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Abstract. The software reuse initiatives are better implemented when there is

an efficient way to find the reusable assets. However, the search and retrieval

of such information is considered a big deal in literature, once there is a gap

between what the software engineer would like to retrieve and what is stored in

the repository. Thus, this paper presents an efficient way to reduce this problem

and aids search engines applying data mining techniques on log mechanism to

extract knowledge about the historic data. In order to evaluate the results, a

preliminary experimentation is also discussed.

1. Introduction

Software reuse is the process of creating software systems from existing software

rather than building them from scratch [Krueger 1992]. Hence, when it is systemat-

ically performed, it presents benefits such as improvements in time-to-market, qual-

ity and costs reduction, since it uses assets already tested, certified and documented

[Frakes and Isoda 1994]. However, to achieve success on reuse initiatives, often, it is

necessary to provide an efficient way to search and retrieve the assets since, according to

[Prieto-Diaz and Freeman 1987], ”To reuse a software component, you first have to find

it”.

The literature presents some search and retrieval tools, as pointed by Gar-

cia et al. [Garcia et al. 2006a], to aid the reuse process. However, some research

[Mili et al. 2001, Lucredio et al. 2004] show that the main obstacle with these tools is

to retrieve a component that corresponds to the developer’s need, once there is a gap be-

tween the problem formulation, in developer’s mind, and the component description in the

repository [Henninger 1997]. Several solutions [Mili et al. 2001, Lucredio et al. 2004]

have been proposed to attenuate it. However, the user still needs to build queries every

time, and it is hard as also highlighted by [Ye and Fischer 2002].

Another problem is associated with the dependencies among the components

[Vieira and Richardson 2002], since sometimes, the returned assets do not solve the en-

tire problem, and the developer has to find other components to complement the entire

solution. Thus, the dependencies are identified only on demand, when the developer re-

alizes it and tries to search for another component. In this way, this paper proposes an

approach that uses data mining techniques to solve it by reducing the conceptual gap on

the queries built. The solution is based on the reduction of performed queries. Thus,
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Figure 1. KDD steps

the main goal is to optimize the component search and retrieval, through its historic use

which is monitored by a log mechanism such as file or database.

This work is part of the B.A.R.T (Basic Asset Retrieval Tool)

[Garcia et al. 2006b] project whose main goal is to develop a robust tool to search

and retrieve software components. In this project, we had experimented new

trends related to search and retrieval such as active search [Mascena et al. 2006],

context [Santos et al. 1996], folksonomy [Vanderlei et al. 2007] and semantic

[Durão et al. 2007]. These efforts have presented initial findings which stimulate

the research in this direction. Hence, we believe that our approach is a complement

solution for the previous approaches because the suggestions have no relations with a

specific technique.

The remainder of this paper is organized as follows. Section 2 presents the back-

ground on data mining and its application on this work. Section 3 and 4 discusses the main

requirements of B.A.R.T Search Engine and the proposed approach. Section 5 presents

the architecture and implementation. Section 6 shows a preliminary experimentation and

Section 7 the current stage. Section 8 discusses the related work, and, finally, Section 9

presents the concluding remarks.

2. Applying Data Mining Over Log Files

The Knowledge Discovery in Databases (KDD) is a process that aims at discovering

useful information from large collection of data. The discovered knowledge can be

rules describing data properties, frequently occurring patterns, clustering of objects in

the database, etc. Basically, KDD is divided in three phases: preprocessing, mining and

post-processing as shown in Figure 1.

In this Section 2, these phases will be explained and contextualized in our project.

In our context, the KDD is applied over log files in order to guide the data preparation until

the data evaluation. Figure 2 represents a log file that contains information such as date,

hour, user and asset downloaded. For each operation, a line is recorded corresponding to

the user actions.

2.1. Preprocessing

As shown in Figure 1, the first phase prepares the raw data to be mined. This phase is

extremely important because the inconsistencies can change the knowledge extracted

(8). In this way, this phase is divided in five steps. The first one is to clean (1) the raw
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Figure 2. A log line example

data to remove the ”trash”. The ”trash” lines are the ones that do not match the format

in Figure 2, for instance, lines 2 and 5 of Figure 3. This is necessary because during

the inserts transaction, some data can be damaged for instance by system crash. Next,

it is necessary to integrate (2) all files to optimize the knowledge extract process. In

this moment, the results can be used to compose a data warehouse (3), such as a historic

database copy. Sometimes, the date is divided in many parts to improve their compression

or organization. The next steps are to select (4) and transform (5) the information in

groups of transactions that represent each user during a time or activity. The process of

association rules extraction needs to have these groups to find repeated events or patterns

[Tan et al. 2005]. Section 2.1.1 presents more detail about that.

Figure 3. A raw log file example

2.1.1. Identifying the Transactions from Log Mechanisms

The association rules extraction is based on the pattern detection in groups of records

called itemsets [Agrawal and Srikant 1994]. However, when log files are used, these

groups are not perfectly separated. The classic situation of association rules is the Market

Basket Analysis [Tan et al. 2005] that is associated with the products’ organization in a

supermarket. In this case, the transactions are defined by the consumer’s ticket. Thus, the

products purchased are perfectly described and separated for each consumers. Although

in a log file the records are not sorted, it is necessary to separate its lines in transaction

sets where each transaction will contain one or more log lines. Figure 3 and 4 show

respectively a log example generated by the B.A.R.T Search Engine and the identified

transactions.

Figure 4. A log file example cleaned and divided in transactions
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The transaction identification is based on time window [Cooley et al. 1999]. How-

ever, we do not use a fixed time window. Our approach uses the cluster algorithm k-Means

[Tan et al. 2005]. The main task is to separate the log lines by user and after applying the

k-means to group these lines. Figure 5 shows an example of downloads performed by

some user in the timeline. In this case, these downloads are executed in three periods

(1), which correspond to when the transactions happened. However, the cluster algorithm

uses centroids to make the comparisons and each centroid is transformed in a cluster. In

our problem, the centroid amount is based on the time window of 10 minutes with no

download (2). This number was based on an empirical analysis of our base. During the

iterations cluster algorithm, the centroid positions are recalculated based on the Squared

Sum Error (SSE) [Tan et al. 2005].

Figure 5. The mapping of the hypothetic user downloads quantity

The result, as shown in Figure 6, is a set of clusters (1) and each centroid (2) that

represents the related downloads and it will be the input to the association rule algorithms.

Figure 6 shows the result represented by clusters.

Figure 6. Result of Cluster Analysis to Transaction Identification

2.2. Mining

In the Mining phase, Figure 1, step 6, some algorithms can be used to extract the knowl-

edge such as clustering, classification, association rules, among others [Tan et al. 2005].

However, in our case, we are interested in extracting the relations among the stored com-

ponents. Thus, we used association rules algorithms [Agrawal and Srikant 1994] to ex-

tract a set of implications. Formally, let I={i1, i2, · · · , in} be a set of literals, called items.

An association rule is an implication of the form (
∧

x ∈ Xx) ⇒ (
∧

y ∈ Y y), which we

write more compactly as X ⇒ Y , where X ⊂ I , Y ⊂ I , and X∩Y = ∅. These rules rep-

resent the patterns (Figure 1, step 7) and each rule means that the occurrence of ITEM X

suggests the ITEM Y occurrence. In our approach, the rules will indicate the dependency

among the components, for instance, "FileUtil.java ⇒ File.java". Thus, it

is possible to suggest the "File.java" every time "FileUtil.java" is returned

by some query.
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2.2.1. Association Rules Algorithms

In the literature, several algorithms were proposed to extract association rules. The Apri-

ori [Agrawal and Srikant 1994] is the base for several of these algorithms. However, each

algorithm is focused on a specific quality characteristic. For instance, the Partitioning

[Savasere et al. 1995] algorithm reduces the database scans. On the other hand, if the per-

formance is the focus, the parallel algorithms such as IDD (Intelligent Data Distribution)

[Han et al. 1997] can be used.

The analysis of association rules algorithm shows that a perfect algorithm does not

exist. However, the algorithm used can be updated for each situation. Thus, our solution

allows the extension for other association rules implementations.

2.3. Post-processing

The mined rules must be evaluated because the quantity can be too large (≈ 1079)

[Tan et al. 2005]. For this, there are several measures to evaluate the quality of each gen-

erated rule. These measures can be classified in subjective or objective. The subjective

measures are related with external questions, for instance, business decisions. The objec-

tive measures are related with technical questions and event occurrences such as access,

searches, record stored, and etc. In this work, we use two objective measures: confidence

and support [Sheikh et al. 2004]. This choice was based on the information type that the

search engines can provide using log files.

a. Confidence (X⇒Y)

The confidence evaluates the relation level among the rule components (X and Y).

Thus, it is possible to see that: if X occurs then Y will occur too or if this happened

just as a coincidence.

conf =
X ∪ Y

X

b. Support (X⇒Y)

The support measure represents the rule occurrence rate in all database and it is

represented by the union of X and Y occurrence divided by the total of occurrences

in database (n). Thus, if a rule occurs few turns then it is not a pattern.

sup =
X ∪ Y

n

2.4. Rule Filtering

The extracted rules can have a lot of antecessors and successors in this composition. Thus,

some rules must be pruned to simplify the suggestion and reduce the noise.

• Antecessor Quantity: The rules that have two or less antecessors will be accept.

Rules with more than two antecessors are so complicated to the user and it causes

more noises in the final visualization.

Ex.: FileA.java, FileB.java, FileC.java ⇒ FileD.java

• Successors Quantity: The suggestions must be based in rules that have only one

sucessor.

Ex.: FileA.java ⇒ FileD.java, FileF.java
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3. B.A.R.T Search Engine

According to the idea that reuse can be performed in a systematic way

[Frakes et al. 1998], supported by an environment to aid in the software development

process activities, we constructed B.A.R.T (Basic Asset Retrieval Tool). B.A.R.T is a com-

ponent search engine to aid the software engineer to find component, which implements

the problem that needs to be solved [Garcia et al. 2006b].

The B.A.R.T is based on client-server architecture, where the client side commu-

nicates to the server side through a web service layer. The client side is represented by

Eclipse and MS Word plug-ins besides a brand new web interface which searches reusable

assets on the server side [Garcia et al. 2006b]. Its architecture was designed to be exten-

sible by providing the capacity to add new features by including new components. Ini-

tially, this proposal concentrates its efforts only on an external client and in architectural

modules of server side. The basic modules which comprise the entire architecture are:

searcher, retriever, indexer, filter and repository manager.

4. The Main Requirements

Once presented the background on data mining and the KDD process, we will discuss

how these ideas are being used in our tool. The requirements proposed for this work are

based on studies about existing solutions in the literature [Lucredio et al. 2004], system-

atic analysis of reuse tools that aid the software development [Garcia et al. 2006a], and

our interaction with the industry in projects in this direction. Thus, the main specified

requirements are:

1. Suggest Associated Asset. This approach must be developed to suggest associ-

ated assets for the search engine users. These associations are based on knowledge

extraction of log files as exemplified previously.

2. Extract Association Rules. The associations mentioned previously are provided

by association rules extraction. This approach must extract the rules using well-

defined algorithms such as Apriori [Agrawal and Srikant 1994], Dynamic Itemset

Counting (DIC) [Brin et al. 1997], and FP-Growth [Han et al. 2000].

3. Parser from Log Mechanisms Artifacts. The log mechanisms accepted by this

approach are log files. The knowledge extraction process uses these data to extract

the rules.

4. Provide a Visual Interface. The approach must provide an alternative interface

to aid the user to assimilate the suggestions. For this interface to become more

intuitive, it must be based on graphs [Niggemann 2001].

5. Architecture Specification and Out line of Implementation

The architecture is divided in two modules: Association Rules Extractor (AR Extrac-

tor) and Association Rules Viewer (AR Viewer). The first one is responsible for the

knowledge extraction using log files whose flow is: (i) parser the file and (ii) extract the

association rules. The second module is responsible for showing the results to the user.

These results are plotted as a graph and show the recommendations. Figure ?? shows the

interaction among the architectural modules.

The inputs are a log mechanism result, such as (1) file or database, and a (2)

XML Descriptor. This XML describes the log structure and aids the log parser process.



 171

Some configurations, such as limits of measures, algorithm type, are set by (3) Properties

Configurations and the result is a rule collection as a (4) XML result. The result and

search engine response are received by the second module: (5) AR Viewer. The viewer

renders the results as a graph to the user.

The modules integrate an environment whose responsibility is to provide a better

way to locate assets. In the Figure 7, the complete flow is showed. The first step is the

query request by user (1) using Remote Method Invocation (RMI) or Web Services

(WS) connection. Next, the query is processed by the search engine (2) that uses the

data from files localized in databases, file systems or CVS. This system usage generates

a log that represents the real use of the search engine (3). Thus, the AR Extractor uses

this file to extract association rules (4) that will aid the user. The final result is the sum of

the search engine response and the rules associated with it (5). The final result is built by

AR Viewer as a graph that presents the response of the user query and the suggestions.

Figure 7. Architecture and its interaction with the user

An important issue is that it must be integrated with any search engine that uses a

log file. After this, as shown in Section 4, the algorithm can be changed, thus, alternative

implementations can be used.

5.1. Association Rules Extractor

The AR Extractor is divided in three sub modules: XML Descriptor Extractor, Algorithm

Manager and XML Generator, as seen in Figure 8. The XML Descriptor is parsed and

next the lines are grouped in transactions. These transactions represent the files that each

user downloaded in a specific time window. This number must be provided by search

engines to demark the informatio collected in a time window.

In the Algorithm Manager, the data mining phase is processed and the algorithm is

selected. This choice depends on each situation as a distributed or singles databases; some

characteristics must be analyzed, such as performance, CPU process, memory usage and

return time. The first version uses the FP-Growth [Han et al. 2000], which is a modern

implementation for an association rules extraction. This solution uses a new tree called

FP-Tree that provides a reduction on the database scans, shrinks the number of candidates
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Figure 8. Intern Architecture of AR Extractor Module

and facilitates support counting of candidates [Han et al. 2000]. During the evaluation,

some rules are accepted and the others are left behind. This step is important to improve

the final rules quality. In Figure 9, two rules are presented, the Rule #111 was accepted

as a suggestion because the values support and confidence represents that it is a pattern on

the historic data. However, the Rule #112 was not accepted because the 0.1% of support

shows that the occurrence of "IAudioPlayer.java ⇒ GameEngine.java" is

a coincidence. Thus, only the best rules are codified by XML Generator.

Figure 9. Evaluation of the Rules Mined

5.2. Association Rule Viewer

The AR Viewer is detailed in Figure 10 and it has four sub-modules. The Communi-

cation layer provides a way to connect the client and server side. This layer was im-

plemented using Web Services and RMI. The Interpreters (Rules and Query Result) are

used to transform the XML returned from the server and prepare it to graph render. This

graph is provided by the last sub- module that will plot the result to the user.

Figure 10. Architecture of AR Viewer Module

In Figure 11, the graph represents a final result. The rectangles, directly linked

with central node, describe the result query by the search engine. The more extern rectan-

gles show the suggestion. If the user requests the query ”player”, then the system returns
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the some files. However, if the user selects the file "JMFPlayer.java" to download,

the system suggests that the file "AudioPlayerAdapter.java" should be down-

loaded too (1). This suggestion is generated from the Rule #111 showed in the Figure

9.

Figure 11. Example of resulted graph

The AR Viewer uses other important concept that tries to help the user. This

concept is related with the user interface, and uses Visual Data Mining which is a visual

channel to become the process more intuitive for humans [Niggemann 2001]. Another

way to present the suggestions, using a non intrusive mechanism, is the simple text format.

In Figure 12, there is an example using B.A.R.T Search Engine where the suggestion

(1) is represented in a text line. This alternative solution cannot represent rules with two

or more antecedents, because this interface cannot show the interconnection between the

results.

Figure 12. Example of suggestion on simple text format

6. Experimentation

In this section, we present and discuss a preliminary experiment for the data mining al-

gorithms and the improvements in the search engine. The log mechanism selected was

the log file model and it was based on our test repository. This repository is composed by

100 classes and it is used for information retrieval tests in our tools. The log file used has

5.000 lines and represents the executed downloads over the source code.
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In order to formalize the experiment some hypotheses were raised. The null hy-

potheses (H0), i.e. the hypotheses intended to be rejected will indicate if the our approach

does not have contributed for quality of suggestions. Therefore, two types of hypotheses

were defined in order to organize the experiment. The first hypotheses group is related

with data mining aspects. The second one is related with the gain of the new visual inter-

face.

Data Mining hypotheses

• H0a : µ The percetagem of correct suggestions is lower than 70%.

• H0b : µ No rules are generated with confidence higher than 70% and support

higher than 4%.

Visual Interface hypotheses

• H0c : µ The amount of rules that are not supported by the simple text interface is

lower than 50%.

• H0d : µ The visual interface decreases the search engine response time in 30%.

The first step to execute the experiment was to clean the files and separate the lines

by users to identify the transactions. In this phase 3.308 transactions were identified from

five users. Table 1 shows the quantity of transactions identified by user.

Figure 13. Comparison between Rules Quantity and Support

Table 1. Transactions Identified by User

User TransactionsIdentified

#1 685

#2 617

#3 709

#4 576

#5 721

In the second step, we test the mining algorithms to extract the rules. Figure 13

shows the comparison between support and rule quantity using 70% of confidence. The

top five rules are showed in Table 2. A low support, as explained in Section 2.3, suggests

more rules, however, the quality decreases due to their redundancy. However, a high

support restricts the rules quantity and reduces the aid rate.

The generated rules using 4% of Support and 70% of confidence were evaluated,

because the support with 3% generates a lot of rules that’s affect the quality. Table 3
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Table 2. Top 5 extracted rules
Rule Antecedent Sucessor Support(%) Confidence(%)
1 JeevesServlet ∧ HttpUtils WebdavRequestImpl 4 100

2 WebdavRequestImpl ∧ HttpServiceRequest JeevesServlet 4 100

3 WebdavRequestImpl ∧ JCRURLConnection JeevesServlet 4 100

4 SimpleListener ∧ FramerImpl JdbcConnectionPoolConnection 4 99.55

5 DatabasePersistenceManager ∧ JdbcConnectionPoolConnection FramerImpl 4 99.55

Table 3. Percentage of correct suggestions

Total Correct Wrong

195 88,08% 11,92%

shows the rules quality analysis. Thus, the null hypothesis H0a was reject, because 195

rules were generated.

The preliminary evaluation shows that the final results can be improved, because

works like [Fonseca et al. 2003] obtained 93.45% of correct suggestions to queries rec-

ommendation. However, the results show that the historic data aids the results in 88% of

cases and it rejects the null hypothesis H0b. However, we need to experiment the other

transaction identification process and algorithms in a larger test base.

The Visual Interface hypotheses (H0c and H0d) were reject because 86,62% of

the generated rules had more than one antecedents. This rule type cannot be showed in a

simple text interface with an intuitive way, because it needs the representation of relations

among the assets. Hence, once that the rules are generated in batch, the suggestion

process does not interview in the final response time.

7. Current Stage

Nowadays, the first version is under test phase in an industrial context, at C.E.S.A.R.1.

The B.A.R.T Search Engine is being used in this test phase through the interfaces pre-

sented in the Section 5. However, the gain of an alternative interface based on graphs,

the AR Viewer, will be measured using the user feedback, the amount of use of each

interface type and downloads. Both interfaces are available to all user testers.

8. Related Work

In the literature, some works propose different tools to aid the information search and

retrieval. CodeBroker [Ye and Fischer 2002] presents a tool that finds information about

components that are relevant for activities realized in the same moment. According to

[Ye and Fischer 2002], Ad-hoc evaluations presented that this type of strategy is effective

to promoter reuse. It allows the exploration from a new style of collaboration between

men and machines. Based on the same concepts, Strathcona [Holmes and Murphy 2005]

uses software agents to implement an active search mechanism to search source code

examples and to aid the developers in the codification process. It presents examples ex-

tracted of repositories based in six different heuristics.

The related work presented are associated with source code reuse based on search

and retrieval. Our approach complements these works allowing reuse based on the historic

use. We believe that the approaches are complementary and can be used together, as we

1Currently, this company is CMMi level 3 and has about 700 employees, http://www.cesar.org.br.
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did, with any search engine. Other related work use the association rules in Web Mining

[Cooley et al. 1997] for sites recommendations. However, these solutions are not used to

suggest assets, only web pages.

9. Concluding Remarks and Future Works

Software reuse is a critical issue for companies to obtain the benefits of costs and devel-

opment time reduction. However, for software reuse to be disseminated in companies,

sometimes, the use of tools as search engines is a viable solution. This work proposes

a way to improve the search engines avoiding unnecessary queries. For this, the log

files were monitored to extract a historic pattern. This extraction allows previewing the

searches. However this data from log files are so raw and huge. In order to solve it, we

use data mining technique, called association rules and clustering, to aid the knowledge

extraction since the data cleaning until the result evaluation.

The extracted knowledge was presented to user using an alternative way based on

graphs to become the suggestions more intuitive. However, the normal vision as plain

text was kept to reduce the introduction to components suggestion. Some tests with soft-

ware developer teams were executed in order to measure the improvements that this new

interface can provide.

The future version will integrate the AR Viewer on the developer environment. In

this way, we will use a plug-in to Eclipse and Visual Studio to become the solution less

intrusive since this environment is being most used in companies.
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