K. W. (1995) “Software Testability: The New Verification”,
IEEE Software, vol. 12, no. 3, pp. 17-28.

Wang, Y., King, G., and Wickburg, H. (1999) “A Method for Built-in Tests in
Component-Based Software Maintenance”, 3rd European Conference on Software
Maintenance and Reengineering, pp.186-189.

Weyuker, E. J. (1998) “Testing Component-Based Software: A Cautionary Tale”, IEEE
Software. Vol. 15, No. 5, pp. 54-59.

81

