Issue Labeling Dynamics in Open-Source Projects: A
Comprehensive Analysis

Joselito Jr
Federal University of Bahia
Salvador, Bahia, Brazil
joselito.mota@ufba.br

Lidia P. G. Nascimento
Federal University of Bahia
Salvador, Bahia, Brazil
lidianascimento@ufba.br

Alcemir Santos
State University of Piaui
Piaui, Brazil
alcemir@prp.uespi.br

Ivan Machado
Federal University of Bahia
Salvador, Bahia, Brazil
ivan.machado@ufba.br

Abstract

Open-source repositories play a vital role in modern software devel-
opment, facilitating collaboration and code sharing among develop-
ers worldwide. In this study, we investigate the usage of labels in
GitHub repositories to understand their impact on the issue resolu-
tion process and project management. We employ data mining tech-
niques to gather a dataset comprising 10,673,459 issues from 13,280
repositories hosted on GitHub’s featured topics list. Our study de-
sign involves four phases: repository selection, mining repository
issues, pre-processing issues’ components, and data processing to
address research questions (RQs). The first RQ focuses on the fre-
quency and usage of standard and custom labels in repositories.
The second and third RQs delve into the average time for labeling
issues and defining the triage phase from labeling practices. We
found that 73.14% of repositories employ issue labeling, with most
labeling activity concentrated before the 100th day since issue open-
ing. This rapid labeling process is often followed by a structured
label change pattern, potentially corresponding to specific issue
phases like triage, implementation, or change validation. Analyzing
time intervals between label changes, we observed that most issues
undergo triage within 1 to 100 days, with labels prioritized based on
their frequency in the resolution process. Our analysis sheds light
on labels’ significance in organizing and classifying issues through
a systematic triage process within open-source repositories. Labels
serve as social and technical elements, contributing to enhanced
organization, identification, implementation, and validation of code
changes. These findings provide valuable insights into the effec-
tive management and maintenance of open-source projects, aiding
developers and project managers in optimizing issue resolution
processes. The results and scripts from our study are available in
the supplementary material repository for further exploration and
reference by the software engineering community.

Keywords

Open-source Repositories, Issue, Issue labeling, Defect, Triage, Issue
Life Cycle

1 Introduction

The open-source movement has experienced considerable growth
and evolution, impacting both community dynamics and software
development practices [31]. While the advantages of open-source

projects are widely acknowledged, including flexibility, agility, and
speed, managing these projects presents notable challenges. Project
repositories must have robust infrastructure to host source code
effectively and allow users, particularly software developers and
testers, to report detailed information regarding identified issues
[3].

Establishing clear communication channels to convey existing
project information and planned changes is crucial for seamless evo-
lution. Issue tracking systems (ITS) play an important role in this
aspect, providing a platform to report issues with comprehensive
details [13, 33, 34]. These systems streamline the issue lifecycle pro-
cess and facilitate user collaboration, allowing users to report bugs,
change requests, potential software improvements, and more. Users
can also assign responsibility for addressing specific issue reports
and exchange messages within the context of an issue. Employing
ITS systematically is a key element for software maintenance and
evolution in modern software engineering [1].

A well-structured issue report is crucial in helping developers
understand the root cause of a reported problem and find an appro-
priate solution efficiently. In contrast, an incomplete issue report
can pose expressive challenges for developers in a software project.
Insufficient information or incorrect classifications can lead to con-
fusion among software developers regarding the likely causes of
issues [5, 7, 8].

An effective issue report should include essential elements such
as a clear title, detailed body describing the problem, and relevant
comments providing additional context or updates. Furthermore,
many repositories allow users to add labels to categorize and pro-
vide contextual information about the issue [12]. These labels can
enhance communication and streamline the issue triage process,
aiding in understanding the problem’s nature and identifying the
appropriate developer to address it.

The practice of labeling involves assigning customized words
or brief definitions to aid in quickly and objectively perceiving
circumstances within social or management processes [36, 37]. It
has become a common practice in open-source repositories [9],
and there are distinct characteristics when labels are created either
by software developers or automated algorithms [32]. Discussions
regarding issue labeling have gained increasing importance in re-
cent times [15, 19, 20, 24, 35, 39]. Contributions and repositories of

SBCARS’24, September 30 — October 04, 2024, Curitiba, PR

varying sizes and characteristics utilize these mechanisms to man-
age and involve the community in the progress of the repository
[23, 40].

Despite its recognized importance, there remains a significant
knowledge gap regarding the impact of issue labeling in open-
source repositories. To address this gap in the literature, our work
studies the utilization of labels by software developers, explores the
associations between labels, examines the duration of each issue
resolution phase, and investigates the relationships between each
phase of the defect cycle, seeking patterns in label usage across
these phases. Through these investigations, we aim to uncover label
patterns associated with each phase of the issue’s life cycle and
analyze the time developers allocate to each phase. Our research
tackles the following research questions (RQs):

RQ1: How often do developers use labels in open-source
repositories? This RQ aims to understand the frequency of this
practice and the number of repositories that either adopt standard
labels or customize them to create their own. We leverage the
count of customized labels in the repositories to identify the most
commonly used labels and to measure their popularity.

RQ2: What is the average time developers take to label
issues during the issue resolution? This RQ investigates the
average time between the addition of new labels after previous
labeling events. By examining this time gap, we can infer the du-
ration it takes for a contributor to provide additional information
relevant to issue resolution through labeling. This pattern of adding
information can help characterize phases of issue resolution, such
as the triage phase. Figure 1 illustrates the issue triage time consid-
ered in this RQ, starting from the period of Label 1 to the addition
of Label 2.

RQ3: Can we define the triage phase based on labeling
practices? This RQ investigates the triage time based on the pres-
ence of triage-related labels. We analyze the time it takes for an
issue to go through triage from its opening until the last triage
label is applied in the event sequence. Therefore, the triage time
for an issue is characterized by the time it was opened and the time
of the last triage-related label added. Figure 2 illustrates the issue
triage time considered in this RQ, with a blue circle representing
the opening time and Triage Label 3 being the last applied. Once the
triage labels are categorized, the triage time can be defined based
on the last label observed in the issue resolution process.

To achieve the stated objective and address the defined research
questions, we conducted a characterization study focusing on labels
in GitHub repositories. We gathered data from 10,673,459 issues
across 180 GitHub featured topics [16] from a total of 13,280 repos-
itories. The research package, including the issues database, results
tables, and scripts utilized in this study, is accessible in the supple-
mentary material repository.!

2 Background

A software repository typically comprises several visible compo-
nents, including source code, a well-structured issue tracker with a
defined life cycle, developers’ messages, user messages, and other
related elements [33]. Additionally, it involves community commu-
nication mechanisms that gather feedback from the community

!https://figshare.com/s/efba88b6b88a013056b2

Joselito Jr. et al.

regarding changes and improvements made by the team of con-
tributors. Practices involving community engagement, continuous
integration, version history, and issue management represent es-
sential dimensions of a comprehensive software repository [30].

Issue trackers are software solutions utilized by software reposi-
tories to systematically record all software behavior through report-
ing, encompassing various aspects of the repository such as code,
verification, validation, documentation, and more. It is crucial to
emphasize the construction of well-structured and effective commu-
nication management, as it plays a fundamental role in preventing
new software problems, including the introduction of new defects
[6, 29, 42]. User feedback, community collaboration, and maintain-
ability are vital aspects for repositories, and users of issue trackers
on platforms like GitHub should also adhere to these principles
[13, 20, 34, 40].

2.1 The life cycle of an issue and its triage
process

Various representations exist for the life cycle of an issue, as argued
by Anvik et al. [4]. Issue tracking systems commonly depict possible
states of an issue such as new, resolved, and closed [3], or variations
thereof. In GitHub, this is simplified, with issues being either open
or closed. This simplified representation highlights a gap in demon-
strating the complete life cycle of an issue. As mentioned earlier,
an issue can report a defect, an improvement, provide help to users,
or other types of reports. In essence, when an issue reports a bug,
it may involve a defect, and the defect life cycle should encompass
stages such as insertion, detection, and removal [43].

The defect detection process, as depicted in the defect life cycle,
is crucial for understanding the defect and its impact, which is the
first step towards fixing it. Typically, users carry out the detection
phase when reporting issues in repositories that have issue trackers
[28]. Subsequently, these contributors are tasked with resolving
these issues either by attempting to reproduce the defect themselves
or by assigning it to other contributors responsible for addressing
the issue [40].

When managing the defect resolution process, triage plays a
crucial role in investigating, characterizing, prioritizing, and as-
signing issues for correction [4, 26]. Therefore, reports typically
include fields to classify severity and versioning [14]. Not all issues
are equally severe or have the same priority in the issue tracker.
Contributors commonly prioritize issues based on factors such as
defect priority, severity, time to resolution, product importance,
developer availability, report quality, and effort required [26, 41].
The detection process conducted during triage is also critical for
identifying and addressing bugs, and defect classification helps
quantify these issues [38].

The triage process involves analyzing all defect information
contained in the issue by the responsible party, and this process
can be time-consuming [25]. Developers carefully consider the
factors reported in the issues to avoid misclassifications during this
selection stage. However, incorrect bug classifications still occur
and can potentially harm the software [21].

As highlighted by Kaushik et al. [26], the defect management
process progresses from triage to resolution and ultimately vali-
dation of the defect resolution. The time taken to fix a bug is a

 https://figshare.com/s/efba88b6b88a013056b2

Issue Labeling Dynamics in Open-Source Projects: A Comprehensive Analysis

SBCARS’24, September 30 — October 04, 2024, Curitiba, PR

Average time from one labeling to another

Qutput: time in secands and days

Label 1 Label 2 Label 3
1. v J
Open o Closed
Labeling time from “ J
Label 1 to Label 2 v

Labeling time from

Label 2 to Label 3

Figure 1: Illustration of the issue triage time considered in RQ2, showing the time interval between Label 1 and Label 2,
indicating the average time for labeling issues in different phases of issue resolution.

Triage time

Output: time in seconds and days

Triage Label 1

Triage Label 2 Triage Label 3

Open - ~ v

Triage Time

Closed

Figure 2: Illustration of the issue triage time considered in RQ3, depicting the time from issue opening to the last triage-related
label (Triage Label 3), characterizing the triage phase duration for the issue.

critical factor that reflects the analysis, complexity, and priority of
the issue [27]. Such analyses can provide valuable insights for the
triage process, helping filter and replicate successful aspects and
classifications that proved effective in resolving the issue.

The standard fields of a GitHub issue adhere to the issue tracker
model, comprising the title, description, issue insertion date, author,
and status (open or closed). This structure is prevalent across vari-
ous platforms, such as Bugzilla? and Jira®. It is crucial to fill these
fields comprehensively and accurately to aid in issue resolution.
GitHub supports issue reporting using the Markdown markup lan-
guage [18], allowing for extensive text and formatting options. This
functionality empowers developers to effectively address reported
issues [4, 14]. Conversely, inaccuracies, errors, or an inability to
reproduce reported defects can significantly delay the entire defect
resolution cycle [25].

The GitHub issue-reporting also includes tracking all activity
performed (assignments [17], comments, opening, closing notifica-
tions, and others) from the issue’s event list. In addition, it enables
the creation of custom labels and attributing multiple labels to a
single issue.

https://www.bugzilla.org/
Shttps://www.atlassian.com/br/software/jira

2.2 Issue labeling

Labeling is present in the software development process, which
can provide facilities for those on the other side performing this
difficult task and can be helpful in many software artifacts such as
architecture, components, documentation, and testing [37]. They
are concepts in social community systems related to free writing
personalization of information of these systems regarding any func-
tion, including reuse, management, and re-finding information[36].

Nevertheless, considering the context of reporting issues, this
concept about the labels being a free field for the contributors
to build a customizable environment for each report is also valid
on GitHub repositories. The contributors could create new labels,
assign labels, or insert information into labels, meaning adding
more information to solve the issue.

There are two ways to use the issue labeling tool: using GitHub
suggestion labels or creating custom labels free of charge. We call
the first option standard labels and the second option custom labels
the user creates.

e Standard labels: GitHub provides a list of nine labels *
when the developers create the repository. They are: bug,
documentation, duplicate, enhancement, good first issue, help
wanted, invalid, question and wontfix.

4 Available at https://docs.github.com/en/issues/using-labels-and-milestones-to-track-
work/managing-labels#about-default-labels

https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/managing-labels##about-default-labels
https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/managing-labels##about-default-labels

SBCARS’24, September 30 — October 04, 2024, Curitiba, PR

e Custom labels: GitHub also provides a tool for creating and
editing labels so that the developer can develop customizable
labels for their repository. Each new label should include
a name (preferably representative) and a brief description.
The developer could also associate a color to the label. This
process involves writing the label’s name, a short description,
and choosing the color the label will represent.

3 Research strategies and tools

We start by describing the study design and how data from open-
source repositories was selected, mined, and processed. Finally,
we explain the research questions and how our methods in data
processing led to obtaining the data for this study’s results.

3.1 Study Design

The study design followed four phases, which were fundamental for
obtaining, processing, and finally answering the research questions.
Figure 3 provides an overview of the study design workflow. The
4-phase design encompasses selection, mining, pre-processing, and
data processing. Next, we proceed with reporting the findings. These
are detailed next.

(1) Selection (2) Mining (3) Pre-pi i (4

Q-9—-2—
l | | |

Sept 2019 to Aug 2020 Removing structures would Using Python and R Script
hinder the processing processing the RQs

* & § &

Mined 10,673,459 issues
from 13,280 repos

Top-100 Stars

Github Feature Topics

Figure 3: Overview of the study design workflow.

(1) Repository Selection Criteria: To meet our characteriza-
tion goals, we carefully selected a set of relevant repositories for
our study. The aim was to create a diverse issue dataset covering
various families and domains. Our selection criteria stipulated that
all chosen repositories must be hosted on GitHub and align with
the list of featured topics provided on the platform [16]. This list
encompasses 180 featured topics on GitHub, offering a wide array
of system repositories across different domains and programming
languages. Since each topic includes numerous systems, we needed
a metric for selecting repositories. Given that the star count is a
popular metric for measuring repository popularity on GitHub [10],
we opted to select the 100 most popular repositories for each topic
based on their star count.

(2) Mining Repository Issues: Following the selection of repos-
itories for each topic, we initiated the mining process. This involved

Joselito Jr. et al.

collecting data related to issues and pull requests. Specifically, we
gathered metadata such as id, author, title, body, description, status,
creation date, events, repository labels, issue labels, reactions, and
comments using the GrumPy tool [22]. As an additional step, we
included repository labels as an extra field in our database of issues
to streamline our analysis. The mining process yielded a dataset
comprising 10,673,459 issues from 13,280 repositories belonging to
GitHub’s featured topics (Supplementary Material), spanning the
period from September 2019 to August 2020.

(3) Pre-processing Issues’ Components: An issue contains a
wealth of information, but not all of it is relevant to our study. The
pre-processing phase is crucial for removing unnecessary details
that could potentially alter the characteristics of our results. Certain
structures need to be eliminated to streamline further processing of
issue information, especially since GitHub issues’ components are
formatted using Markdown [18]. During the pre-processing phase,
we removed the following structures from the issues: code quotes,
tags, hyperlinks, tables and references, citations and repeated com-
ments, warnings, exceptions, class names, paths, special characters,
numbers, multiple blank spaces, and stop words from the title, body,
and comments. This cleaning process ensures that our analysis
focuses on the most relevant and meaningful information from the
issues. Next, we explain each of these steps in more detail:

o Tokenization: The summary was divided into smaller units
called tokens, words, syllables, or letters. Tokenization by
word was used in this study;

e Normalization: The tokens were converted to lowercase to
achieve standardization and avoid duplication of words due
to case sensitivity. Symbols, punctuation marks, line breaks,
emojiss, and non-ASCII characters were removed, consider-
ing only alphanumeric characters. This step is really impor-
tant to reduce noise and ensuring consistency in the data;

Removal of stopwords: Words that do not provide signifi-

cant discriminatory information, known as stopwords (e.g.,

articles, prepositions), were removed from the tokens. These

words often appear with considerable frequency and do not
contribute to the training process;

e Lemmatization: The tokens were grouped according to their
lemma, which is their canonical form. For example, plural
forms were reduced to their singular form. Lemmatization
helps in consolidating words with similar meanings and
reducing the dimensionality of the data;

e Stemming: The tokens were reduced to their base or dictio-
nary form, removing affixes such as prefixes and suffixes.
This process maps words to their root form, allowing for bet-
ter performance and grouping of words with similar mean-
ings.

(4) Processing Phase:

We implemented another Python script to analyze the issues
in the database and process the labels’ occurrences to address the
stated RQs. The steps to gather and analyze data are described next.

(1) Answering RQ1: To address RQ1, we should search and

count the creation of custom labels and usage of standard
labels by the repositories in the issue using a counting al-
gorithm. The algorithm analyzed each issue with the count

SIdeograms and smileys usually used in informal texts

Issue Labeling Dynamics in Open-Source Projects: A Comprehensive Analysis

and characterization of standard and custom labels, so they
were processed differently, with each group counted. The
algorithm verifies if repository issues used all the created
custom labels. RQ1 also involves studying the standard la-
bels made available by GitHub, which analyzes these labels’
usage by contributors. The data collection to calculate this
RQ involved using the most used labels in each repository
and the entire database. The processing consists of detecting
the use of labels by checking all labels and the most used by
each repository.

(2) Answering RQ2 and RQ3: To answer RQ2 and RQ3, we
identified labels from the triage and defect detection process
with manual classification identifying labels in a list of the
most used labels in the issues. We manually interpreted and
studied those most related to the triage and detection pro-
cesses and found many repeated custom labels written that
had the same meaning. After recognizing these labels, we
use a Python algorithm to go through the time events that
occurred in the issue and search for occurrences of labels
that have previously classified labels. Thus, we extract the
time of the Github actions history and make time calcula-
tions for each action that occurred in the issue. Thus, when
a label that has been cataloged is found, we capture the time
of the action and calculate until the occurrence of a label
from another development phase. For example, we found
a label at time t1 related to triage, so we started searching
forward and found another label at time t2 related to the
development phase. Hence, the issue’s triage phase went
from creation until the labeling occurred in time t1. Just as
the development phase starts at label time t2 until another
label about the change validation phase appears in the issue.

The results of the algorithm processing the dataset and count-
ing the data from RQ1, RQ2, RQ3, generated four tables about
the results of the 13,280 repositories. We developed an R script to
analyze, calculate, and create the necessary graphs to present the
results from the results table extracted from the database. All of
these materials, including the tables and the R script, are available
at the supplementary material repository.

4 Results

RQ1: How often do developers use labels in
open-source repositories?

Given both sets of labels (“standard” and “custom”), we start by
showing the results of the first. We found 9,713 (73.14%) repositories
using the standard labels, while 3,567 (26.85%) repositories have not
used any standard labels. Figure 4 shows the use standard labels.

The standard labels bug, enhancement, and question are the
most used in the labeling activities. This result shows the use of
standard labels to identify the type of issue to which it refers. Thus,
one applicability of those labels given by the practitioners is the
monitoring and quick identification of the content type of these
issues.

By analyzing the use of custom labels, we found that 4,703
(35.41%) repositories do not create any custom label and 8,577
(64.58%) repositories created 149,122, with a median of 2 labels

SBCARS’24, September 30 — October 04, 2024, Curitiba, PR

gTSDDDD’
b
g
2
-
a 525750
B 500000~
o
2
s
2
5 250000 -
- 194132
104057
35036
o] 6423 10554 12781 16049 17139_
UL Y. SR« S | ST Y SN LR <
I e e L g A o o
RES é“g\;:’\)me“@ o A éQ\N9 Q\ﬂe&‘\eﬂoa
QQ

Figure 4: Standard labels and usage

at least to the repository. Figure 5 shows the top-30 custom labels
we found in this analysis.

Since an issue could be labeled with one or more labels, we found
that custom labels were used 9,322,003 times in the database for
label issues, with a mean of 701.95 issues and a median of 6 labels.

The spearman’s correlation coefficient was found with p-value
of 0.752. It indicates a significant correlation between the number
of issues and the number of labels created.

clayes . 120346

igtm I 02386
outdated 84290

in progress

approved

stale

feature

cncf-cla: yes

dependencies

needs_triage

cla-already-signed

type: bug

greenkeeper

cla signed

feature request

release-note-none

module

kind/bug

status: needs review

supportcore

SIZENS

needs-sig

supportcommunity

docs

ci d¥=—

type: enhancement

needs_revision

fixed

frozenduetoage

cla-signed

0 50000 100000 150000
labels used in database

Figure 5: Top-30 custom labels.

We calculate the correlation between the number of issues and
custom label usage to determine a relationship between them. The
spearman’s correlation coefficient was found with p-value of 0.785.
It suggests a significant correlation between the number of issues
in a repository and the use of custom labels for labeling. Figure 6
plots the number of issues and the custom labels usage.

The results show that over half of the repositories create new
labels, but not all use them in the labeling practice. Additionally, we

SBCARS’24, September 30 — October 04, 2024, Curitiba, PR

300000 500000
| |

Custom labels used

100000

0
|

0 20000 40000 60000 80000

Amount of issues

Figure 6: Plot of number of issues and number of custom
labels used

observed a correlation between the number of issues in a repository
and the number of custom labels. These results show that the more
issues a repository has, the more it creates and uses custom labels.

We investigated the custom labels and their importance in the
triage and defect detection. A manual classification was performed
in the study and showed that the first 1,752 labels of that list were
classified. We removed labels without meaning for the issue resolu-
tion process from the list. Figure 7 shows a treemap chart detailing
the most used labels in each category with the number of occur-
rences. We identified labels with different purposes, such as request-
ing revision, prioritization, severity assigning issues, identifying
issues, and finding/classifying defects.

In the defect investigation phase, three of the labels that identify
this purpose were needs_triage, needs_revision, pending discussion.
The prioritization and severity classification contrasted with labels
indicating the priority using the low, medium, and high priority
scales in label issues. Some issues also present labels with a priority
request with the label needs-priority. Labels were found to iden-
tify an issue’s type, including defect classification, improvement,
support, and bug report. The contributors use labels to indicate
additional information about the reported defect in areas about
modules and packages. The creation of labels also covered the im-
plementation and validation phases. Some labels were related to the
commit, build resolution progress information, code refactoring,
and indications in the merge processes. The frequency of labels re-
lated to validating the issue resolution code was significant. Those
labels show information about the validation process, specifically
when the process is pending, carried out, or finished. We highlight
some evident labels in their use in the triage phases involving pri-
oritization, assignment, investigation, location, and classification
of defects and types of issues.

The implementation and validation part also reveals that con-
tributors use this purpose. Labels are perceived to be applicable for
different purposes in a project. Still, our study shows contributors
use this for triage and identification in the solution’s implemen-
tation and validation phases. Even in smaller quantities and not

Joselito Jr. et al.

being a frequently used practice, repositories use this labeling tool
for organization and control from defined phases of issues.

RQ2: What is the average time developers take to
label issues during the issue resolution?

When analyzing the labeling time between labels, we found an
average number of 114.3 days, with a median of 17 days and a
standard deviation of 237.5. The time between labels ranges from a
minimum of one day to a maximum of 2664 days.

Figure 8 shows the labeling frequency in days. Most labeling
activity is concentrated before day 100. The interval between one
label and another varies much over time. Times a peak of labeling
between the first few days, so changing, adding, or replacing a label
is performed in less time. Two probable explanations, one being
that multiple labeling coincides, and the other is that the label
change follows a predetermined period defined in the repository.
This defined period may characterize an issue phase, i.e., triage,
implementation phase, or validation of the changes. In Figure 8, the
data is more concentrated at the bottom of the graph, indicating
that labeling occurs in less time.

Figure 9 shows a set of histograms representing 5, 20, 100, and
500-day time interval. In all representations, we could observe a
concentration of the labeling activity on the left side.

RQ3: Can we define the triage phase based on
labeling practices?

After analyzing the labeling time between one label and another,
we have a pattern where labeling is performed quickly. Thus, after
selecting labels ranked by their occurrence in the resolution process,
we have a set of sorting labels selected. Thus, going through this
database, we find what can be said to be the triage period of an issue
from the use of triage labels. The triage time mean is 240.3 days,
the median is 30, and the standard deviation is 551.9. Moreover, the
time spent in triage ranges from one day to a maximum of 7029
days. According to the data, the majority of issues were triaged
between 1 and 100 days, as Figure 10 shows.

We also divided the analysis into days 5, 100, and 500, and 2000
of triage labeling. Figure 11 shows the set of histograms, and Figure
12 shows the set of Violin Plots for such interval days. They indicate
that the labeling time is concentrated in a shorter time of days and
that the vast majority of the triage performed by the labels takes
little time, from 1 to 100 days, to complete.

5 Discussion

With this feature topics repositories analysis, we could characterize
some trends in standard and custom label usage. We have seen that
the standard GitHub labels are widely used and that only a small
number of repositories do not use them. The three leading most used
standard labels identify the issue’s characteristics, such as bug, im-
provement, and help. This result helps to reinforce and complement
the role of labels to inform the issues to assist in the identification
of the type of the issue. The label creation and customization tools
are also widely used by repositories that also customize and use
labels for the purposes required in their repository issues — there
is a significant correlation between the repositories with more is-
sues and the creation of more labels. Therefore, the repositories

Issue Labeling Dynamics in Open-Source Projects: A Comprehensive Analysis

SBCARS’24, September 30 — October 04, 2024, Curitiba, PR

frozenduetoage i sta:us:'needs Developement
22,991 Igtm eview h
68,572 30,871 phases
102,388 . t A
i
cIa:yes |:| mplementation phase
release-note-
120,346 needs_triage none |:| Issue priorization
46,701 stale 52,528
) Issue type
69,550 I:]
approved fixed |:| Issue investigation
72,130 23,128
Validation of changes
needs_revision dated I:] g
outdate
| i t
support:core 25,368 64 250 ssue assignmen
28,977 ’ I::Eg; c(s,;%)ﬁrr,tizty SALE |:| Defect classification
needs_more_info 35,532 26,930 26,566
module 21,810
32,406
) cla-already- cla-
cla_signed signed signed cncf-cla:yes needs-sig
36,628 43.943 22,273 61 Y064 27,013
type: bug ’
59,833
dependencies docs in progress sizehs
kind/bug 60,953 26,880 82,698 28,871
31,861

Figure 7: Treemap chart detailing the most used labels in each category with the number of occurrences.

need to create more labels to satisfy the classification needs of the
reported issues. Furthermore, the bigger this repository the more it
needs labels to manage its reports better, thus fulfilling the defined
process.

A large majority of labels are used for the implementation phase,
change validations. The triage phase includes defect localization,
issue prioritization, issue type, issue investigation, issue assignment,
and defect classification. We have provided evidence of customized
labels to enhance the triage, cycle, and defect detection processes.
Our findings demonstrate that utilizing these structures in such
a manner serves crucial roles in organizing and maintaining the
repository effectively. Labels are not only social elements but also
technical components that shape the organization of open-source
repositories by facilitating the identification, implementation, and
validation of code changes.

The implementation of these labels aids project developers in
triage, cycle management, and defect detection, showcasing their
potency in establishing contributor support and bolstering con-
trol, identification, and maintenance mechanisms for the repository.

These concepts are deeply rooted in Software Engineering prin-
ciples, showcasing the full spectrum of support and adaptability
offered by labels in repository management.

6 Threats to Validity
6.1 Internal Validity

The most evaluated repositories in the list of topics can bring more
repositories from a particular area. The list of repositories does
not have the same characteristics, or it is the same work area. Still,
when mining these topics, we consider 100 repositories at each list
to homogenize the database with popular repositories. The study
only handled repositories that contained issues. Thus, repositories
that did not contain issues were not included by the algorithm in
the results table because they do not have issues to be analyzed.

6.2 External Validity

By only using GitHub repositories, the generalization of the study
to other platforms may not present the results obtained in this study.
In this study, we focused on using GitHub topics with a diversity of

SBCARS’24, September 30 — October 04, 2024, Curitiba, PR

Frequency of new labeling Frequency of new labeling in Violin Plot

2089 10°
2000
8.10*
1500
°
15
2 6-10°
=
H
2 2
51000 o 8
3
H 4.10° -
3
g
3
fis
500 -
2.10* o
8 2 2 1 1 0 0 0 1
0- 0
r T T T T 1
0 2.10° 4.10° 6-10° 8.10° 10°
Days Number of labeling

Figure 8: Histogram and Violin Plot of labeling frequency
versus days with no outliers

Frequency of new labeling in 1 to 500 days Frequency of new labeling in 1 to 100 days

4.10°
3 . 00000
3.1

H Fso000
Bp.105 s

g ! 300000
g 10 50000
& &

|

T T T T T
0 100 200 300 400 500 0 20 40 60 80 100

Days Days

Frequency of new labeling in 1 to 20 days Frequency of new labeling in 1 to 5 days

2,

50000

ling
3

0000

2

0000

Frequepcy of newlabeling

Fieguency of ney abe)
a 2

0 0

Figure 9: Histogram of 5, 20, 100, and 500-day time interval.

repositories from different domains. This selection of repositories
decreases the bias in the analysis of our study. We mined the repos-
itories used in this study in a specific time frame, and the issues
reported, later on, were not considered in this analysis.

6.3 Construct Validity

The choice of metrics and graphs may not be well suitable to rep-
resent the data. We performed the search and chose different rep-
resentations to avoid bias and inform about label and usage data
in the repositories. From the repositories’ selection with the popu-
larity metric to the analysis of correlation, labeling time, and the
numbers related to the labels themselves, we always aim to present
the data in the best possible way and with no interference in the
results.

Days

Joselito Jr. et al.

Frequency of triage labeling x days Frequency of triage labeling x days in Violin Plot

— 35

800 30 7

600 -

Days

400 15

200

T T T T T T T T
0 5 10 15 20 25 30 35

Number of Iabeling

Figure 10: Histogram and Violin boxplot of triage labeling
frequency versus days with no outliers

7 Related Work

Extensive research has been done by researchers to understand the
behavior of issues in open-source issue trackers. The study con-
ducted by Treude and Storey [37] obtained significant results in tags
usage in software development regarding a social and technical
context. It also defined the concept of labels for Software Engi-
neering in an industrial development environment using the Jazz
project life cycle management platform. The way pursued by our
study is related to the application of labels in a technical course in
open-source systems. We analyze the creation and use of standard
and customizable labels and their trends in various repositories
with different domains and practices in a more current context,
open-source systems. The focus also involved the technical occur-
rence of the issue labels and the emphasis on triage for defects in
open-source repositories.

Bissyandé et al. [9] present a comprehensive investigation to
understand issues and the repository actions in GitHub, including
a short overview of labels used in reported issues classified as issue
type: bug report and feature request. Our study went deeper into
the analysis of the labels, identifying which GitHub provides labels
and which are created by users and the creation trend. Our study
performed a correlation between the number of issues and the
creation of labels, resulting in a significant correlation between the
two actions. Our analysis focused on the labels in the triage process
and what issues contributors are based on when they are in the
resolution process.

Cabot et al. [11] investigated the application of issues labels
on GitHub repositories, describing the number of labels, the most
used ones, and their influence on the project through a correlation
between time to solve and issue age grouping types of labels. On
the other hand, our study focuses further on creating custom labels
and finds a correlation between the creation and the number of
issues and time of each issue phase.

Using predictive systems, Alonso-Abad et al. [2] investigate a
system that labels issues based on machine learning to reproduce
the labels on new issues. This work also presents data on issue

Issue Labeling Dynamics in Open-Source Projects: A Comprehensive Analysis

Frequency of triage labeling in 5 days Frequency of triage labeling in 100 days

3

10

&

Frequency of gocurences
ey 3

S

SBCARS’24, September 30 — October 04, 2024, Curitiba, PR

Frequency of triage labeling in 500 days Frequency of triage labeling in 2000 days

7.10°
250000 84.10° I
: g §a 10°
10" g S5.10°
Sooono 53108 Rl
50000 M 8et0?
2 32.10° 23.10°
£00000 2 13
g g 8y 10
2 g 10 g
250000 i o 10°
0 0 I 0 — 0
T T T T T T T T T T T T 1 T T T T T T T T T T 1
1.0 15 20 25 3.0 35 40 0 20 40 &0 80 100 [100 200 300 400 500 0 500 1000 1500 2000

Days

Days Days

Figure 11: Histogram of triage labeling frequency in 5, 100, 500, and 2000.

Frequency of triage labeling in 100 days in Violin Plot

Frequency of triage labeling in 500 days in Violin Plot

Frequency of triage labeling in 2000 days in Violin Plot

100 H 500

80 4 400

80 300

Days
L
vays

40 200

20

2000

1500

1000

Days

500

[P WS R R

Figure 12: Violin Plot of triage labeling frequency in 5, 100, 500, and 2000.

labels and a list of labels most used by these repositories. There is
an analysis of the algorithm’s performance presented with a focus
on the best performance to be used to label the repositories. Our
work focuses only on the analysis of data from the repositories and
separating the types of labels as standard and customizable, with a
focus on the analysis of issue developer time and identifying their
phases in the issue development cycle.

8 Conclusions

In this study, we aimed to examine GitHub repositories with higher
ratings and analyze their issues, encompassing a total of 13,280
repositories.

To accomplish the goals, we employed various data manipulation
techniques, including selection, mining, pre-processing, process-
ing, and reporting findings. The study revealed that 73.14% of the
analyzed issues utilized labeling, while 26.85% did not. We found
that 35.41% of labeled issues did not involve custom labels, while
64.58% utilized a median of 2 labels. Besides, 65.59% of labeled is-
sues with the median usage were labeled by professionals. Custom
labels were applied a significant 9,322,003 times, highlighting their
importance.

These findings reveal that, while issue labeling is not universally
adopted, labeled issues are more easily discernible, particularly in
large repositories where numerous issues exist. Labeling also aids
in bug detection and the triage process, functioning as a filter or
keyword for identifying issues or their states.

The frequency of labeling shows significant temporal variations,
which may be tied to concurrent labeling activities or predeter-
mined periods within the repository. In the latter scenario, issue
categorization may pertain to triage, implementation phases, or
validation of changes.

Indeed, we could identify several gaps to discuss and investigate.
Particularly, regarding the creation and utilization of multi-labels in

issues. Additionally, there is a need for guidelines to assist contrib-
utors in creating and using labels effectively within repositories.

Acknowledgements

This study was financed in part by the Coordenacéo de Aperfeicoa-
mento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code
001; CNPq grants 315840/2023-4 and 403361/2023-0; and FAPESB
grant PIE0002/2022.

Artifact Availability

The research package, including the issues database, results tables,
and scripts utilized in this study, is accessible in the supplementary
material repository at https://figshare.com/s/efba88b6b88a013056b2.

References

[1] 2021. Modern Software Engineering: Doing What Works to Build Better Software
Faster (1st ed.). Addison-Wesley Professional.

[2] Jesus M Alonso-Abad, Carlos Lopez-Nozal, Jesus M Maudes-Raedo, and Raul
Marticorena-Sanchez. 2019. Label prediction on issue tracking systems using
text mining. Progress in Artificial Intelligence 8, 3 (2019), 325-342.

[3] John Anvik, Lyndon Hiew, and Gail C. Murphy. 2005. Coping with an Open Bug
Repository. In Proceedings of the 2005 OOPSLA Workshop on Eclipse Technology
EXchange (San Diego, California) (eclipse '05). ACM, New York, NY, USA, 35-39.

[4] John Anvik, Lyndon Hiew, and Gail C. Murphy. 2006. Who Should Fix This
Bug?. In Proceedings of the 28th International Conference on Software Engineering
(Shanghai, China) (ICSE '06). ACM, New York, NY, USA, 361-370.

[5] J. Aranda and G. Venolia. 2009. The secret life of bugs: Going past the errors and

omissions in software repositories. In 2009 IEEE 31st International Conference on

Software Engineering. 298-308.

Mario Luca Bernardi, Gerardo Canfora, Giuseppe A. Di Lucca, Massimiliano Di

Penta, and Damiano Distante. 2012. Do Developers Introduce Bugs When They

Do Not Communicate? The Case of Eclipse and Mozilla. In 2012 16th European

Conference on Software Maintenance and Reengineering (CSMR °12). IEEE Com-

puter Society, USA, 139-148.

Nicolas Bettenburg, Sascha Just, Adrian Schroter, Cathrin Weif3, Rahul Premraj,

and Thomas Zimmermann. 2007. Quality of Bug Reports in Eclipse. In Proceedings

of the 2007 OOPSLA Workshop on Eclipse Technology EXchange (Montreal, Quebec,

Canada) (eclipse '07). ACM, New York, NY, USA, 21-25.

[6]

7

 https://figshare.com/s/efba88b6b88a013056b2

SBCARS’24, September 30 — October 04, 2024, Curitiba, PR

(8]

[9

[

[10

[11]

[12]

[13]

[14]

[15

ey
R

oy
2

[20]

[21]

[22]

[23]

[24

[25]

[26]

Nicolas Bettenburg, Sascha Just, Adrian Schroter, Cathrin Weiss, Rahul Premraj,
and Thomas Zimmermann. 2008. What Makes a Good Bug Report?. In Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (Atlanta, Georgia) (SIGSOFT "08/FSE-16). ACM, New York, NY, USA,
308-318.

T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillére, J. Klein, and Y. L. Traon. 2013.
Got issues? Who cares about it? A large scale investigation of issue trackers
from GitHub. In 2013 IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE). 188-197.

Hudson Borges and Marco Tulio Valente. 2018. What’s in a GitHub Star? Under-
standing Repository Starring Practices in a Social Coding Platform. Journal of
Systems and Software 146 (2018), 112 — 129.

Jordi Cabot, Javier Luis Canovas Izquierdo, Valerio Cosentino, and Belén Rolandi.
2015. Exploring the use of labels to categorize issues in open-source software
projects. In 2015 IEEE 22nd International Conference on Software Analysis, Evolu-
tion, and Reengineering (SANER). IEEE, 550-554.

Yguarata Cerqueira Cavalcanti, Paulo Anselmo da Mota Silveira Neto, Ivan do
Carmo Machado, Tassio Ferreira Vale, Eduardo Santana de Almeida, and Sil-
vio Romero de Lemos Meira. 2014. Challenges and opportunities for software
change request repositories: a systematic mapping study. 7. Softw. Evol. Process.
26,7 (2014), 620-653.

Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social Coding
in GitHub: Transparency and Collaboration in an Open Software Repository.
In Proceedings of the ACM Conference on Computer Supported Cooperative Work
(CSCW ’12). ACM.

Steven Davies and Marc Roper. 2014. What’s in a Bug Report?. In Proceedings of
the 8th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (Torino, Italy) (ESEM ’14). ACM, New York, NY, USA.

Andrea Di Sorbo, Giovanni Grano, Corrado Aaron Visaggio, and Sebastiano
Panichella. 2021. Investigating the criticality of user-reported issues through
their relations with app rating. Journal of Software: Evolution and Process 33, 3
(2021), e2316. https://doi.org/10.1002/smr.2316 €2316 smr.2316.

Github Inc. 2020. Page of all features topics in Github. https://github.com/topics
Github Inc. 2024. Assigning issues and pull requests to other GitHub
users. https://docs.github.com/pt/issues/tracking-your-work-with-issues/
assigning-issues-and-pull-requests-to-other-github-users

Github Inc. 2024. Basic writing and formatting syntax. https://guides.github.
com/features/mastering-markdown

Yingying He, Wenhua Yang, Minxue Pan, Yasir Hussain, and Yu Zhou. 2023. Un-
derstanding and Enhancing Issue Prioritization in GitHub. In 2023 38th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 813-824.
https://doi.org/10.1109/ASE56229.2023.00044

Jueun Heo and Seonah Lee. 2023. An Empirical Study on the Performance of
Individual Issue Label Prediction. In 2023 IEEE/ACM 20th International Confer-
ence on Mining Software Repositories (MSR). 228-233. https://doi.org/10.1109/
MSR59073.2023.00041

Kim Herzig, Sascha Just, and Andreas Zeller. 2013. It’s not a bug, it’s a feature:
How misclassification impacts bug prediction. In 35th International Conference
on Software Engineering (ICSE). 392-401.

Joselito Mota Jr., Railana Santana, and Ivan Machado. 2021. GrumPy: an auto-
mated approach to simplify issue data analysis for newcomers. In Proceedings of
the XXXV Brazilian Symposium on Software Engineering (Joinville, Brazil) (SBES
'21). ACM, 33-38. https://doi.org/10.1145/3474624.3476012

Joselito Junior, Glaucya Boechat, and Ivan Machado. 2021. Label it be! A large-
scale study of issue labeling in modern opensource repositories. In 24th Iberoamer-
ican Conference on Software Engineering (CIbSE 2021). Curran Associates, 262-275.
https://arxiv.org/abs/2110.01328

Rafael Kallis, Andrea Di Sorbo, Gerardo Canfora, and Sebastiano Panichella.
2019. Ticket Tagger: Machine Learning Driven Issue Classification. In 2019 IEEE
International Conference on Software Maintenance and Evolution (ICSME). 406-409.
https://doi.org/10.1109/ICSME.2019.00070

Jaweria Kanwal and Onaiza Magbool. 2012. Bug prioritization to facilitate bug
report triage. Journal of Computer Science and Technology 27, 2 (2012), 397-412.
Nilam Kaushik, Mehdi Amoui, Ladan Tahvildari, Weining Liu, and Shimin Li. 2013.
Defect Prioritization in the Software Industry: Challenges and Opportunities. In
IEEE Sixth International Conference on Software Testing, Verification and Validation.
70-73.

Sunghun Kim and E. James Whitehead. 2006. How Long Did It Take to Fix Bugs?.
In Proceedings of the 2006 International Workshop on Mining Software Repositories
(Shanghai, China) (MSR °06). ACM, New York, NY, USA, 173-174.

Ran Mo, Shaozhi Wei, Qiong Feng, and Zengyang Li. 2022. An exploratory study
of bug prediction at the method level. Information and Software Technology 144
(2022), 106794. https://doi.org/10.1016/j.infsof.2021.106794

Audris Mockus. 2010. Organizational Volatility and Its Effects on Software
Defects. In Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering (Santa Fe, New Mexico, USA) (FSE ’10).
ACM, New York, NY, USA, 117-126.

[30

[31

(32]

@
&

[34

[35

[36

[37

(38]

(39]

[40

[41]

[42

[43]

Joselito Jr. et al.

Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating github for engineered software projects. Empirical Software Engineering
22, 6 (2017), 3219-3253.

Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi Kishida,
and Yunwen Ye. 2002. Evolution Patterns of Open-Source Software Systems
and Communities. In Proceedings of the International Workshop on Principles of
Software Evolution (Orlando, Florida) (IWPSE ’02). ACM, New York, NY, USA,
76-85.

Maleknaz Nayebi, Shaikh Jeeshan Kabeer, Guenther Ruhe, Chris Carlson, and
Francis Chew. 2018. Hybrid Labels Are the New Measure! IEEE Software 35, 1
(2018), 54-57.

Daniel Rodriguez, Israel Herraiz, and Rachel Harrison. 2012. On software engi-
neering repositories and their open problems. In First International Workshop on
Realizing Al Synergies in Software Engineering (RAISE). 52-56.

Kurt Schneider and Jan-Peter von Hunnius. 2003. Effective experience repositories
for software engineering. In Proceedings of the 25th International Conference on
Software Engineering (ICSE "03). IEEE.

Mohammed Latif Siddiq and Joanna C. S. Santos. 2022. BERT-Based GitHub Issue
Report Classification. In 2022 IEEE/ACM 1st International Workshop on Natural
Language-Based Software Engineering (NLBSE). 33-36. https://doi.org/10.1145/
3528588.3528660

Margaret-Anne Storey, Jody Ryall, Janice Singer, Del Myers, Li-Te Cheng, and
Michael Muller. 2009. How Software Developers Use Tagging to Support Re-
minding and Refinding. IEEE Transactions on Software Engineering 35, 4 (July
2009), 470-483.

Christoph Treude and Margaret-Anne Storey. 2012. Work Item Tagging: Com-
municating Concerns in Collaborative Software Development. IEEE Transactions
on Software Engineering 38, 1 (2012), 19-34.

J. H. van Moll, J. C. Jacobs, B. Freimut, and J. J. M. Trienekens. 2002. The impor-
tance of life cycle modeling to defect detection and prevention. In 10th Interna-
tional Workshop on Software Technology and Engineering Practice (STEP *02). IEEE
Computer Society, 144-155.

Jun Wang, Xiaofang Zhang, Lin Chen, and Xiaoyuan Xie. 2022. Personalizing
label prediction for GitHub issues. Information and Software Technology 145
(2022), 106845. https://doi.org/10.1016/j.infsof.2022.106845

Wenxin Xiao, Jingyue Li, Hao He, Ruiqiao Qiu, and Minghui Zhou. 2023. Per-
sonalized First Issue Recommender for Newcomers in Open Source Projects. In
2023 38th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 800-812. https://doi.org/10.1109/ASE56229.2023.00158

Jifeng Xuan, He Jiang, Zhilei Ren, and Weiqin Zou. 2012. Developer prioritization
in bug repositories. In 34th International Conference on Software Engineering
(ICSE). 25-35.

Suraj Yatish, Jirayus Jiarpakdee, Patanamon Thongtanunam, and Chakkrit Tan-
tithamthavorn. 2019. Mining Software Defects: Should We Consider Affected
Releases?. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). 654-665. https://doi.org/10.1109/ICSE.2019.00075

D Zubrow. 2009. IEEE Standard Classification for Software Anomalies. IEEE
Computer Society (2009). IEEE 1044-2009.

https://doi.org/10.1002/smr.2316
https://github.com/topics
https://docs.github.com/pt/issues/tracking-your-work-with-issues/assigning-issues-and-pull-requests-to-other-github-users
https://docs.github.com/pt/issues/tracking-your-work-with-issues/assigning-issues-and-pull-requests-to-other-github-users
https://guides.github.com/features/mastering-markdown
https://guides.github.com/features/mastering-markdown
https://doi.org/10.1109/ASE56229.2023.00044
https://doi.org/10.1109/MSR59073.2023.00041
https://doi.org/10.1109/MSR59073.2023.00041
https://doi.org/10.1145/3474624.3476012
https://arxiv.org/abs/2110.01328
https://doi.org/10.1109/ICSME.2019.00070
https://doi.org/10.1016/j.infsof.2021.106794
https://doi.org/10.1145/3528588.3528660
https://doi.org/10.1145/3528588.3528660
https://doi.org/10.1016/j.infsof.2022.106845
https://doi.org/10.1109/ASE56229.2023.00158
https://doi.org/10.1109/ICSE.2019.00075

	Abstract
	1 Introduction
	2 Background
	2.1 The life cycle of an issue and its triage process
	2.2 Issue labeling

	3 Research strategies and tools
	3.1 Study Design

	4 Results
	5 Discussion
	6 Threats to Validity
	6.1 Internal Validity
	6.2 External Validity
	6.3 Construct Validity

	7 Related Work
	8 Conclusions
	References

