
Evaluating the performance of NSGA-II and NSGA-III
on Product Line Architecture Design

Lucas Wolschick, Paulo Cesar Gonçalves∗, João Choma Neto, Willian Marques Freire, Aline Maria
Malachini Miotto Amaral, Thelma Elita Colanzi

State University of Maringa
Maringa, Parana, Brazil

{ra123658,pg55461}@uem.br,{joao.choma,willianmarquesfreire}@gmail.com,{ammmamaral,teclopes}@uem.br

ABSTRACT
Product Line Architecture (PLA) design can be modeled as an opti-
mization problem to be solved with search-based algorithms. PLA
design optimization has successfully been done using the Non-
Dominated Sorting Genetic Algorithm II (NSGA-II) in scenarios
involving up to three objectives, which involve software metrics for
properties such as feature modularization, PLA extensibility, and co-
hesion. As many of these properties may be desired in a PLA at the
same time, more than three objectives might need to be optimized
simultaneously. The Non-Dominated Sorting Genetic Algorithm III
(NSGA-III) was designed to solve problems impacted by more than
three objectives, named many-objective problems, so it might suit
this need. However, NSGA-III has not yet been applied in the con-
text of PLA design. In this sense, this study aims to compare the
performance of NSGA-II and NSGA-III for PLA design to uncover
which algorithm best fits this problem. To accomplish this goal, we
implemented a specialized version of NSGA-III and then ran exper-
iments using both algorithms to optimize eight PLAs with three,
four, and five objectives. We evaluate the algorithms’ performance
via quality indicators commonly used in search-based software
engineering. The empirical results point out that: (i) NSGA-III had
a slightly better performance than NSGA-II when optimizing four
or five objectives in the context of our study; (ii) NSGA-II was the
best or the algorithms tied when the PLA given as input is easier
to optimize due to reduced solution space.

KEYWORDS
product-line architecture, search-based software engineering, multi-
objective evolutionary algorithm

1 INTRODUCTION
A Software Product Line Engineering (SPL) consists of core assets
with common and explicit variable features [23], which are used to
derive products. The Product Line Architecture (PLA) encompasses
the central design model of an SPL, and therefore, it needs to be
generic and flexible enough to support the configuration of many
distinct products. For an experienced architect, recognizing a good
PLA design might be easy, but achieving one is not. Finding the PLA
design that best combines different metrics demands a lot from the
architect. Metrics may conflict, and in these cases architects need to
choose which of them should be prioritized [1, 6, 25]. The conflict
arises from the various possibilities for defining PLA modeling,
which consider several different factors that can influence the PLA

∗Also with Universidade Tecnológica Federal do Paraná.

design each. This may lead into more than one possible solution
existing for a given problem [23].

These trade-offs make PLA design suitable to be modeled as a
multi-objective optimization problem [17]. Search-Based Software
Engineering (SBSE) is a research field that aims to model software
engineering problems as computational search problems, which
can be solved with metaheuristics, to find near-optimal solutions
automatically [18]. In the context of PLA design, a difficult and
laborious process, SBSE techniques can be useful in decreasing
human effort when exploring design alternatives.

The Multi-Objective Approach for Product Line Architecture
Design (MOA4PLA) [9] applies SBSE techniques to optimize several
architectural properties of a PLA design simultaneously. MOA4PLA
has been implemented in an open-source tool namedOPLA-Tool [16]
using NSGA-II (Non-Dominated Sorting Genetic Algorithm II) [13],
the most used multi-objective evolutionary algorithm (MOEA) in
SBSE studies [7]. NSGA-II is a multi-objective algorithm that allows
the simultaneous optimization of more than one objective (factor).
For PLA optimization, the objectives consist of software metrics
related to the architectural properties to be optimized.

NSGA-II shows satisfactory results when optimizing up to three
objectives for PLA design [15, 28], which represent specific metrics
in the PLA context that indicate the quality of the optimized solu-
tions. However, when the architect wishes to optimize more than
three objectives at once, NSGA-II does not maintain good results,
in part due to a bigger search space and increased complexity of the
problem [11]. In this situation, an algorithm specifically designed
for this task (many-objective optimization) may provide better re-
sults instead, but to the best of our knowledge, no many-objective
algorithms have been applied in the context of PLA design yet.

TheNon-Dominated SortingGenetic Algorithm III (NSGA-III) [12]
was designed to solve problems containing more than three objec-
tives, known as many-objective problems, and has already been
applied in many contexts (see Section 7). Ishibuchi et al. [20] com-
pared NSGA-II and NSGA-III using canonical problems usually
studied in the optimization area. Their empirical results showed
that NSGA-III does not consistently outperform NSGA-II even for
ten-objective problems. They discovered that the results depend
on the number of objectives and the characteristics of the problem
being solved, which consists of PLA design for our context. In ad-
dition, their study found that the problem type had a larger effect
on the results than the number of objectives. In the SPL context,
NSGA-III was compared to NSGA-II to optimize SPL testing using
three objective functions [21]. The results indicated that NSGA-III
produced better results than NSGA-II for two SPL feature models.

SBCARS’24, September 30 – October 04, 2024, Curitiba, PR Wolschick et al.

Acknowledging that an SPL architect may be interested in op-
timizing more than three objectives simultaneously during PLA
design optimization, and considering that NSGA-III was designed
for many-objective problems, and that stochastic algorithms, such
as NSGA-II and NSGA-III, are usually assessed by empirical studies
following guidelines for SBSE studies [3, 7], an investigation on
the performance of NSGA-III for PLA design becomes needed. To
fulfill this gap, in this work we specialized an implementation of
NSGA-III to OPLA-Tool and then conducted an empirical study
comparing NSGA-II and NSGA-III in terms of many-objective opti-
mization. Therefore, this study aims to analyze the performance of
both algorithms in the context of PLA design optimization. Their
performance is measured with the Hypervolume, and Euclidean dis-
tance to the ideal solution quality indicators, which are commonly
used in the SBSE field [22].

A total of 48 experiments were conducted evaluating eight PLA
designs, varying the number of objectives to be optimized (three,
four, and five objectives). Our main findings are: (i) NSGA-III had a
slightly better performance for many-objective optimization (four
or five objectives); (ii) NSGA-II was the best or there was a tie
between both algorithms in several cases, justified by the character-
istics of the PLA design under optimization, which is less complex,
leading to lower solution space. So, our results corroborate the
literature [20] as they showed the results depend on the number of
objectives and the problem characteristics to be solved.

In summary, the main contributions of our work are:
- we contribute an additional option of optimization algorithm

to OPLA-Tool – NSGA-III – alongside existing ones, benefiting the
research community that uses such a tool and allowing the efficient
optimization of more than three objectives simultaneously;

- we enhance the state of the art with empirical results of the
performance comparison between NSGA-II and NSGA-III in the
PLA design context. This contribution is important to guide re-
searchers and practitioners in choosing which MOEA to apply in
their empirical studies and design problems.

2 PRODUCT LINE ARCHITECTURE DESIGN
Product Line Architectures are critical assets within the context
of SPL Engineering. The development of a PLA demands signifi-
cant effort to entail a design that involves all the commonalities
and variabilities of the SPL’s products. In addition, developing a
PLA is an iterative, technical process that aims for maintainable,
reusable architectures that meet desirable properties such as feature
modularization, extensibility, and cohesion, among other factors.
However, these factors can conflict, which leads to multiple model-
ing alternatives for a specific PLA design scenario.

SBSE techniques [17] can be applied to automate the optimiza-
tion of PLA design, offering various near-optimal design alterna-
tives based on predefined objectives. To assess these factors, soft-
ware metrics are used as objectives that can be optimized through
the search process. To achieve this goal, Colanzi et al. [9] proposed
the approach named MOA4PLA (Multi-Objective Approach for
Product Line Architecture Design), which employs Multi-Objective
Evolutionary Algorithms (MOEAs) to evaluate and enhance the
PLA design concerning architectural properties. MOA4PLA allows
the application of various MOEAs in PLA optimization.

According to Harman, Mansouri, and Zhang [19], two essential
components are required to solve a problem using search algo-
rithms: (i) a suitable problem representation that allows for sym-
bolic manipulation; and (ii) an evaluation function, formulated
based on the representation and specific metrics, to measure the
proposed solutions’ quality. In MOA4PLA, the first component is
developed in the activity named Construction of the PLA Represen-
tation, while the second is established in the activity Definition of
the Evaluation Model. Following these activities, the search algo-
rithm is applied to generate a set of solutions (PLA representations).
In the final step, these solutions are refined and returned, so that
the software architect can choose the most appropriate one.

Within the scope of MOA4PLA, a PLA is represented by a class
diagram that captures the static structural dimension of the archi-
tecture [9]. This representation is achieved through a metamodel,
facilitating the manipulation of architectural elements by optimiza-
tion algorithms. A PLA includes various architectural elements
such as components, interfaces, and operations and their respective
relationships. Each of these architectural elements is linked to one
or more features through UML stereotypes, being either a common
element across all products in the SPL or specific to some prod-
ucts, denoting its variability. Variable elements are connected to
elements defining variation points and their possible variants [9].

OPLA-Tool is the open-source tool that fully automates the ap-
plication of MOA4PLA [16]. The tool’s optimization process begins
with an XMI (XML Metadata Interchange) file containing the origi-
nal PLA design. This file serves as the input to the approach, where,
during the XMI conversion, each identified element in the XMI
is transformed into an object within the metamodel, following its
classification. After this point, the PLA representation will include
objects that reflect the architectural components, the relationships
among them, the variabilities, and the features associated with each
architectural element [8].

MOA4PLA has an evaluation model, detailed in [29], which
incorporates a set of objective functions derived from software
metrics. These functions are essential for assessing key aspects of
PLA design alternatives. Such functions measure properties such
as feature modularization, PLA extensibility, variability, design
elegance, coupling, cohesion, and size. The objective functions
quantify the quality of the PLA design and its ability to meet these
criteria during the optimization process. The SPL architect must
select a subset of objective functions to be used during the process.

Among the objective functions encompassed in the model, five
functions used in previous studies [8, 9, 15, 28] were also used in
this study, namely COE (Relational Cohesion), ACLASS (Class Cou-
pling), FM (Feature-based Metrics), CM (Conventional Metrics), and
Eleg (Elegance). The COE function measures the cohesion of a PLA
design through the internal relationship among its classes. ACLASS
quantifies class coupling by counting the number of architectural
elements that depend on other classes in the design and the number
of elements on which each class depends. In turn, the FM func-
tion evaluates feature modularization in a PLA design, considering
feature-based cohesion, feature tangling, and feature dispersion on
architectural elements. CM is the sum of conventional cohesion,
coupling, and size metrics. Finally, Eleg measures the elegance of
an object-oriented design. The specific equations for calculating
these functions and their respective metrics are detailed in [29].

Evaluating the performance of NSGA-II and NSGA-III on Product Line Architecture Design SBCARS’24, September 30 – October 04, 2024, Curitiba, PR

MOA4PLA employs mutation and crossover operators to opti-
mize the provided PLA design. Mutation operators also create the
initial population from the original PLA design. OPLA-Tool allows
different MOEAs to be chosen for optimizing PLA designs together
with the mutation and crossover operators of MOA4PLA. Many
MOEAs, such as NSGA-II and PAES, are readily available for use,
having been implemented by the original authors of the tool. Users
can also analyze the generated solutions after the optimization
process with the tool.

3 SEARCH-BASED OPTIMIZATION
Many problems in Software Engineering (SE), including PLA design,
are good candidates for being solved with search-based techniques
due to their inherently complex and multi-faceted nature. Propos-
ing solutions to a hard SE problem requires careful analysis and
consideration of the problem’s requirements, which can often be
conflicting. This implies that often, no solution is single-handedly
better than all the others. There are often many good solutions for a
given problem, with different sets of desirable characteristics each,
and finding and evaluating these alternatives is challenging and
time-consuming. The software architect is responsible for exploring
these alternatives in the design space and then picking whichever
is the most adequate for the problem. By using search algorithms
to generate alternatives, the architect can instead focus only on
evaluating the generated solutions and their trade-offs.

In SBSE, SE problems are modeled as optimization problems,
with their requirements numerically encoded as constraints and/or
objective functions. In multi-objective or many-objective optimiza-
tion problems, where there is more than one objective function
being optimized at once, solutions can be described in terms of the
values it assumes for each objective. These values can be considered
components of a vector which positions the solution in a solution
space. The solution space can contain feasible and unfeasible solu-
tions, i.e., solutions that do not meet the problem constraints.

When comparing two solutions in a minimization problem, we
say that a solution dominates another if it is numerically smaller in
one dimension than the other and numerically equal to or smaller
than the other in the remaining dimensions. If neither solution
dominates the other, they are said to be non-dominated.

The set of all non-dominated points in the solution space forms
the Pareto front, which corresponds to the set of solutions that
are all optimal in one way or another but have different trade-offs.
Therefore, we want to generate solutions that pertain to and are
widely distributed in the Pareto front so that the software architect
can explore and evaluate many design alternatives.

3.1 Multi-Objective Evolutionary Algorithms
Genetic algorithms are a class of metaheuristics composed of three
types of search operators: selection, crossover, and mutation. All
metaheuristics, including genetic algorithms, are stochastic algo-
rithms, and a randomness factor is associated with the application
of search operators [17, 18].

MOEAs are a generalization of genetic algorithms for multi-
objective optimization problems, and are commonly used in many
SBSE tasks. These algorithms maintain and iteratively improve a set

of solutions, named population, in a manner inspired by evolution
and natural selection theories.

Each iteration is called a generation; in every generation, each
solution undergoes the steps of selection, crossover, and mutation.
First, pairs of solutions in the population are selected with a selec-
tion operator and then crossed with a crossover operator. Usually,
the selection favors the fittest solutions, so their traits, assumed
to be more desirable, can be replicated and passed onwards. The
crossover operator mixes traits of both solutions to generate a new
solution, which can be subsequently randomly altered by a muta-
tion operator. Lastly, after all descendant solutions are generated, a
final population is constructed by mixing the ancestor and descen-
dant solutions. This process is repeated until a desired stopping
condition is reached.

The randomness factor associated with the selection, crossover,
and mutation operators helps maintain a diverse population with
members in many solution space regions. As the selection step
favors fitter solutions, the overall effect is that after each generation,
the resulting population converges closer to the Pareto front while
maintaining diversity, which is our main goal with MOEAs.

Non-dominating SortingGeneticAlgorithm II (NSGA-II) [13]
is an MOEA that aims to preserve diversity through elitism and a
parameterless niching operator. Elitism in this context means that
the best individuals from a given generation are preserved in the
next generation without modification.

NSGA-II works by initially sorting the entire population into dif-
ferent “domination levels” and then inserting entire levels into the
next population until there is no space for an entire level anymore.
The remaining slots in the new population are filled by picking
solutions from the least crowded regions in the solution space to
maximize population diversity. Crowding in the solution space is
approximated by a metric named “crowding distance”, computed
through the perimeter of the cuboid defined by a solution’s two
nearest neighbors [13].

NSGA-II is an effective algorithm widely used for multi-objective
optimization problems where there are three or fewer objective
functions [12], but it copes poorly when used with four or more
objective functions (a scenario called many-objective optimization).
Introducing new objective functions reduces the number of domi-
nated solutions, as there are more ways in which one solution can
tie with another, and makes estimating crowding of the solution
space more expensive due to the increased number of dimensions.
Furthermore, the higher dimensionality requires a greater quantity
of solutions in the population so that the Pareto front can be effec-
tively represented, which unacceptably harms the performance of
NSGA-II and other popular MOEAs [12].

Non-dominating Sorting Genetic Algorithm III (NSGA-III)
is a proposed improvement over NSGA-II aimed at many-objective
optimization problems [12]. This version of the algorithm replaces
the previous technique for measuring crowding in the solution
space with a reference-point-based niching procedure.

In this procedure, a set of reference points in the solution space
is uniformly generated or supplied by the user. All reference points
have an associated ray that crosses itself and the origin, and in
each generation, new solutions are assigned to the reference point
whose ray has the smallest perpendicular distance to the solution.
When all solutions are assigned, each reference point will have a

SBCARS’24, September 30 – October 04, 2024, Curitiba, PR Wolschick et al.

number of solutions and their representatives associated with them.
In order to construct the next generation, after all non-dominated
fronts that fit in the new population have been wholly included,
exactly as in NSGA-II, remaining slots in the population are filled
by including representatives from the reference points that are
the least represented in the new population. New solutions are
included in the population until it is filled. This procedure preserves
diversity in the solution space and is more efficient in that goal
than the previous crowding measure, allowing for an arbitrarily
high number of objectives to be picked for optimization.

In the original NSGA-III paper, the authors suggested a method
based on Das and Dennis’s approach [10] for systematically generat-
ing reference points on a normalized hyperplane, which intercepts
each objective axis at coordinate one. The points are distributed on
the hyperplane according to a specified number of subdivisions, 𝑝 ,
and the number of objectives𝑀 so that they uniformly represent
the entire Pareto front. The total number of generated points, 𝐻 , is
given by Equation 1. This number is taken as the population size
to be used in the remainder of the algorithm [12].

𝐻 =

(
𝑀 + 𝑝 − 1

𝑝

)
(1)

In their experiments, Deb and Jain used varying values of 𝑝 depend-
ing on the problem and number of objectives. For three-objective
problems, they set 𝑝 = 12, which is the value we adopted for all
NSGA-III experiments.

Many different quality metrics have been included as objective
functions of MOA4PLA. Whether the use of multiple objectives has
a positive impact on the generated solutions or not is an open ques-
tion. As such, this work aims to investigate whether NSGA-III can
be used as an effective search-based algorithm in MOA4PLA under
a many-objective optimization context, especially when compared
with NSGA-II.

3.2 Quality Indicators
As previously mentioned, NSGA-II and NSGA-III generate a set
of non-dominated solutions. The performance assessment of such
algorithms is usually done through quality indicators that evaluate
different aspects of the set of resulting solutions [22]. In our study,
we used the indicators Hypervolume and Euclidean Distance to the
ideal solution.

To support the result analysis and computing the quality in-
dicator, we composed three sets of solutions, namely, PF𝑎𝑝𝑝𝑟𝑜𝑥 ,
PF𝑘𝑛𝑜𝑤𝑛 , and PF𝑡𝑟𝑢𝑒 . PF𝑎𝑝𝑝𝑟𝑜𝑥 is the Pareto front of non-dominated
solutions obtained in each run of an experiment. As we run each
experiment 30 times, we have 30 PF𝑎𝑝𝑝𝑟𝑜𝑥 sets for each experiment.
PF𝑘𝑛𝑜𝑤𝑛 is the set of non-dominated solutions found by an experi-
ment, considering the union of all solutions obtained in all its runs,
eliminating the dominated ones. PF𝑡𝑟𝑢𝑒 is conceptually known as
the set with ideal solutions for a problem. As the PF𝑡𝑟𝑢𝑒 of our
problem is not known in advance, we adopted a common way to
estimate this Pareto front: using the non-dominated solutions found
by all algorithms in all runs [32].

The Hypervolume (HV) allows analyzing the convergence and
diversity of solutions [22]. HV is a n-dimensional volume between
PF𝑡𝑟𝑢𝑒 and a specific reference point [32]. The higher the hypervol-
ume, the greater the coverage area, reflecting a better front.

Euclidean Distance to the Ideal Solution (ED) is a distance mea-
sure that designates the closest solution to an “ideal solution”. For
minimization problems, the ideal solution is that one with the low-
est value possible for the objective function being optimized [31].
The PF𝑡𝑟𝑢𝑒 set is used to find the solution with the lowest ED of
each experiment. The solution with the lowest ED tends to be pre-
ferred by the decision-makers as it represents the best trade-off
among the objectives.

4 IMPLEMENTATION OF NSGA-III FOR PLA
DESIGN

In this section, we briefly describe the current architecture of OPLA-
Tool 4.1, and then we explain how we implemented NSGA-III to
the OPLA-Tool code base 4.2.

4.1 Architecture of OPLA-Tool
OPLA-Tool v21 [16] is a software system organized in a set of mod-
ules, each of which handles a different portion of the application. In
an overview, the modules can be roughly divided into two halves:
those which implement the web-based interface with which the
users can interact to set up experiments with desired parameters,
and those in the back-end, which are responsible for taking the
experiment requests, performing them, and returning their results
so they can be shown to the user. The back-end modules, in conjunc-
tion, provide the actual implementation of the MOA4PLA process.
Some of the responsibilities handled by the back-end modules are,
for instance: providing common types for the rest of the application;
implementing a REST HTTP API so the web-based interface can
communicate with the back-end; and actually implementing and
performing the optimization process using search algorithms, such
as the ones specified in Section 3. We focused our implementation
efforts on the second half of these modules.

OPLA-Tool v2 uses the free and open-source multi-objective
optimization framework jMetal 4 [14], which is a Java library that
provides a series of search algorithms and common interfaces for
them, for use in the development of multi-objective optimization
applications. OPLA-Tool v2’s original code had a heavily modified
fork of jMetal 4 included as a vendored dependency and relied
on it for its implementation of MOA4PLA. This version of jMetal
includes an implementation of NSGA-II, which was specialized by
the tool’s original authors for use with MOA4PLA.

Nonetheless, although OPLA-Tool v2 provides NSGA-II, it did
not provide an implementation of NSGA-III, which is the focus of
this comparative study. We wanted to assess whether NSGA-III
could deliver better results than NSGA-II in the context of PLA
optimization, and so incorporating an implementation of NSGA-III
into OPLA-Tool became necessary.

4.2 Backporting methodology
Firstly, we compared different alternatives for bringing NSGA-III
into OPLA-Tool. We could either implement the algorithm from
scratch, port it from an existing implementation in another library
or language, or attempt to backport a newer version of the jMetal
framework, which contained an implementation of NSGA-III. Out

1https://github.com/otimizes/OPLA-Tool

https://github.com/otimizes/OPLA-Tool

Evaluating the performance of NSGA-II and NSGA-III on Product Line Architecture Design SBCARS’24, September 30 – October 04, 2024, Curitiba, PR

of all three options, implementing the algorithm ourselves was
judged themost unfeasible — there is no publicly available reference
implementation from the original authors of the NSGA-III paper,
which is light in detail in this regard, and our implementation would
need to be thoroughly tested for correctness. We also considered the
second option, which is porting an existing implementation of the
algorithm into the code base, but ultimately, we chose to backport
a newer version of the jMetal framework with NSGA-III into OPLA-
Tool, due to similarities between different versions of jMetal and to
avoid unfair comparisons between different implementation styles.

Due to the changes done to jMetal 4 described earlier in this sec-
tion, lifting the entire project to jMetal 6 was deemed infeasible as
a result of the amount of changes the existing codebase would need.
Instead, we chose to bring over only the NSGA-III implementation
with its minimal supporting code, changing interfaces and method
signatures where possible so that code written for the new version
could interface adequately with the old version of the framework.

The backport was conducted as follows: first, all transitive code
dependencies for the NSGA-III implementation in jMetal 6 were
identified and then copied over to the existing codebase. Second,
dependencies were deduplicated where possible and merged with
existing interfaces found in jMetal 4, adjusting any method signa-
tures. Third, the new NSGA-III implementation was exposed in the
API and in the web interface and then validated using tests present
in OPLA-Tool. Lastly, any leftover unused code was culled from the
application and the remaining code was tidied up.

During the backport, we aimed to adapt the implementation
to the same guidelines and patterns used for the existing NSGA-II
implementation, by existing interfaces components, in order to min-
imize major differences between both implementations. In effect,
only those components strictly related to NSGA-III which were
not found in the existing OPLA-Tool code base were backported
alongside NSGA-III itself.

After finishing the backport, we tested the resulting implemen-
tation to verify whether NSGA-III was working correctly in the
existing OPLA-Tool v2. We also adapted a few of the existing auto-
mated tests in the repository so that the new implementation could
be tested. Based on comparison runs with NSGA-II and NSGA-III,
we attested that the implementation behaved as intended and con-
cluded the backport. The resulting implementation is ready and
available for use on the latest version of OPLA-Tool, which was
used in the development of this study.

5 EMPIRICAL STUDY DEFINITION
5.1 Study Design
This section outlines the study’s design conceived to analyze the
performance of the existing NSGA-II algorithm and our implemen-
tation of NSGA-III in optimizing three, four, and five objectives. In
our context, the performance of an algorithm refers to how effective
it is in obtaining high-quality solutions in terms of the values of
the objective functions and the quality indicators obtained from the
objective function values. The objective functions express the qual-
ity of the achieved solutions in terms of the PLA design properties.
The study includes two product lines in four different versions for
each SPL. In this regard, the subjects of this empirical study are the
PLA design alternatives resulting from the search process. The PLA

designs and all objects of analysis, charts, spreadsheets, and mea-
suring instruments are organized in the Experimental Package 2.
Details of the study design are presented below.

Planning. We used eight PLA designs, designed for two different
SPLs. They are described in Section 5.2. As we are interested in
comparing the performance of NSGA-III and NSGA-II for PLA
design, we formulated the following hypotheses:

𝐻0: The NSGA-III algorithm, within the context of the OPLA-
Tool, has equal or worse performance than NSGA-II for many-
objective optimization (four or more objectives).

𝐻1: The NSGA-III algorithm, within the context of the OPLA-
Tool, performs better than NSGA-II for many-objective optimization
(four or more objectives).

Selection of Variables. The independent variables are the PLA,
the Search-based Algorithm, and the Algorithm Configuration. The
dependent variables are the objective functions, namely ACLASS,
COE, FM, ELEG, and CM, and the quality indicators, namely HV
and ED, obtained from the objective function values of the solutions
generated in the experiments.

The PLA factor comprises eight treatments, consisting of four
versions of AGM and four versions of MM PLAs (see Section 5.2).
The Algorithm Configuration factor has one configuration, while
the MOEA includes two treatments: the NSGA-II and NSGA-III al-
gorithms. The configurations utilized in the Algorithm are detailed
in the ‘Operation’ section. We employed five objective functions
for the study: ACLASS, COE, FM, ELEG, and CM, from which
the quality indicators HV and ED are assessed. These functions
were selected because they are commonly used by previous studies
involving MOA4PLA and OPLA-Tool. We categorized the objec-
tive functions into three distinct combinations: three objectives
(ACLASS, COE, FM), four objectives (ACLASS, COE, FM, ELEG),
and five objectives (ACLASS, COE, FM, ELEG, CM), as outlined in
Table 1. In total, we worked with three evaluation configurations
for each PLA design.

Operation. We used OPLA-Tool v2 to carry out the empirical
study with the following base configuration: for NSGA-II, the Popu-
lation Size was set to 200, the Number of Generations was 150, the
Number of Fitness Evaluations was set to 30,000, and Mutation Rate
of 0.9. For NSGA-III, the same parameters were used, but the popu-
lation size varied according to the number of objectives: for three
objectives, the Population Size was set to 91, for four objectives
it was set to 455, and for five it was set to 1820 (these values are
derived from Equation 1 using 𝑝 = 12 and𝑀 set to three, four and
five respectively). These base settings were then used with different
combinations of objectives and PLAs. Eight PLA designs were used,
four AGM versions and four MM versions (see Table 2). For each
PLA, we executed three combinations of objectives: (i) ACLASS,

2https://doi.org/10.6084/m9.figshare.25583643

Table 1: Experiment Configurations
Objectives Experiment MOEA Objective Functions

3 II3OF NSGA-II ACLASS, COE, FM
III3OF NSGA-III ACLASS, COE, FM

4 II4OF NSGA-II ACLASS, COE, FM, ELEG
III4OF NSGA-III ACLASS, COE, FM, ELEG

5 II5OF NSGA-II ACLASS, COE, CM, FM, ELEG
III5OF NSGA-III ACLASS, COE, CM, FM, ELEG

https://doi.org/10.6084/m9.figshare.25583643

SBCARS’24, September 30 – October 04, 2024, Curitiba, PR Wolschick et al.

COE, FM, (ii) ACLASS, COE, FM, ELEG, and (iii) ACLASS, COE, FM,
ELEG, CM. We carried out 30 runs of the search-based algorithm
for each configuration, as recommended in [3]. The experiments
executed in the study were named according to the second column
of Table 1. The entire study involving the NSGA-II and NSGA-III
algorithms resulted in 720 runs of each algorithm.

The experiments were conducted on machines with different
CPU and RAM configurations. Due to this variation in the compu-
tational resources configuration, comparing the execution time of
each experiment was not viable. This is not a problem as we are
interested in assessing the performance of search-based algorithms
in terms of quality of solutions for PLA design optimization.

Analysis and Interpretation: Data collected during the ex-
periment execution was used to compute quality indicators for
evaluating the algorithm’s performance. To obtain the ideal solu-
tion, used to calculate the ED value for each generated solution,
we used PF𝑡𝑟𝑢𝑒 . In our work, the ideal solution has the minimum
value obtained for each objective, since MOA4PLA addresses PLA
design as a minimization problem. The HV was calculated using the
PF𝑘𝑛𝑜𝑤𝑛 generated per PLA configuration. Since the values used to
calculate HV were normalized between zero and one, the reference
point was set at 1.01, to represent the worst possible solution.

Furthermore, for HV values, we employed the statistical tests.
Firstly, we analyzed if the sample sets have normal distribution
using Shapiro-Wilk test with a confidence level of 95%. Then, to
statistically compare the results of HV, we applied the Kruskal-
Wallis Pairwise test for datasets with non-normal distribution. For
datasets with a normal distribution, we utilized ANOVA. In both
tests, we maintained a confidence level of 95% (p-value ≤0.05) to
ascertain statistical differences among the sample sets. Addition-
ally, we computed the effect size using the Vargha-Delaney’s Â12
measure for further analysis. The gathered data was structured into
multiple files to facilitate statistical analysis, utilizing R Studio and
Google Sheets software.

5.2 Used PLA designs
Versions of two SPLs were used in our study, namely Arcade Game
Maker (AGM) and Mobile Media (MM). AGM [27] was created by
the Software Engineering Institute (SEI). It is composed of three
arcade games: Brickles, Bowling and Pong. MM [30] is a mobile
application composed of features that handle music, video, and
photos for mobile devices.

The eight PLA designs were obtained from the OPLA-Tool repos-
itory 3. All versions of each SPL capture different element structures
and feature modularization patterns to evaluate PLA optimization

3https://github.com/otimizes/OPLA-Tool/tree/master/plas/PLASMarty

Table 2: Numbers of Architectural Elements of the PLAs
PLA Components Interfaces Classes Variabilities Features
AGM1 9 14 20 4 9
AGM2 9 14 21 5 11
AGM3 9 14 20 4 9
AGM4 9 14 21 5 11
MM1 11 16 13 7 13
MM2 8 13 10 7 13
MM3 11 16 13 7 13
MM4 8 13 10 7 12

strategies at distinct points. In the AGM family, AGM-2 was created
from AGM-1 by adding two new features: ranking and logging.
AGM-3 and AGM-4 contain the same architectural elements as
AGM-1 and AGM-2, respectively; however, the features are mapped
to different elements than the other two versions. For the MM fam-
ily, MM-1 and MM-2 have different numbers of components, and
the MediaMgr component is less coupled and more cohesive in
the MM-2 version. MM-3 and MM-4 were obtained from MM-1
and MM-2, respectively, but have different feature mappings. Such
differences were proposed to exercise the optimization process in
different situations and in order to avoid deriving results too tied
to the specificities of any specific design(s). Each version has a dif-
ferent number of components, interfaces, classes, and variabilities,
as shown in Table 2.

6 EMPIRICAL RESULTS
In this section, we present the results obtained from our empirical
study. We extracted the quantitative results through the objective
function values of the solutions resulting from the optimization
process. The results were analyzed using the HV and ED quality
indicators, and statistical tests were applied to examine the behavior
of the solutions. All results, including independent and dependent
variables, are organized in the experimental package 4.

Table 3 presents the number of non-dominated solutions each
algorithm achieves in each experiment (PF𝑘𝑛𝑜𝑤𝑛). Clearly, for each
SPL, the higher the number of objectives, the higher the number of
solutions.

Hypervolume. As mentioned, HV was measured within the
range of zero to one. The higher the Hypervolume (HV) value, the
better the results, indicating better solution space exploration. First,
we used the HV values in the normality test of Shapiro-Wilk before
evaluating the statistical difference in the performance between
NSGA-II and NSGA-III. Then, we employed the Kruskal-Wallis test
for the data sets with non-normal distribution and the ANOVA test
for data with normal distribution, as explained in Section 5.1. The
data were verified with a confidence level of 95%.

Table 4 presents the medians of the Hypervolume indicator by
number of objectives. Values highlighted in bold represent the best
significant HV value. This table also presents which test was applied
to assess the statistical difference between the algorithms, the p-
values, and the effect size according to the Vargha-Delaney test.
The hatched cells refer to results with statistical significance.

4https://doi.org/10.6084/m9.figshare.25583643

Table 3: Number of Non-dominated Solutions

PLA 3OF 4OF 5OF

NSGA-II NSGA-III NSGA-II NSGA-III NSGA-II NSGA-III

AGM1 23 19 79 92 92 129
AGM2 21 6 55 103 144 146
AGM3 29 29 182 197 376 198
AGM4 19 16 169 62 527 238
MM1 16 12 63 62 127 111
MM2 11 13 47 37 160 85
MM3 19 9 69 48 163 73
MM4 7 9 51 35 133 64

https://github.com/otimizes/OPLA-Tool/tree/master/plas/PLASMarty
https://doi.org/10.6084/m9.figshare.25583643

Evaluating the performance of NSGA-II and NSGA-III on Product Line Architecture Design SBCARS’24, September 30 – October 04, 2024, Curitiba, PR

Table 4: Median of Hypervolume and Results of Kruskal-Wallis (K)/ANOVA (A) Statistical Tests

PLA 3OF 4OF 5OF

NSGA-II NSGA-III Test p-value Effect sizeaNSGA-II NSGA-III Test p-value Effect sizeaNSGA-II NSGA-III Test p-value Effect sizea

AGM1 0.41 0.32 K < 0.001 0.8589▲ 0.34 0.46 A < 0.001 0.1544▲ 0.39 0.25 A < 0.001 0.9533▲
AGM2 0.42 0.47 K 0.668 0.4678≃ 0.45 0.51 A 0.019 0.2944△ 0.39 0.29 A < 0.001 0.833▲
AGM3 0.60 0.48 A < 0.001 0.9167▲ 0.51 0.47 A < 0.001 0.8711▲ 0.45 0.39 A < 0.001 0.9389▲
AGM4 0.49 0.26 A < 0.001 0.8411▲ 0.36 0.58 A < 0.001 0.0000▲ 0.37 0.34 A 0.004 0.6967△
MM1 0.56 0.47 K < 0.001 0.8267▲ 0.39 0.40 K 0.525 0.4522≃ 0.32 0.40 K < 0.001 0.1500▲
MM2 0.67 0.56 K < 0.001 0.8500▲ 0.46 0.45 A 0.190 0.5833∇ 0.37 0.51 K < 0.001 0.0289▲
MM3 0.29 0.34 K 0.012 0.3111△ 0.39 0.38 K 0.894 0.5100≃ 0.24 0.29 K < 0.001 0.2089▲
MM4 0.72 0.70 K 0.383 0.5656≃ 0.59 0.55 A 0.029 0.6600∇ 0.41 0.59 A < 0.001 0.0378▲
a Values in gray cells indicate statistical difference. The symbols for the magnitude of the effect size are: "≃" negligible, "∇" small magnitude,
"△" a medium magnitude, and "▲" a large magnitude

Table 5: Lowest Euclidean Distance to the Ideal Solution

PLA 3OF 4OF 5OF

NSGA-II NSGA-III NSGA-II NSGA-III NSGA-II NSGA-III

AGM1 7.62 6.40 6.71 11.66 6.62 24.38
AGM2 6.71 5.39 11.58 10.30 4.58 19.70
AGM3 10.05 9.00 6.00 9.54 8.97 15.04
AGM4 6.40 5.39 10.82 5.00 15.22 23.35
MM1 6.16 6.10 6.40 5.10 8.69 12.58
MM2 8.00 10.00 5.83 5.83 10.14 11.46
MM3 10.00 5.00 9.00 6.08 10.94 9.34
MM4 7.00 8.00 4.00 5.00 18.63 31.34

For AGM versions, NSGA-II achieved better hypervolume than
NSGA-III for three cases with three objectives, three cases with
four objectives, and four cases with five objectives, almost all with
large magnitude. NSGA-III was the best in only one case with four
objectives. There was also one tie for AGM2 with three objectives.

For MM versions, considering three objectives, we observed that
NSGA-II was better than NSGA-III for MM1 and MM2 with large
magnitude. For MM3, NSGA-III was the better. Considering four
objectives, NSGA-III overcame NSGA-II for MM4, and both algo-
rithms tied for the other three cases. For five objectives, NSGA-III
achieved the best results in hypervolume with high magnitude.

Euclidean Distance to the Ideal Solution. For this quality
indicator, we are interested in the solution with the lowest ED
because it represents the solution with the best compromise among
all objectives optimized during the search. After analyzing which is
the solutionwith the lowest ED by experiment, we present in Table 5
the value of the lowest ED achieved in each experiment. Table 6
shows the median value of the solutions’ ED for each experiment.
As PLA design was modeled as a minimization problem, the lower
the ED value, the better the result. The best values for each pair of
experiments are highlighted in bold. There is no predominance of
better results, as NSGA-III found the solution with the lowest ED
for 11 cases whereas NSGA-II achieved the lowest ED for 12 cases.

For AGM, each algorithm generated the solution with the lowest
ED for six cases. For MM, NSGA-II achieved the lowest ED in six
cases, whereas NSGA-III was the best in this indicator in five cases.
Both algorithms were tied in one case (MM2 - 4OF).

Given such results, we decided to analyze the median of ED,
looking for a trend. These numbers are presented in Table 6, where
we can also note both algorithms achieved good results for this
indicator without a common behavior. The statistical test pointed
out some cases where there are significant differences, but there

Table 6:Median of EDof theNon-dominated Solutions

PLA 3OF 4OF 5OF

NSGA-II NSGA-III NSGA-II NSGA-III NSGA-II NSGA-III

AGM1 62.30 76.78 69.21 63.53 76.00 109.48
AGM2 71.37 68.11 82.88 90.77 83.13 108.98
AGM3 34.80 63.51 79.54 65.63 69.85 67.98
AGM4 66.48 117.67 139.18 138.03 141.92 113.90
MM1 68.62 49.25 105.15 101.12 116.62 120.32
MM2 60.13 59.03 98.41 122.07 144.12 138.23
MM3 252.07 210.06 199.13 181.07 226.34 129.71
MM4 72.06 96.13 121.02 147.00 159.26 117.15

COE ACLASS FM ELEG

 2

 4

 6

 8

 10

 12

 15

 20

 25

 30

 35

 900

 950

 1000

 1050

 1100

 0.36

 0.38

(a) 𝑁𝑆𝐺𝐴 − 𝐼 𝐼 − 𝐴𝐺𝑀4 − 4𝑂𝐹

COE ACLASS FM ELEG

 4

 6

 8

 10

 800

 850

 900

 950

 1000

 1050

 1100

 0.24

(b) 𝑁𝑆𝐺𝐴 − 𝐼 𝐼 𝐼 − 𝐴𝐺𝑀4 − 4𝑂𝐹

Figure 1: Parallel coordinates for AGM4 - Experiments II4OF
and III4OF

are also several ties. The best significant results are highlighted in
bold. Considering only the significant cases, NSGA-II had the best
ED median in six cases for AGM versions, while NSGA-III achieved
the best ED medians in three cases. For MM versions, NSGA-III had
the best ED median in five cases, whereas NSGA-II was the best in
four cases for this SPL.

6.1 Discussion
As we observed no predominant behavior from the quality indica-
tor results, we discuss the results in this section by analyzing the
fitness of the non-dominated solutions, shedding light on some par-
ticularities of the PLA designs used in our study. For doing so, we
rely on parallel coordinates graphics, such as the ones depicted in
Figure 1b. Such kind of graphic presents the fitness of each solution
for the set of non-dominated solutions (PF𝑘𝑛𝑜𝑤𝑛) obtained by an
algorithm in an experiment considering the 30 independent runs.
Each line in the picture represents a solution, demonstrating the
trade-off among the objective functions in the solution sets.

SBCARS’24, September 30 – October 04, 2024, Curitiba, PR Wolschick et al.

COE ACLASS FM CM ELEG

 2

 4

 6

 8

 10

 12

 14

 10

 15

 20

 25

 700

 750

 800

 850

 900

 50

 55

 60

 65

 70

 75

 80

 0.305

 0.31

 0.315

 0.32

 0.325

 0.33

 0.335

(a) 𝑁𝑆𝐺𝐴 − 𝐼 𝐼 − 𝐴𝐺𝑀1 − 5𝑂𝐹

COE ACLASS FM CM ELEG 0

 2

 4

 6

 8

 10

 10

 15

 20

 25

 30

 800

 850

 900

 950

 50

 55

 60

 65

 70

 75

 80

 85

 0.305

 0.31

 0.315

 0.32

 0.325

 0.33

 0.335

 0.34

 0.345

(b) 𝑁𝑆𝐺𝐴 − 𝐼 𝐼 𝐼 − 𝐴𝐺𝑀1 − 5𝑂𝐹

Figure 2: Parallel coordinates for AGM1 - Experiments II5OF
and III5OF

COE ACLASS FM 2

 4

 6

 8

 10

 12

 13

 14

 15

 16

 17

 18

 650

 700

 750

 800

 850

 900

 950

 1000

(a) 𝑁𝑆𝐺𝐴 − 𝐼 𝐼 − 𝑀𝑀3 − 3𝑂𝐹

COE ACLASS FM

 6

 8

 10

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 650

 700

 750

 800

 850

 900

 950

 1000

(b) 𝑁𝑆𝐺𝐴 − 𝐼 𝐼 𝐼 − 𝑀𝑀3 − 3𝑂𝐹

Figure 3: Parallel coordinates for MM3 - Experiments II3OF
and III3OF

Figure 1 presents the set of non-dominated solutions (PF𝑘𝑛𝑜𝑤𝑛)
obtained by NSGA-II and NSGA-III for AGM4 using four objec-
tives (Experiments II4OF and III4OF) as parallel coordinate graphs.
Subfigures (a) and (b)’s objective bars are aligned and on the same
scales. In this experiment, NSGA-III had a better median HV and
a similar median ED to NSGA-II. We can note in Figure 1 that,
although NSGA-II was able to maintain a wider spread of values
for COE and ACLASS, NSGA-III managed to attain lower ACLASS
and ELEG values which are concentrated around narrower, smaller
ranges. Since our optimization problem is minimization, in this
example, NSGA-III’s ability to find good solutions in the presence
of many objectives becomes evident, even if it converged heavily
to a small set of possible values for ACLASS and ELEG. This may
indicate that, at some point in the search process, the search space
collapsed to a smaller, more optimized set of values for NSGA-III.

On the other hand, Figure 2 depicts a parallel coordinates graph
for the experiments involving the optimization of five objectives
for AGM1, where surprisingly NSGA-II achieved the best results
for both quality indicators. Both algorithms generated a similar
number of solutions (Table 3). Here, NSGA-III’s quicker conver-
gence to narrower ranges worked against it: NSGA-II maintained a
good spread across all objectives while NSGA-III lost lower-valued
portions of its ACLASS and FM axes. Its range of FM values is
approximately 200 units smaller and higher than NSGA-II. This
harmed NSGA-III’s HV and ED values and was responsible for its
reduced performance compared to NSGA-II. This may again indi-
cate that the solution search space was reduced irreversibly at some

point during NSGA-III’s search process, losing access to a valuable
class of solutions (those with lower FM values).

Figure 3 presents the parallel coordinates for the experiments
that optimize three objectives for MM3. While NSGA-II maintained
a wider diversity of solutions for the ACLASS axis, maintaining rep-
resentatives in four different values, and generated solutions with
lower COE values, NSGA-III obtained a richer solution trade-off
distribution by generating and keeping a portion of its population
with high ACLASS and low COE and FM values, represented in
the parallel coordinate graphs by the lines crossing the ACLASS
axis at value 21. Furthermore, most of its solutions have ACLASS
values near the lower end of its range, which helped bring down
the median ED value for this solution set. This allowed it to beat
NSGA-II in that scenario for both ED and HV, despite having less
unique values for ACLASS and a higher-valued COE distribution
as well. This goes in line with the previous graphs, which suggest
that NSGA-III converged to a smaller region of the search space.

Overall, NSGA-II seemed to maintain a more even distribution of
values across the objective axes than NSGA-III, which converged on
a smaller set of values more quickly, probably due to its reference-
point-based niching procedure (see Section 3.1), — when these
values were lower than NSGA-II’s, NSGA-III beat NSGA-II. In the
opposite scenario, NSGA-II beat NSGA-III.

The solution space is directly impacted by the original PLA
design given as input to the search-based algorithm. The possible
values for feature modularization (FM) are impacted by the number
of features and their mapping in the architectural elements. For
instance, AGM2 and AGM4 have one additional variability and
two additional features, enabling more alternative solutions in the
solution space than AGM1 and AGM3. Analyzing Figures 1b and 2,
ACLASS seems more conflicting with FM for AGM4 than for AGM1,
impacting the solution space. We can also note the impact on the
range of FM values, whose highest value is greater for AGM4. As
seen in Table 2, MM3 is the version of MM PLA with the highest
number of architectural elements. It is also the version of MM with
the worst feature modularization. These two characteristics provide
more opportunities for PLA design optimization, enabling NSGA-III
to achieve better results as discussed above.

Given such empirical results, we cannot prove the hypothesis
𝐻1 because it is clear that for the context of our empirical study,
the performance of NSGA-III and NSGA-II depends on both the
number of objectives and the characteristics of the PLA design,
corroborating the findings of Ishibuchi et al. [20].

6.2 Threats to Validity
In this section, we present the threats to the validity of the results
achieved in this study.

Internal Validity. The sample used in the study poses a threat
to the internal validity of the results due to the use of academic SPL.
However, this threat was mitigated using PLAs from different do-
mains, one related to media management for mobile devices (MM)
and another to arcade games (AGM). To diversify, we explored four
PLA design versions for each of the domains used, as presented in
Table 2, which had differences in the arrangement of architectural
elements. The parameter values adopted to configure NSGA-II and
NSGA-III impact on the algorithms´ performance. To mitigate this

Evaluating the performance of NSGA-II and NSGA-III on Product Line Architecture Design SBCARS’24, September 30 – October 04, 2024, Curitiba, PR

threat we used the values adopted in previous studies on PLA de-
sign optimization for both algorithms. The only difference is in the
population size which varies for NSGA-III according to the number
of objectives under optimization, as proposed by its authors. An-
other internal threat is related to the randomness of the algorithms
used, NSGA-III and NSGA-II. To mitigate this threat, we followed a
recommendation by Arcuri and Briand [2], executing the experi-
mental studies 30 times and analyzing the set of results obtained in
the 30 independent rounds. Another threat to the study’s internal
validity is related to the infrastructure configurations used on the
servers to execute the experiments. However, this did not affect
the study’s results, as we did not measure performance in terms of
execution time but rather the quality of the solutions.

External Validity. The sample size is identified as a threat to
external validity, as a sample with eight PLA designs was used. The
sample consists of four versions of the AGM and four versions of
the MM. Thus, it is not possible to generalize the results identified
in the study to different samples. However, with the samples used in
the study, it was possible to identify some differences between the
algorithm’s performance and corroborate the literature’s findings.

Conclusion Validity. We minimized the main threats to con-
clusion validity identified during the study using quality indicators
and statistical tests commonly used in SBSE studies [4, 16–18].

7 RELATEDWORK
NSGA-III has already been used to solve many different SE problems
and has been compared with NSGA-II in those contexts.

In Carvalho et al. [5], the authors adopted NSGA-III as the base
algorithm to automatically extract microservices from legacy sys-
tems using SBSE techniques. The problem was modeled as a five-
objective optimization problem, and their choice of using NSGA-III
was taken based on the results of an experimental comparison
between NSGA-II and NSGA-III. The comparison was done on a
restricted version of the original problem with only two objec-
tive functions, but nonetheless NSGA-III attained better hypervol-
ume and inverted generational distance (IGD) values than NSGA-II
(these quality indicators were used to assess their performance).

Mkaouer et al. [24] proposed an SBSE approach for finding good
sequences of code refactorings using NSGA-III. They used a set of
fifteen software quality metrics related to aspects such as complex-
ity, coupling, and cohesion of the resulting code as objectives. The
authors performed a comparative analysis using subsets of three
to ten objectives from the original 15 with the MOEAs NSGA-III,
IBEA, MOEA/D, and NSGA-II. They found that NSGA-III presented
the best convergence among all test cases and attained the best IGD
metric when using all objectives, which suggests that the use of
more objectives can lead to better results in SBSE problems.

Ishibuchi et al. [20] also compared NSGA-II and NSGA-III in
different many-objective problems with three to ten objectives. The
authors found that both the number of objectives and the nature
of the problem being solved impacted the performance of MOEAs,
and noted that, for their problem and parameter sets, the type of
the problem had a larger impact on the performance than the num-
ber of objectives. They also verified that NSGA-III did not always
outperform NSGA-II, even for ten-objective problems. Finally, they

also remarked that results may vary a lot with different implemen-
tations of each algorithm, especially regarding NSGA-III, which
did not have a “canonical” implementation as the original papers
did not provide source code for the algorithm [12]. In our study,
we compared NSGA-II and NSGA-III implementations originating
from the same framework (jMetal) aiming to minimize this risk.

Ramirez et al. [26] realized a comparative study of eight different
MOEAs, including NSGA-II and NSGA-III, with the problem of soft-
ware architecture discovery, or extracting an existing architecture
from a code base. The authors ran the eight MOEAs with subsets of
two to nine objective functions, totaling 256 configurations. They
reported that, when comparing NSGA-II against NSGA-III, NSGA-II
attained better HV values on average than NSGA-III. Still, NSGA-
III generated better-spaced solutions as the number of objectives
grew from two to four. In configurations from six to nine objectives,
NSGA-III performed better than NSGA-II, although it ranked worse
than other many-objective algorithms, such as 𝜖-MOEA. These
results corroborate the findings in [20] which suggest that the al-
gorithms’ performance may depend on the problem and on the
number of objectives.

Jamil et al. [21] do a comparative study between NSGA-II and
NSGA-III to solve the problem of testing SPLs. They ran both algo-
rithms with only one case using three objective functions. Their re-
sults indicated that NSGA-III produced better results than NSGA-II.

In general, NSGA-III was found to be a competitive algorithm,
outperforming or rivaling NSGA-II in most multi-objective prob-
lems. It may sometimes fall short of NSGA-II depending on the
problem and the number of objectives used. There is a reasonable
expectation that it may work well for some SBSE problems, and we
found a perceived gap in the literature regarding its application in
PLA optimization which this study aims to fill.

8 CONCLUDING REMARKS
We conducted an empirical study to assess the performance of the
NSGA-III algorithm for PLA design optimization using OPLA-Tool.
To this end, we performed 48 experiments evaluating eight PLAs
in two domains, varying the number of objectives to be optimized
(three, four, and five objectives). The performance of NSGA-II and
NSGA-III were compared in terms of hypervolume and Euclidean
distance to the ideal solution regarding the solutions found.

The empirical results, considering the quality indicators, pointed
out a slightly better performance for NSGA-III when optimizing
four or five objectives. However, this did not happen in all cases.
More importantly, we observed that according to the PLA design
characteristics, such as the feature modularization, the number of
features, and the number of architectural elements, the performance
of the algorithms varies. This demonstrates that NSGA-III does not
always surpass NSGA-II, and that the results depend on both the
number of objectives and the characteristics of the problem being
solved, corroborating the literature’s findings.

This suggests that NSGA-III may provide a more diverse set of
solutions with more spread trade-offs in the solution space than
NSGA-II for larger designs and many objectives. On the other hand,
NSGA-II still remains competitive for less complex PLAs. With
this in mind, we suggest that, when using many objectives for
optimizing complex PLAs, practitioners use NSGA-III. On the other

SBCARS’24, September 30 – October 04, 2024, Curitiba, PR Wolschick et al.

hand, for simpler PLAs, the optimization algorithm must be chosen
after careful analysis of the PLA characteristics, the number of
objectives to be optimized, and previous literature results. Further
research remains necessary in order to derive more actionable,
hard practical guidelines for software architects and developers
regarding algorithm choice for PLA design.

The study results enhance the state of the art with empirical find-
ings for a performance comparison between NSGA-III and NSGA-II
for the PLA design context. Additionally, it demonstrates that the
NSGA-III algorithm could be an additional optimization algorithm
option for OPLA-Tool for many-objective purposes.

In future work, we intend to conduct further studies involving
larger, real PLAs to map how the characteristics of PLA design in-
fluence the results. Also, it is necessary to carry out other empirical
studies with other objective functions and with a higher number
of objectives aiming at discovering how the objective functions
impacted the NSGA-III results for PLA design optimization. In such
further studies, including additional quality indicators to provide
other points of view of the search-based algorithms’ performance
would be interesting.

ACKNOWLEDGMENTS
This work is supported by CNPq grant 404027/2023-7 and CAPES -
Finance Code 001.

REFERENCES
[1] Sven Apel and Dirk Beyer. 2011. Feature cohesion in software product lines: an

exploratory study. In Proc. of the ICSE’11 (Waikiki, Honolulu, HI, USA). New York,
USA, 421–430.

[2] Andrea Arcuri and Lionel Briand. 2011. A practical guide for using statistical
tests to assess randomized algorithms in software engineering. In Proceedings of
the 33rd international conference on software engineering. 1–10.

[3] Andrea Arcuri and Lionel Briand. 2014. A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software Testing,
Verification and Reliability 24, 3 (2014), 219–250.

[4] Carlos Vinicius Bindewald, Willian M Freire, Aline M M Miotto Amaral, and
Thelma Elita Colanzi. 2019. Towards the support of user preferences in search-
based product line architecture design: an exploratory study. In Proceedings
of the XXXIII Brazilian Symposium on Software Engineering (SBES). 387–396.
https://doi.org/10.1145/3350768.3351993

[5] Luiz Carvalho, Alessandro Garcia, Thelma Elita Colanzi, Wesley K. G. As-
sunção, Juliana Alves Pereira, Baldoino Fonseca, Márcio Ribeiro, Maria Julia
de Lima, and Carlos Lucena. 2020. On the Performance and Adoption of
Search-Based Microservice Identification with toMicroservices. In 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME). 569–
580. https://doi.org/10.1109/ICSME46990.2020.00060

[6] Soo Ho Chang, Hyun Jung La, and Soo Dong Kim. 2006. Key Issues and Metrics
for Evaluating Product Line Architectures. In Proc. of the 18th Int. Conf. on Softw.
Engineering & Knowledge Engineering (SEKE) (San Francisco, CA, USA). 212–219.

[7] Thelma Elita Colanzi, Wesley K.G. Assunção, Silvia R. Vergilio, Paulo Roberto
Farah, and Giovani Guizzo. 2020. The Symposium on Search-Based Software
Engineering: Past, Present and Future. Information and Software Technology 127
(2020), 106372. https://doi.org/10.1016/j.infsof.2020.106372

[8] Thelma Elita Colanzi and Silvia Regina Vergilio. 2016. A feature-driven crossover
operator for multi-objective and evolutionary optimization of product line
architectures. Journal of Systems and Software 121 (2016), 126–143. https:
//doi.org/10.1016/j.jss.2016.02.026

[9] Thelma Elita Colanzi, Silvia Regina Vergilio, Itana Gimenes, and Willian Nalepa
Oizumi. 2014. A search-based approach for software product line design. In
Proceedings of the 18th International Software Product Line Conference (SPLC),
Vol. 1. 237–241. https://doi.org/10.1145/2648511.2648537

[10] Indraneel Das and J. E. Dennis. 1998. Normal-Boundary Intersection: A New
Method for Generating the Pareto Surface in NonlinearMulticriteria Optimization
Problems. SIAM J. on Optimization 8, 3 (mar 1998), 631–657. https://doi.org/10.
1137/S1052623496307510

[11] Kalyanmoy Deb and Himanshu Jain. 2012. Handling many-objective problems
using an improved NSGA-II procedure. In 2012 IEEE Congress on Evolutionary
Computation. 1–8. https://doi.org/10.1109/CEC.2012.6256519

[12] Kalyanmoy Deb and Himanshu Jain. 2014. An Evolutionary Many-Objective
Optimization Algorithm Using Reference-Point-Based Nondominated Sorting
Approach, Part I: Solving Problems With Box Constraints. IEEE Transactions on
Evolutionary Computation 18, 4 (2014), 577–601.

[13] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation 6 (2002), 182–197. https://doi.org/10.1109/4235.996017

[14] Juan J. Durillo and Antonio J. Nebro. 2011. jMetal: A Java framework for multi-
objective optimization. Advances in Engineering Software 42, 10 (2011), 760–771.
https://doi.org/10.1016/j.advengsoft.2011.05.014

[15] Willian Freire, Cláudia Rosa, Aline Amaral, and Thelma Colanzi. 2022. Validating
an Interactive Ranking Operator for NSGA-II to Support the Optimization of
Software Engineering Problems. In Proceedings of the XXXVI Brazilian Symposium
on Software Engineering (SBES). 337–346.

[16] Willian Marques Freire, Mamoru Massago, Arthur Cattaneo Zavadski, Aline M
M Miotto Amaral, and Thelma Elita Colanzi. 2020. OPLA-Tool v2.0: a Tool for
Product Line Architecture Design Optimization. In 34th Brazilian Symposium on
Software Engineering (SBES). https://doi.org/10.1145/3422392.3422498

[17] Mark Harman, Yue Jia, Jens Krinke, William B Langdon, Justyna Petke, and
Yuanyuan Zhang. 2014. Search based software engineering for software product
line engineering: a survey and directions for future work. In Proceedings of the
18th International Software Product Line Conference-Volume 1. 5–18.

[18] Mark Harman and Bryan F Jones. 2001. Search-based software engineering.
Information and software Technology 43, 14 (2001), 833–839.

[19] Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. 2009. Search based
software engineering: A comprehensive analysis and review of trends techniques
and applications. Department of Computer Science, King’s College London, Tech.
Rep. TR-09-03 (2009), 23.

[20] Hisao Ishibuchi, Ryo Imada, Yu Setoguchi, and Yusuke Nojima. 2016. Performance
comparison of NSGA-II and NSGA-III on various many-objective test problems.
In 2016 IEEE Congress on Evolutionary Computation (CEC). 3045–3052. https:
//doi.org/10.1109/CEC.2016.7744174

[21] Muhammad Abid Jamil, Ahmad Alhindi, Muhammad Arif, Mohamed K Nour,
Normi ShamAwang Abubakar, and Tareq Fahad Aljabri. 2019. Multiobjective Evo-
lutionary Algorithms NSGA-II and NSGA-III for Software Product Lines Testing
Optimization. In 2019 IEEE 6th International Conference on Engineering Technolo-
gies and Applied Sciences (ICETAS). 1–5. https://doi.org/10.1109/ICETAS48360.
2019.9117500

[22] Miqing Li and Xin Yao. 2019. Quality Evaluation of Solution Sets in Multiobjective
Optimisation: A Survey. Comput. Surveys 52 (03 2019), 1–38. https://doi.org/10.
1145/3300148

[23] F. v. d. Linden, F. Schmid, and E. Rommes. 2007. Software Product Lines in Action
- The Best Industrial Practice in Product Line Engineering. Springer.

[24] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyanmoy Deb,
and Mel Ó Cinnéide. 2014. High dimensional search-based software engineer-
ing: finding tradeoffs among 15 objectives for automating software refactor-
ing using NSGA-III. In Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation (Vancouver, BC, Canada) (GECCO ’14). Asso-
ciation for Computing Machinery, New York, NY, USA, 1263–1270. https:
//doi.org/10.1145/2576768.2598366

[25] Klaus Pohl, Günter Böckle, and van Der Linden Frank J. 2005. Software product
line engineering: foundations, principles and techniques (1 ed.). Springer Science
& Business Media.

[26] Aurora Ramírez, José Raúl Romero, and Sebastián Ventura. 2016. A comparative
study of many-objective evolutionary algorithms for the discovery of software
architectures. Empirical Software Engineering 21 (2016), 2546–2600.

[27] SEI. 2009. Software Engineering Institute - The Arcade Game Maker
Pedagogical Product Line. https://resources.sei.cmu.edu/library/asset-
view.cfm?assetID=485941. Accessed in 2023 April.

[28] Diego Fernandes Silva, Luiz Fernando Okada, Wesley K. G. Assunção, and
Thelma Elita Colanzi. 2022. Intensifying the search-based optimization of product
line architectures with crossover operators. Empirical Software Engineering 27
(2022), 166. https://doi.org/10.1007/s10664-022-10198-3

[29] Yenisei Delgado Verdecia, Thelma Elita Colanzi, Silvia Regina Vergilio, and
Marcelo C Benitez Santos. 2017. An Enhanced Evaluation Model for Search-based
Product Line Architecture Design.. In CIbSE. 155–168.

[30] T. Young. 2005. Using AspectJ to Build a Software Product Line for Mobile Devices.
Master’s thesis. University of British Columbia.

[31] Milan Zeleny and James L Cochrane. 1973. Multiple criteria decision making.
University of South Carolina Press.

[32] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M Fonseca, and Viviane
Grunert Da Fonseca. 2003. Performance assessment of multiobjective optimizers:
An analysis and review. IEEE Transactions on Evolutionary Computation 7 (2003),
117–132.

https://doi.org/10.1145/3350768.3351993
https://doi.org/10.1109/ICSME46990.2020.00060
https://doi.org/10.1016/j.infsof.2020.106372
https://doi.org/10.1016/j.jss.2016.02.026
https://doi.org/10.1016/j.jss.2016.02.026
https://doi.org/10.1145/2648511.2648537
https://doi.org/10.1137/S1052623496307510
https://doi.org/10.1137/S1052623496307510
https://doi.org/10.1109/CEC.2012.6256519
https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/j.advengsoft.2011.05.014
https://doi.org/10.1145/3422392.3422498
https://doi.org/10.1109/CEC.2016.7744174
https://doi.org/10.1109/CEC.2016.7744174
https://doi.org/10.1109/ICETAS48360.2019.9117500
https://doi.org/10.1109/ICETAS48360.2019.9117500
https://doi.org/10.1145/3300148
https://doi.org/10.1145/3300148
https://doi.org/10.1145/2576768.2598366
https://doi.org/10.1145/2576768.2598366
https://doi.org/10.1007/s10664-022-10198-3

	Abstract
	1 Introduction
	2 Product Line Architecture Design
	3 Search-based Optimization
	3.1 Multi-Objective Evolutionary Algorithms
	3.2 Quality Indicators

	4 Implementation of NSGA-III for PLA Design
	4.1 Architecture of OPLA-Tool
	4.2 Backporting methodology

	5 Empirical Study Definition
	5.1 Study Design
	5.2 Used PLA designs

	6 Empirical Results
	6.1 Discussion
	6.2 Threats to Validity

	7 Related Work
	8 Concluding Remarks
	Acknowledgments
	References

