
Guidelines for Data Engineering Documentation in a DevDocOps
Approach

Stephany Mendes Oliveira
stephanymendes@estudante.ufscar.br

Federal University of São Carlos
Sorocaba, SP, Brazil

Daniel Lucrédio
daniel.lucredio@ufscar.br

Federal University of São Carlos
São Carlos, SP, Brazil

ABSTRACT
The software development process has been studied since the be-
ginning of technological evolution. Development practices have
evolved, requiring processes capable of supporting intensive work,
paving the way for agile methodologies. With the growing need for
continuous integration (CI) and continuous deployment/delivery
(CD), new data architectures have emerged, allowing for scalable,
maintainable, and reusable environments, collectively known as De-
vOps (Development + Operations). In this context, the DevDocOps
approach integrates continuous documentation into the software
development lifecycle. However, little has been published regarding
the benefits of this approach. To address this, an empirical study
was conducted, applying findings from the literature to a real de-
velopment environment by integrating continuous documentation
into the data engineering development lifecycle. Based on feed-
back from developers and technical lead, the results highlight the
importance of technical documentation in an agile development
environment and demonstrate how automating this process can
improve the quality and efficiency of software deliveries.

CCS CONCEPTS
• Software and its engineering→ Automatic programming;
Software configuration management and version control sys-
tems.

KEYWORDS
Documentation Automation, continuous deployment (CD), data
engineering, technical documentation, DevDocOps

1 INTRODUCTION
DevOps, a term that unites concepts related to development (dev)
with operation (ops), emerged as a set of practices that focus on re-
ducing the time between commits and deployment into production,
through team integration and automated tasks [2]. Two important
DevOps concepts are Continuous Integration (CI) and Continu-
ous Deployment (CD). These activities are becoming a growing
need, given the benefits they bring in terms of agility, quality and
confidence in the development life cycle [8].

In today’s era, in which the volume of data is growing exponen-
tially, the automation of data documentation is also emerging as a
crucial need. This approach minimizes the manual work required
to update existing documentation. Automation makes it easier for
data teams to focus on larger-scale projects and ensure that doc-
umentation is constantly updated in parallel with changes in the
data. Standardized, automated documentation not only improves
confidence in the data, but also adapts and scales with the growth

of the data and the company, eliminating the need for extensive
revisions or constant iterations.

But automation alone is not enough. As it has become evident
in DevOps, automation must be integrated into a coordinated pro-
cess that allows different stakeholders to effectively cooperate, oth-
erwise its benefits fail to reach full potential. This is where the
DevDocOps approach comes into play. The idea is to integrate
documentation (doc) into the DevOps process. The ability to in-
clude documentation continuously within CI/CD can bring higher
quality to the generated documents. Through daily references inte-
grated into deliveries, it is possible to increase information accuracy,
specification integrity and timeline traceability [13].

DevDocOps is an innovative approach, still considered generalist
and lacking more concrete definitions, especially in the field of data
engineering. There are no precise standards or guidelines that define
how the documentation flow should take place during development
[13, 19]. In terms of tools, there are examples on the market, but
they mostly work on code comments to create reference guides
[8, 17]. There are other technical artifacts that can be obtained and
converted into high-quality documents that can effectively promote
DevDocOps [9, 13, 20].

In this paper, we present the results of an empirical DevDocOps
study, conducted in a real industrial setting. The results serve to
highlight the importance of DevDocOps to promote quality, con-
sistency, and efficiency in the creation, review, and availability of
technical documentation in this specific context. It also led to the
definition of some guidelines to introduce DevDocOps into a typical
software life cycle.

The remainder of this paper is organized as follows: Section 2
presents related work. Sections 3 and 4 cover planning and execu-
tion of the study, followed by the results and discussion (Section
5). The guidelines are presented in Section 6. Threats to validity
are discussed in Section 7 and Section 8 presents final remarks and
future work.

2 RELATEDWORK
The study by Theunissen [18] examines the balance between docu-
mentation and communication in Lean, Agile, and DevOps, known
collectively as Continuous Software Development (CSD). It high-
lights challenges in maintaining effective communication with min-
imal yet sufficient documentation and proposes a framework for
documentation tailored to CSD. This framework defines “necessary
conditions” as minimal documentation requirements and “sufficient
conditions” as ensuring effective communication based on docu-
mented information. The research suggests further investigation
into correlating information types and documentation practices



SBCARS’24, September 30 – October 04, 2024, Curitiba, PR Oliveira and Lucrédio

across industries using CSD, aiming to organize dispersed informa-
tion into coherent documentation.

Continuous software development uses an automated deploy-
ment pipeline, ensuring versions undergo automated testing and
compilation, enabling faster, more secure application updates to
the production environment [6, 22]. Emphasizing agile principles,
it breaks down development into smaller, manageable project ele-
ments to expedite execution [3, 21].

DevOps is an approach focused on integrating development
(dev) and operations (ops) teams by building pipelines to automate
CI/CD processes [6, 7, 24]. The transformation brought about by
the application of the approach enables developers to perform code
cross-checking, unit testing and constant compilation, allowing
them not only to deliver updated code with high frequency, but
also to detect errors and resolve problems more quickly [24].

Since the First International Conference on Computational Data
Engineering (COMPDEC) in 1984, data engineering has been for-
mally seen as a set of activities involving: the design of logical and
physical databases; data management methodologies; computer ar-
chitectures for knowledge databases; technology, implementation
and operation for data management; and specialized tools [10].

According to Reis and Housley [12], although there are currently
several database development techniques, the literature still lacks a
formal definition and standards for data engineering applications.

The studies by Leite et al. [6], Poniszewska-Marańda et al. [9],
Rong et al. [13], Synko and Peleshchyshyn [17], Theunissen [18]
show that technical software documentation aims to achieve the fol-
lowing objectives: (i) Describe the requirements that have already
been developed and validated; (ii) Record knowledge of problems
and solutions encountered during the life cycle; (iii) Ensure the
integrity of knowledge and information about the software devel-
oped; (iv) Record and track test results of the versions developed;
and (v) Facilitate code reuse and software maintenance.

Aghajani et al. [1] investigated software professionals’ needs
for high-quality automatic documentation, addressing limitations
like the narrow scope of previous studies. They used a qualitative
approach, analyzing diverse artifacts from software repositories, de-
velopment emails, forums, and problem reports. Despite reviewing
various tools and approaches for automated documentation, their
study concludes that inaccurate documentation remains a critical
bottleneck, with potential severe consequences beyond time wasted
on code reproduction.

According to Rong et al. [13], integrating software documenta-
tion into DevOps, termed DevDocOps, helps automate documen-
tation but doesn’t fully resolve all issues. The term DevDocOps
was first mentioned in 2019 and has been practically applied in
private settings, with limited analysis in open source communities.
Rong et al. [14] proposed a documentation approach where devel-
opers define the information, guidelines, and models for automated
documentation delivery.

The documentation automation tools on the market mostly work
on code comments, creating reference guides [16, 17], but there are
other technical knowledge artifacts that can be obtained and con-
verted into high-quality documents, such as classes, tags, packages,
methods, test scenarios and results, among others [9, 13, 20].

Industry also has some efforts that align with DevDocOps. For
example, SAP HANA (High-Performance Analytic Appliance) is an

in-memory database platform developed by SAP SE. This technol-
ogy encompasses database, real-time data processing and advanced
analytics capabilities in a single tool. As described by Färber et al.
[4], Załęski [25], its main features and benefits are: (i) In-Memory
Computing, in which data is stored in the server’s main memory,
providing ultra-fast access to data, significantly speeding up pro-
cessing and analysis; (ii) Unified UI for BW/HANA1 modeling tools;
(iii) Advanced ETL (Extract, Transform and Load) functionalities
that allow the integration of data from various sources, including
SAP and non-SAP systems; and (iv) Support for advanced analytics
such as natural language processing, machine learning and predic-
tive algorithms.

One of the main data modeling objects in SAP HANA are Cal-
culation Views. Modeled from a graphical interface, they are used
to model business rules and logic, and return data sets as output.
Because Calculation Views are structured database artifacts capa-
ble of complex calculations and massive business rule applications,
comprehensive and detailed documentation is particularly impor-
tant. The work by Załęski [25] presents a detailed description of
Calculation Views, providing a comprehensive analysis of their
functions and exploring the different types available.

When analyzing the use of SAP HANA as a Database Manage-
ment System (DBMS), there is a lack of tools external to SAP that
are capable of documenting its objects, and even with internal tools,
standardizing documentation is a challenge. A common strategy is
to use the SAP HANA Studio2 Auto-Documentation feature, which
allows the creation of documentation in PDF format, but these
automatic documentations often do not present all the necessary
information in a useful way or are adapted to produce specific
documents, such as a mapping document.

As it can be seen, research efforts in DevDocOps can be found
in the literature and industry, but they are still at an initial stage in
terms of definitions, standards and guidelines.

3 PLANNING OF THE EMPIRICAL STUDY
The research aimed to study DevDocOps in a real industrial sce-
nario, in order to increase the body of evidence regarding this
approach with feedback from professionals. More specifically, the
research aimed to create and evaluate an approach to streamline the
production and continuous delivery of data engineering documen-
tation, in line with the DevDocOps philosophy. Figure 1 describes
how planning was carried out in five stages.

3.1 Bibliographic survey
The literature review followed a snowballing process based on two
papers used as seed: the work of Rong et al. [13], which is one of the
first mentions of the term DevDocOps; and the work of Theunissen
[18], who reported a study on how to integrate documentation in
Continuous Software Development. Forward and back snowballing
was applied to these papers, resulting in the studies by Leite et al.
[6], Poniszewska-Marańda et al. [9], Rashid et al. [11], Rong et al.
[13], Synko and Peleshchyshyn [17], Theunissen [18], Theunissen
et al. [19]. As described in Section 2, they helped to identify and

1www.sap.com/brazil/products/technology-platform/hana/what-is-sap-hana.html
2blogs.sap.com/2012/03/31/auto-documentation-functionality-in-hana-studio/



Guidelines for Data Engineering Documentation in a DevDocOps Approach SBCARS’24, September 30 – October 04, 2024, Curitiba, PR

Figure 1: Planning stages

characterize the existence of a bottleneck in the technical documen-
tation of software projects developed and structured using agile
methodologies. The result of this analysis is described in Section 2.

3.2 Analysis of current practices
In order to conduct the study in a real industry setting, a partner-
ship with a software development company was established. The
company selected as a partner is an entity with a significant impact
on the national technology market, standing out in the consult-
ing and software development scene in Brazil. The initial contact
was made by the researcher, and the collaboration consisted in an
analysis of current documentation practices and the proposal of
a DevDocOps approach to be included in the company’s software
development process.

The planning process involved holding meetings to present the
proposal and define a research methodology that would ensure that
the organization remained anonymous. These meetings were held
in collaboration with a data engineering manager, the key figure
responsible for the pillar of data projects involving SAP technolo-
gies in the company, in order to ideate and assess the project’s
objectives and possible practical applications. The company then
agreed to make a data engineering consultant available to accom-
pany and support the development and evolution of the project on
a voluntary basis, and collaborative dialogues were established.

By monitoring and analyzing the documentation process in two
different data engineering development projects, it was possible to
map the discrepancies and similarities between the groups, even
though they belong to the same technology chain. Both teams share
common characteristics, such as the involvement of more than five
active developers, an established organizational maturity (existing
for more than six months) and experiences with participant ex-
changes throughout their existence. The documents produced in
these projects include elements such as visuals, scripts at a mod-
erate level of description, modeling and evidence of how these
functionalities work. However, it was observed that there is no
strict standardization regarding the specific phase for preparation
or the format to be adopted for these documents, with variability
depending on the team, client and management involved in each
data engineering project.

After this analysis, the researcher, together with the company’s
data engineering manager, decided that the most important as-
pects for the new DevDocOps process were the need for standard,
uniform access and constant updates. In this sense, two kinds of
documents were selected: Data Dictionaries, an essential documen-
tation for data-based projects [11]; and Calculation Views, graphical
visualization objects that represent partial views of the database,
which in the case of the partner company, is SAP HANA.

3.3 Test parameters
In the third stage of the research planning, which focused on the
detailed planning of the test parameters, the DevOps platform and
the tools that would be used to design and apply the guidelines
proposed in this research were defined. Within this context, a com-
prehensive test plan was drawn up that would be carried out in
the organizational environment, with a pre-defined team aligned
with the partner company. As a result, the Azure DevOps platform
was chosen as the tool for applying the DevDocOps approach. This
choice was justified by a number of application factors necessary
for the process to work, regardless of the organizational environ-
ment applying it. Firstly, the native and comprehensive integration
offered by Azure DevOps is capable of centralizing project manage-
ment, version control, CI/CD pipelines, task tracking and wikis3,
making it possible to achieve efficient synergy, enabling holistic
management of the development lifecycle [15].

3.4 Questions
Four questions were defined to establish the improvements that can
be achieved with DevDocOps in a more objective way. These ques-
tions were based on four important aspects that were defined after
the literature review and meetings with the company participants:

• Q1 - Agility: Can DevDocOps reduce the time spent produc-
ing documentation?

• Q2 - Quality: Can DevDocOps help to produce more stan-
dardized, detailed and correct documentation?

• Q3 - Continuous Integration: Can DevDocOps promote con-
tinuous integration of documentation with source code?

• Q4 - Documentation Delivery: Can DevDocOps promote
continuous delivery of the produced documentation to the
interested stakeholders?

As a means of obtaining answers to these questions, the method
chosen for extracting the results was to apply a questionnaire to the
participants (developers and leader), which they had to answer after
having carried out the documentation tasks. The questions were
strategically divided into two domain areas, aimed at the developers
and leader involved in the process. This approach made it possible
to formulate a comprehensive questionnaire, adapted to the specific
perspectives and responsibilities of each group.

To complement the answers from the questionnaire, constant in-
terviews were to be conducted with the developers on a day-to-day
basis. For the leader, we conducted one final interview, to com-
plement the responses from the questionnaire with more detailed
feedback regarding aspects such as DevDocOps Process Impact

3The Wiki in Azure DevOps is a collaboration and documentation tool integrated into
the Azure DevOps Services platform



SBCARS’24, September 30 – October 04, 2024, Curitiba, PR Oliveira and Lucrédio

on Documentation Time, Documentation Standardization Level,
Documentation Accuracy and Documentation Interest Level.

3.5 Other details
Before starting the project, it was essential to set the study duration,
allocate sufficient human resources, identify database objects, and
implement strict anonymization measures. Collaboration with a
partner company was crucial for ensuring project feasibility and
success, highlighting the integration of academic research with
business practice. The process included incremental feedback loops
aligned with development cycles. Plans were presented, awaiting
management approval, followed by scheduling involvement. Devel-
opment was structured into four sprints, each lasting two weeks,
where developers performed tasks potentially impacting project
documents. This iterative approach facilitated comprehensive eval-
uation and incremental adjustments as new study elements were
introduced.

4 EXECUTION
The planning stage described in the previous section took around
nine months. After this, execution started, in three stages.

4.1 Stage 1: Document generation scripts
This stage aimed to boost agility in the documentation process by
developing scripts capable of generating data engineering documen-
tation, in an automated way, from certain input documents, namely
Table Structures and Calculation Views. This process resulted in a
standardized output document, helping to raise the quality of the
documented material. Figure 2 illustrates this step.

To scan the Table structures in order to generate data dictionar-
ies, we used Python with Pandas4, a library that facilitates data
manipulation. This script is designed to receive two CSV files as
input – the table structure and some configuration metadata – and
produce a data dictionary in Markdown language. Figure 3 shows
an example of a generated data dictionary.

In order to design the script capable of scanning the Calcula-
tion Views, it was necessary to carry out an in-depth analysis of
their technical structure in SAP HANA. This analysis involved a
detailed understanding of the internal organization of Calculation
Views, such as the relationships between tables, join operations,
aggregations, and the logic underlying calculations. During this
analysis phase, the crucial elements that make up a Calculation
Views were identified, highlighting the critical points for extract-
ing relevant information. Understanding the XML structure, which

4https://pandas.pydata.org/

Figure 2: First stage: document generation scripts

Figure 3: Example of a generated data dictionary

describes the hierarchy and relationships, was essential to creat-
ing a script capable of performing a precise and comprehensive
scan, and the prior analysis not only underpinned the design of the
script, but also made it possible to anticipate potential challenges
and develop effective strategies for extracting technical data in a
coherent manner.

The script developed works with the XML file associated with
the Calculation View. Using the lxml5 and etree6 libraries, it was
possible to effectively map the existing nodes, identifying their
characteristics, functions and the chains that permeate the entire
structure of the object. This approach not only simplifies the docu-
mentation process, but also ensures an accurate and comprehensive
representation of the technical nuances of the Calculation View, pro-
moting a detailed understanding for those involved in the process of
analyzing and maintaining these complex structures. The resulting
documentation represents the view in Markdown language. Figure
4 shows an example of a generated calculation view document.

This stagewas carried out by a single researcher, and took around
one and a half month to be completed.

4.2 Stage 2: DevDocOps configuration
The second stage consisted in configuring the DevDocOps envi-
ronment (Azure DevOps), including: (i) Azure Repos (Azure’s GIT-
based source code repositories) to maintain source code, including
the aforementioned .csv and .xml files; (ii) the CI/CD pipeline to
automatically run the scripts; (iii) a wiki to hold the generated doc-
uments; and (iv) a board to view/manage the development stories.
Figure 5 illustrates these elements (bottom side of the figure).

First, some basic configurations were made to enforce some
DevOps good practices: the source code repository was configured
to prevent commits to be made into the main branch, and to have

5https://lxml.de/
6https://docs.python.org/3/library/xml.etree.elementtree.html



Guidelines for Data Engineering Documentation in a DevDocOps Approach SBCARS’24, September 30 – October 04, 2024, Curitiba, PR

Figure 4: Example of a generated calculation view document

branches always associated with a development story. The CI/CD
pipeline was configured to execute some basic code quality scripts.

Regarding the “Doc” part of DevDocOps, the following specific
configurations were made. First (Figure 5-1), the document gen-
eration scripts described in the previous section were configured
to run whenever a pull request (PR) is made (a request to merge
some secondary branch into the main branch). As a result, the cor-
responding documents (Data Dictionary - dd.md and Calculation
View - cv.md) are generated and saved in the environment.

The pull request must be reviewed and approved by someone
responsible, such as a tech leader or manager. At this point the
documents have already been generated, so he/she can inspect it
together with the other software assets that have been produced.
Once the pull request is approved (Figure 5-2), another script pub-
lishes the generated documentation into the Wiki, where it can be
accessed by its stakeholders in an organized way.

The result of this process is that the wiki will always have the
most recent approved version of the documentation, at least in
regard to these particular documents.

This stagewas carried out by a single researcher, and took around
two and a half months to be completed.

4.3 Stage 3: DevDocOps in practice
The third stage was carried out with the aim of putting the proposed
flow into practice in a real development environment according to
the planning. Figure 6 illustrates the process and its main elements:
the center contains the eight activities that were executed; the left
side defines the duration of each group of activities; the right side

Figure 5: DevDocOps environment configuration

Figure 6: DevDocOps in practice

summarizes the outputs of each activity (more details below); and
the bottom shows the roles that participated in each activity.

1. Team definition: This is the only activity that involved com-
pany management. Three participants were selected for the team:
a junior developer, a senior developer and a technical lead. The
diversity of experience and skills was intended to cover different
perspectives during the evaluation. Participation was voluntary.

2. Presentation: The team was properly introduced to the
project, starting with a group meeting, in order to pass on detailed
information about the objectives, methodology and expectations
related to the implementation of the DevDocOps approach.

3. Training: The necessary access to the platform was provided,
followed by a dedicated training session. The training covered the
practical aspects of using the platform, ensuring that all participants
were familiar with the features.

4. Task registration: To organize the workflow, the tasks re-
lated to the development objects chosen to make up the sample
were registered by the researcher and technical lead on the platform
board. Seven different tasks were defined, each based on different
developed objects, as summarized in Table 1. This diverse approach
allowed for a comprehensive analysis and a more holistic under-
standing of the impact on daily development activities and the
production of documentation.

5. Development sessions and questionnaires: Seven devel-
opment sessions were held with the two developers to carry out
the seven tasks within the proposed guidelines. The tasks were
split between the two developers, so that the Junior developer per-
formed four tasks and the Senior developer performed three tasks.
At the end of each session, the developers were subjected to a
questionnaire to collect feedback.

6. Developer interviews: Together with the development ses-
sions, the researcher conducted chat sessions with the developers
to gather more detailed impressions about their experience with
the platform, areas of satisfaction and any challenges faced.

7. Review and questionnaire: The technical lead reviewed the
documentation generated on the platform based on the deliveries



SBCARS’24, September 30 – October 04, 2024, Curitiba, PR Oliveira and Lucrédio

Task Dev Description
1 Jr. Develop a data consumption flow in SAP Hana from a CSV file

to a final Stock output table, including data staging, sanitization
and processing with a Flowgraph pipeline.

2 Sr. Add new fields to the portfolio table for branches X and Y migra-
tion to SAP, including load job, staging, final table adjustment
and Flowgraph pipeline.

3 Jr. Create a table to extract and share sales data from supplier Y,
filtering from sales and anonymizing customer data.

4 Sr. Add new fields to the sales table for branches X and Y migration
to SAP, including load job, staging, final table adjustment, and
Flowgraph pipeline .

5 Jr. Develop a Calculation View to consolidate stock data from all
branches.

6 Sr. Adjust sales calculation view to include branches X and Y, cor-
rect the join with the sales dimension, and fix duplication with
customers view by considering the valid customer record on the
order date.

7 Jr. Develop a Calculation View to consolidate open orders from all
branches.

Table 1: Tasks defined for the study

made by the developers and made available on the wiki. The re-
sults were collected by means of a questionnaire, with the aim of
gathering impressions about the experience on the platform.

8. Leader interview: An interview session was held with the
technical lead to discuss the experience with the platform in com-
parison with the current documentation process, with the aim of
finding the perceived benefits and opportunities for improvement.

Four outputs were produced:
O1. 7 responses to questionnaires by the developers (4 from the

junior developer and 3 from the senior developer);
O2. daily interviews with developers;
O3. 1 response to questionnaire by the technical lead; and
O4. interview with the technical lead.

5 RESULTS
Here we discuss the results obtained after analyzing each output
described in the previous section.

5.1 Outputs O1 and O2: Developers’
Questionnaires and Interviews

Output O1 refer to the questionnaires that were applied after each
development session (referred to as “story” in the questionnaire).
The following questions were asked:

1. Was documentation produced or updated in this story?
2. Amount of time spent (hours) on documentation (time for

automatic generation, reviews)
3. If the DevDocOps process had not been used, how much

time would you estimate you would have spent?
4. Does the object under development already have documen-

tation? If so, did you need to consult the previous documen-
tation of this object to perform the task? Was the previous
documentation up to date with the same version of the object
in production? Was it easy to access or locate the documen-
tation?

5. Was it necessary to develop any documentation manually?
If yes, please describe.

6. Did the documentation require adjustments after it was gen-
erated? If yes, which ones?

7. How easy was it to use the platform?
8. Were there any issues in using the DevDocOps workflow?
9. With the new process, documentation has become manda-

tory. How do you evaluate the benefits and challenges of
this continuous documentation delivery?

10. What benefits and difficulties have you observed regarding
the delivery method (availability, access, and visualization)
of documentation on the platform?

Question 1 served mostly to confirm that the stories did involve
documentation being produced/updated. The following conclusions
were drawn from the other questions:

Document Production Efficiency and Impact of the Dev-
DocOps Process on Documentation Time: Both developers
shared the same perception: DevDocOps can reduce the time needed
to produce technical documentation. Table 2 summarizes their re-
sponses to questions 2 and 3 (amount of time spent on documen-
tation with DevDocOps versus amount of time estimated without
DevDocOps). The answers were not precise as they are based on
their perception, and not actually measured times. As it can be
seen, the time spent with DevDocOps was much smaller than the
estimates for the process without DevDocOps. Although these are
based on estimates, the consistent results between both developers
provide some degree of confidence in their accuracy.

Documentation Accuracy and Conformance between Doc-
umentation and Code in Production: The feedback for question
4 and its subquestions revealed that the documentation generated
by DevDocOps was aligned with the code in production, with a
good accuracy, i.e. the produced documentation accurately reflected
the data models and functionalities implemented. Developers also
reported that they did not encounter much problem in locating the
required documents.

Need for manual effort: Questions 5 and 6 focused on the need
to develop or complement the automatically generated documen-
tation. Responses indicate that the developers did not need such
effort. In some cases minor adjustments had to be made to improve
the visualization and hierarchy for a calculation view, but this did
not impact its understanding.

Pros and cons of the new DevDocOps process: The answers
to questions 7-10 reported that the new process was easy to use and
problem-free. As pros, they highlighted the effort saving potential
and standardization of the documents. They also mentioned the

Time spent Estimate
Task Developer w/ DevDocOps w/o DevDocOps
1 Jr 10min 45min - 1hour
2 Sr 5min 45min - 1hour
3 Jr < 10min 2hour
4 Sr 5min 2hour
5 Jr 15 - 25min 2hour - 3hour
6 Sr 20min 2hour
7 Jr 10min 2hour - 3hour

Table 2: Time spent with DevDocOps vs estimate without it



Guidelines for Data Engineering Documentation in a DevDocOps Approach SBCARS’24, September 30 – October 04, 2024, Curitiba, PR

tracing between the source code and the documents up to the
wiki, which makes accessing and updating them an easy task. For
example, the Junior developer stated the following: “the process has
become simpler and more consistent, automatically centralizing
and standardizing the documentation (...) allowing the time that
would be spent on documentation to be directed to other activities.”

Some difficulties were reported in terms of the initial lack of
knowledge with the new process. For example, the Senior developer
stated: “I believe that the activities are relatively easy to carry out,
but they can pose difficulties for those who have never worked
with the platform”. There were also some effort to understand the
formatting of the produced document. But these are only minor
problems that were quickly resolved after some time.

Constant interviews (O2) were also being conducted to comple-
ment their responses. Much of the content from the interviews only
confirmed their responses to the questionnaires, but the following
additional observations were made:

Continuous Delivery: The participants noted that the contin-
uous delivery process, following the pattern of a single artifact,
significantly facilitated access to the documentation. It was pointed
out that in the previous process, there were cases in which the
documentation could not be finalized in the current sprint, usually
due to time constraints and delivery priorities, highlighting the im-
proved efficiency of the documentation in the automated process,
due to the time savings in carrying out such actions.

Mandatory Delivery with Documentation: The developers
reported that the obligation to deliver the task together with the doc-
umentation did not adversely affect delivery times. On the contrary,
the ease of use and speed of the platform were seen as benefits.

Suggested Improvements:Although the process was generally
well received, the participants suggested some improvements. For
example, an initial follow-up was recommended to facilitate under-
standing of the platform. In addition, it was suggested to automate
the export of task configurations to avoid manual errors, improving
the efficiency of the process.

These findings suggest that, from the developers’ perspective,
DevDocOps had a positive impact on the efficiency of documen-
tation production, the accuracy of documents and agile access to
technical information. The results indicate that the goals set for
this perspective were successfully achieved, improving the overall
effectiveness of the documentation process.

Next we analyze the responses by the leader.

5.2 Outputs O3 and O4: Leader’s Questionnaire
and Interview

From the leader’s perspective, we wanted to assess how the DevDoc-
Ops impacted the leader’s work and responsibilities. The following
questions were asked in the form of a questionnaire (output O3):

1. Was the agility of the documentation positively or negatively
impacted by the implementation of this process?

2. What improved and what worsened in terms of the agility
of the story development?

3. Did the amount of documentation delivered in the sprint
increase?

4. In terms of documentation standardization, was there an
improvement?

5. Compared to the previous documentation process, does the
documentation delivered with the new process meet the
technical requirements?

6. With the new process, documentation became mandatory.
How do you evaluate the benefits and issues of this continu-
ous documentation delivery?

7. What benefits and difficulties have you observed regarding
the delivery method (availability, access, and visualization)
of the documentation on the platform?

8. Is the documentation being continuously delivered? What
could be improved?

The answers obtained from the questionnaire filled in by the
leader provided the results needed to assess how the process influ-
enced documentation time, adherence to standards, documentation
accuracy and the level of interest in technical documentation.

Impact of the DevDocOps process on documentation time:
The leader’s responses to questions 1 to 3 corroborated the devel-
opers’ perception and also indicated a significant improvement in
documentation time with the DevDocOps process. The goal was
achieved based on the analysis of the simplified and automated
process that was applied, which allowed the development team to
produce documentation more quickly and efficiently, freeing up
time to focus on other critical project activities.

Quality and adherence to standards: The leader pointed out
in question 4 that DevDocOps improved the documentation quality
and the team’s adherence to established standards. The automation
and standardization inherent in the process ensured that the docu-
mentation was consistent and followed the predefined standards.
Although there were improvements suggested by the developers,
the results obtained in the study showed a more organized, clear
and easy-to-review documentation, which is fundamental for main-
taining quality and consistency in technical information.

Documentation Accuracy: Documentation accuracy was an-
other area that benefited from the implementation of DevDocOps.
As reported by the leader in question 5, the automated process
reduced human errors and inconsistencies in technical documenta-
tion. Documentation became more reliable, more accurately reflect-
ing the current state of the code in production.

Pros and cons of the new DevDocOps process: In questions 6
to 8, the leader reported an increase in the team’s level of interest in
the technical documentation. The leader noticed that, with DevDoc-
Ops, the documentation became more accessible and valuable to
the development team. This encouraged team members to get more
involved with the documentation, becoming more autonomous in
their use of it. The leader put this in the following words: “As a
leader, I see documentation as a “living” part of the project cycle,
where it should be treated as part of the continuous cycle. If there
are new changes and additions, the documentation reflects these
changes, allowing us to version the documentation. This helps miti-
gate possible errors and outdated rules, requirements, and relevant
information for the project”. The increased interest in documenta-
tion can be attributed to the ease of access, quality and usefulness
of the documentation produced by the DevDocOps process.

In terms of suggestion for improvement, the leader highlighted:
“To improve, I understand that the tool should be adapted to various
scenarios of low and high complexity, expanding and consequently



SBCARS’24, September 30 – October 04, 2024, Curitiba, PR Oliveira and Lucrédio

adapting it over time. Additionally, for technical leaders, the num-
ber of documents to be reviewed increases considerably. I see an
opportunity to streamline the review and governance process and
automate this process.”

After the questionnaire, an individual interview was conducted
with the leader (output O4). The following additional comments
were made:

Functional and Technical Specification: The leader high-
lighted the importance of functional and technical specification,
emphasizing that this process involves clearly and accurately docu-
menting all the customer’s technical requirements. The technical
specification covers the detailed technical procedures related to
product development, ensuring that all essential information is
documented in a comprehensive manner. This “living” approach to
documentation, which adapts and evolves throughout the project
cycle, has been recognized as a crucial benefit, providing technical
visibility and facilitating decision-making. According to the leader,
compared to traditional methods, the new documentation process
better met technical needs, providing gains in time, standardization
and technical detail.

Benefits of Documentation: The leader pointed out several
benefits of the detailed specification, including promoting a com-
mon understanding among all stakeholders, serving as a reliable
reference point during development and identifying gaps in require-
ments at an early stage. This process contributes to reducing costs
and development time, avoiding rework and misunderstandings.

Story Development: Regarding agility, the leader noted an
improvement in the rapid generation of artifacts, allowing the tech-
nical team to focus on other deliverables. However, a need was
pointed out for more rigorous monitoring of the delivery made by
the developers and increased governance in artifact reviews.

Project Goals: In relation to the established goals, the leader
acknowledged the effectiveness of the process in speeding up the
production of documentation, ensuring its quality and standardiza-
tion, and facilitating continuous delivery. He emphasized that the
documentation meets technical needs, fulfilling a strategic role in
the project and encouraging an effective documentation culture.

After this detailed analysis of the feedback from the subjects, we
can answer the four questions established for this research:

Q1 - Agility: Can DevDocOps reduce the time spent pro-
ducing documentation? All participants reported that the Dev-
DocOps approach reduced the time spent with documentation.

Q2 - Quality: Can DevDocOps help to produce more stan-
dardized, detailed and correct documentation? The subjects
reported that quality with DevDocOps increased. The leader, par-
ticularly, praised the standardization, while developers noticed the
level of details and correctness.

Q3 - Continuous Integration: Can DevDocOps promote
continuous integration of documentation with source code?
All the subjects noticed that continuous integration allowed a con-
stant synchronization between the documentation and the source,
without significant additional effort.

Q4 - Documentation Delivery: Can DevDocOps promote
continuous delivery of the produced documentation to the
interested stakeholders? Both developers and the leader reported
that the adopted approach helped documentation reach their inter-
ested stakeholders easily.

6 DEVDOCOPS APPLICATION GUIDELINES
In this section we list some guidelines for DevDocOps:

G1. Is is not just automation. This is the most important lesson
learned: DevDocOps should integrate automation into the devel-
opment life cycle and the review processes, enforcing continuous
synchronization with source code and concerns regarding quality
and accessibility standards.

G2. Different responsibilities. We observed at least two re-
sponsibilities: (i) the developers’, who are responsible for creating,
maintaining and updating documentation as they progress through
the development processes, and focuses on the importance of clear
and concise documentation of code and changes, ensuring future
maintainability and comprehension; and (ii) the leader’s, who has
responsibility for overseeing and ensuring that documentation prac-
tices and continuous integration workflows are aligned with the
overall project objectives and the organization’s agile practices, and
stresses the need to review and validate documentation to ensure
that it meets all the technical requirements and standards of the
project. Both roles are structured to complement each other, maxi-
mizing the efficiency and quality of the final product delivered in
the data engineering environment.

G3. DevDocOps-Driven Leadership. As the main applicator
of the practice, it is up to the leader to evaluate and customize the
documentation template defined for each project and client. This
task includes establishing specific rules for the documentation, such
as formatting, depth of information and identification of technical
needs. In addition, the leader is responsible for ensuring that the
guidelines are adapted to the unique characteristics of each team,
starting from the generic script provided, improving and customiz-
ing it according to the individual requirements of each project,
adapting to the specific demands.

G4. Backlog Management for Efficient Tracking. To ensure
effective tracking of the documentation objects developed, it is
crucial that the leader structures the backlog in such a way as to
group together activities related to the same object change during
the sprint. Although the tasks should reflect the smallest possible
fragment of documentation, following agile principles, in data en-
gineering it is essential to consider the proper functioning of the
object being documented due to its dependencies and impacts on
the production environment. In this way, the changes to the object
will be reflected more clearly in the final document, guaranteeing a
more precise and visible breakdown of the changes made.

G5. Quality Assurance and Safety in Project Delivery. In the
proposed flow, it is essential that each delivery includes a detailed
review of the documentation objects developed by the program-
mers, since the deployment now requires the approval of the leader
before being carried out in the main branch of the repository. This
approach increases the security of the delivered solution, while
requiring stricter and more targeted control and monitoring at
each delivery phase, reinforcing the quality and reliability of the
documentation included in the final product.

G6. Secure Change Management and Deployment in Dev-
DocOps. The developer is responsible for managing changes in
such a way as to prevent direct deploys to the main branch of the
repository. This practice increases the security of deployments,
minimizing risks and impacts on the production environment. It



Guidelines for Data Engineering Documentation in a DevDocOps Approach SBCARS’24, September 30 – October 04, 2024, Curitiba, PR

also facilitates the automatic activation of the continuous documen-
tation pipeline, which is triggered once the code has been approved
by the leader. This method ensures safe and effective integration of
code changes, promoting system stability and reliability.

G7. Centralizing Documentation in DevDocOps: An Ac-
cess and Security Practice. The automated flow for generating
documentation after code validation implies that the documenta-
tion created is integrated into the main context, with the option
of downloading it. It is vital that the leader promotes the practice
of keeping documentation centralized, even with the possibility of
transferring documents externally. This facilitates access to histori-
cal and current records, consolidating a best practice in DevDocOps
to guarantee the accessibility and security of information.

G8. Fine-tuning automated documentation. Although the
documentation process is automated, guaranteeing a uniform stan-
dard for all objects developed, it is crucial to consider the possibility
that, in certain cases, the documentation may require additional
adjustments, especially for objects of greater complexity. The de-
veloper is responsible for completing the documentation with a
detailed review, while the leader has the task of checking that the
final document meets the requirements.

G9. Effective Communication in the Life Cycle of Docu-
mentation Tasks. Communication is essential and must be re-
flected in the updates to the tasks defined in the project manage-
ment framework. The record of all documentation deliveries must
be clearly marked in the corresponding tasks. The life cycle of a
task concludes with the delivery of the associated documentation,
ensuring that each phase of the process is properly documented and
communicated, from the start of development to its completion.

G10. Customization and Efficiency in DevDocOps: Using
Dedicated Pipelines for Object Documentation. Documenta-
tion should be considered an organic element in the project lifecycle,
subject to customization according to the specific needs of DevDoc-
Ops. It is recommended to implement separate pipelines for each
data object, which not only speeds up execution, but also allows
individual technical specificities of each element to be addressed.
This modular and flexible approach ensures more efficient and
adaptable documentation management, in line with the technical
requirements and characteristics of each object within the project.

7 THREATS TO VALIDITY
In this section we discuss the threats to validity. We follow the struc-
ture suggested by Wohlin et al. [23] combined with the elements
suggested by Feldt and Magazinius [5].

Conclusion validity: “Does the treatment/change we introduced
have a statistically significant effect on the outcome we measure?”

Although it is not uncommon to find development teams with a
fewmembers, the small number of participants is a threat. Although
we managed to negotiate the participation of three professionals
with different levels and background, it is still a small number.
Also, we managed to conduct seven development sessions, which
also limits the observations. Finally, the outcomes were based on
perception and estimates, and not actually measured times.

Internal validity: “Did the treatment/change we introduced cause
the effect on the outcome? Can other factors also have had an effect?”

Pressure for results is always present in a company, therefore
participants might have provided biased positive feedback in order
to show that their effort had positive results, specially because they
were encouraged by management to participate.

Construct validity: “Does the treatment correspond to the actual
cause we are interested in? Does the outcome correspond to the effect
we are interested in?”

Regarding the positive results in terms of agility, we believe the
answer to this question is “yes”, because automation has obviously
reduced the time needed to produce documentation, together with
other benefits perceived equally by all three participants.

External validity, Transferability: “Is the cause and effect rela-
tionship we have shown valid in other situations? Can we generalize
our results? Do the results apply in other contexts?”

The documents chosen have a relatively simple structure, but
even so, the lack of documentation prior to the study was evident.
Therefore we believe the same effect could be observed in similar
situations, with similar documents. However, many of the observed
effects may not be perceived if the technical difficulties of imple-
menting the scripts are higher than what was faced here.

Credibility: “Are we confident that the findings are true? Why?”
All three participants mostly agreed on the results, even with

their different background and expertise levels. Also, the benefits
of automation are consistent with the ones seen in other scenarios
in the DevOps field.

Dependability: “Are the findings consistent? Can they be re-
peated?”

Responses from the three participants are consistent with each
other and the ones from the literature. Also, the differences in the
time spent with DevDocOps versus estimates without DevDocOps
are consistent among the developers and what was expected.

Confirmability: “Are the findings shaped by the respondents and
not by the researcher?”

Like the pressure they faced from management for positive re-
sults, the participants may have responded in a biased manner to
the researcher because this study was approved by management.
We tried to mitigate this threat by stating that this study was not
meant to evaluate them, but the process being implemented.

8 CONCLUSION
This research explored the integration of documentation into the
agile software development process, with a focus on the DevDoc-
Ops approach. The study presented a detailed overview of current
practices and challenges faced in software documentation, partic-
ularly in data engineering, and proposed a series of guidelines to
help others find their way in this process. The guidelines were
based on the results of practical utilization in a real industrial sce-
nario. A significant reduction in the time required for technical
documentation and an improvement in the overall quality of docu-
mentation were observed. This time optimization, coupled with the
automation of various documentation tasks, allows teams to focus
on more critical aspects of development, improving efficiency and
productivity. These results are important in a field that has not yet
been extensively investigated by the research community.

Even with the growing interest in agile practices and the integra-
tion of documentation into the software development cycle, little



SBCARS’24, September 30 – October 04, 2024, Curitiba, PR Oliveira and Lucrédio

has been studied about how the specific goals of projects like this
one align with and impact data engineering environments. This
gap in the literature suggests a significant opportunity for future
research.

Here we identify four promising areas for future research: (i)
to evaluate the proposed guidelines in different scenarios; (ii) to
expand automation to more types of data engineering objects, such
as API documentation and other types of documents. It would be
interesting to see what kinds of benefits a DevDocOps approach
could bring to these scenarios; (iii) to study, more in depth, the
effect of standardized templates in improving documentation. This
was one of the important learned lessons in our research, and it is
important to evaluate how automatic template-based generation
could improve documentation quality; (iv) to further investigate
important cost-related questions that have arisen in our research.
Howmuch does it cost to create documentation? And, perhapsmore
importantly, how much would it cost NOT to create documentation
continuously? Maybe the developers would spend more time trying
to understand things that are not documented than the time needed
to properly maintain correct and updated documentation.

AVAILABILITY OF ARTIFACTS
The artifacts developed in this project, necessary for the application
of DevDocOps, are the documentation generation scripts, environ-
ment configuration files, and pipeline configuration scripts, which
were made available under the Creative Commons License7.

ACKNOWLEDGMENTS
This work was supported by CAPES - Finance Code 001.

REFERENCES
[1] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Marquez, Mario Linares-Vasquez,

Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software Documenta-
tion Issues Unveiled. Proceedings - International Conference on Software Engineer-
ing 2019-May, 1199–1210. https://doi.org/10.1109/ICSE.2019.00122

[2] Len Bass. 2017. The Software Architect and DevOps. IEEE Software 35 (2017),
8–10. Issue 1. https://doi.org/10.1109/MS.2017.4541051

[3] Hajer Berhouma. 2020. A Generic Model for Software Documentation and its
Application in Embedded Systems Developed with Scrum. ACM International
Conference Proceeding Series, 33–36. https://doi.org/10.1145/3436829.3436858

[4] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg,
and Wolfgang Lehner. 2012. SAP HANA database. ACM SIGMOD Record 40 (1
2012), 45–51. Issue 4. https://doi.org/10.1145/2094114.2094126

[5] Robert Feldt and Ana Magazinius. 2010. Validity threats in empirical software
engineering research - An initial survey. In Proceedings of the 22nd International
Conference on Software Engineering and Knowledge Engineering. 374–379.

[6] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles.
2019. A Survey of DevOps Concepts and Challenges. ACM Comput. Surv. 52, 6,
Article 127 (nov 2019), 35 pages. https://doi.org/10.1145/3359981

[7] Mirna Muñoz and Mario Negrete Rodríguez. 2021. A guidance to implement
or reinforce a DevOps approach in organizations: A case study. Journal of
Software: Evolution and Process (2021), e2342. https://doi.org/10.1002/smr.2342
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2342

[8] Danilo Pianini and Alessandro Neri. 2021. Breaking down monoliths with Mi-
croservices and DevOps: an industrial experience report. In 2021 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME). 505–514.
https://doi.org/10.1109/ICSME52107.2021.00051

[9] Aneta Poniszewska-Marańda, Arkadiusz Zieliski, and Witold Marańda. 2020.
Towards project documentation in agile software development methods. Lecture
Notes on Data Engineering and Communications Technologies 30 (2020), 1–18.
https://doi.org/10.1007/978-3-030-19069-9_1

[10] C.V. Ramamoorthy, P. Bruce Berra, Barry Boehm, Peter c.c. Wang, Wesley Chu,
and Gio Wiederhold. 1984. 1984 IEEE First International Conference on Data

7https://doi.org/10.5281/zenodo.12706244

Engineering, IEEE Computer Society Press (Ed.). 1984 IEEE First International
Conference on Data Engineering.

[11] Sabbir M. Rashid, James P. McCusker, Paulo Pinheiro, Marcello P. Bax, Henrique O.
Santos, Jeanette A. Stingone, Amar K. Das, and Deborah L. McGuinness. 2020. The
semantic data dictionary – an approach for describing and annotating data. Data
Intelligence 2 (10 2020), 443–486. Issue 4. https://doi.org/10.1162/dint_a_00058

[12] Joe Reis and Matt Housley. 2023. Fundamentos de Engenharia de Dados. Novatec,
São Paulo - SP.

[13] Guoping Rong, Zefeng Jin, He Zhang, Youwen Zhang,Wenhua Ye, and Dong Shao.
2019. DevDocOps: Towards Automated Documentation for DevOps. Proceedings
- 2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE-SEIP 2019 (2019), 243–252. https://doi.org/10.1109/
ICSE-SEIP.2019.00034

[14] Guoping Rong, Zefeng Jin, He Zhang, Youwen Zhang, Wenhua Ye, and Dong
Shao. 2020. DevDocOps: Enabling continuous documentation in alignment with
DevOps. Software: Practice and Experience 50, 3 (2020), 210–226. https://doi.org/
10.1002/spe.2770 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2770

[15] Joachim Rossberg. 2019. An Overview of Azure DevOpsAzure DevOps. Apress,
Berkeley, CA, 37–66. https://doi.org/10.1007/978-1-4842-4483-8_2

[16] Qiwei Song, Xianglong Kong, Lulu Wang, and Bixin Li. 2020. An Empirical
Investigation into the Effects of Code Comments on Issue Resolution. In 2020
IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC).
921–930. https://doi.org/10.1109/COMPSAC48688.2020.0-150

[17] A. Synko and A. Peleshchyshyn. 2020. Software development documenting –
documentation types and standards. Scientific journal of the Ternopil national
technical university 98 (2020), 120–128. Issue 2. https://doi.org/10.33108/visnyk_
tntu2020.02.120

[18] Theo Theunissen. 2020. Identifying Conditions for Effective Communication with
Just Enough Documentation in Continuous Software Development.. In CAiSE
(Doctoral Consortium). 11–20.

[19] Theo Theunissen, Stijn Hoppenbrouwers, and Sietse Overbeek. 2022. Approaches
for Documentation in Continuous Software Development. Complex Systems
Informatics and Modeling Quarterly (10 2022), 1–27. Issue 32. https://doi.org/10.
7250/csimq.2022-32.01

[20] Theo Theunissen, Uwe vanHeesch, and Paris Avgeriou. 2022. Amapping study on
documentation in Continuous Software Development. Information and Software
Technology 142 (2022), 106733. https://doi.org/10.1016/j.infsof.2021.106733

[21] Mark Underwood. 2023. Continuous Metadata in Continuous Integration, Stream
Processing and Enterprise DataOps. Data Intelligence 5 (12 2023), 275–288. Issue
1. https://doi.org/10.1162/dint_a_00193

[22] Ram Mohan Vadavalasa. 2020. End to end CI/CD pipeline for Machine Learning.
International Journal of Advance Research, Ideas and Innovations in Technology 6,
3 (06 2020).

[23] ClaesWohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn Regnell, and
Anders Wesslén. 2000. Experimentation in Software Engineering: An Introduction.
Kluwer Academic Publishers, Norwell, MA, USA.

[24] Ravi Teja Yarlagadda. 2021. DevOps and Its Practices. International Journal of
Creative Research Thoughts (IJCRT) 9 (2021), 111–119. Issue 3. https://ssrn.com/
abstract=3798877

[25] Konrad Załęski. 2021. Modeling Concepts. InDataModeling with SAP BW/4HANA
2.0. Springer, 67–96.

https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1109/MS.2017.4541051
https://doi.org/10.1145/3436829.3436858
https://doi.org/10.1145/2094114.2094126
https://doi.org/10.1145/3359981
https://doi.org/10.1002/smr.2342
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2342
https://doi.org/10.1109/ICSME52107.2021.00051
https://doi.org/10.1007/978-3-030-19069-9_1
https://doi.org/10.5281/zenodo.12706244
https://doi.org/10.1162/dint_a_00058
https://doi.org/10.1109/ICSE-SEIP.2019.00034
https://doi.org/10.1109/ICSE-SEIP.2019.00034
https://doi.org/10.1002/spe.2770
https://doi.org/10.1002/spe.2770
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2770
https://doi.org/10.1007/978-1-4842-4483-8_2
https://doi.org/10.1109/COMPSAC48688.2020.0-150
https://doi.org/10.33108/visnyk_tntu2020.02.120
https://doi.org/10.33108/visnyk_tntu2020.02.120
https://doi.org/10.7250/csimq.2022-32.01
https://doi.org/10.7250/csimq.2022-32.01
https://doi.org/10.1016/j.infsof.2021.106733
https://doi.org/10.1162/dint_a_00193
https://ssrn.com/abstract=3798877
https://ssrn.com/abstract=3798877

	Abstract
	1 Introduction
	2 Related work
	3 Planning of the empirical study
	3.1 Bibliographic survey
	3.2 Analysis of current practices
	3.3 Test parameters
	3.4 Questions
	3.5 Other details

	4 Execution
	4.1 Stage 1: Document generation scripts
	4.2 Stage 2: DevDocOps configuration
	4.3 Stage 3: DevDocOps in practice

	5 Results
	5.1 Outputs O1 and O2: Developers' Questionnaires and Interviews
	5.2 Outputs O3 and O4: Leader's Questionnaire and Interview

	6 DevDocOps application guidelines
	7 Threats to validity
	8 Conclusion
	Acknowledgments
	References

