Investigating Developer Experience in Software Reuse

Rodrigo Feitosa Gongalves
rfeitosa@cos.ufrj.br
PESC - UFR]

Rio de Janeiro, Brazil

ABSTRACT

Software reuse has been recognized as a key strategy for improving
productivity, reducing development costs, and enhancing software
quality. However, successfully implementing software reuse prac-
tices largely depends on the developer experience (DX). This study
investigates the factors, barriers, and strategies influencing DX in
software reuse. Through a Rapid Review (RR), we analyzed 328 stud-
ies, selecting 10 for detailed data extraction based on defined filters
and the backward snowballing technique. Our findings identify
15 factors affecting DX in software reuse, categorized into techni-
cal, organizational, and human/social factors. We also uncover 7
barriers that impede developers from improving DX and identify
13 strategies to enhance it. The results highlight the critical role
of comprehensive documentation, a clear understanding of soft-
ware functionality, and robust reuse-compatible infrastructure as
key technical factors. Organizational support, effective resource
allocation, and fostering a communication, collaboration, and self-
efficacy culture are essential for successful software reuse. This
study’s insights have significant implications for researchers and
practitioners, offering practical guidance to develop more effective
reuse practices and improve DX.

CCS CONCEPTS

- Software and its engineering — Software organization and
properties.

KEYWORDS

Developer Experience, Software Reuse, Rapid Review

1 INTRODUCTION

Software reuse is an essential practice in software engineering,
widely adopted to increase efficiency and reduce development costs
[4]. By utilizing existing components, developers can avoid re-
dundant work and focus on innovative aspects of projects [30].
Adopting reusable libraries, frameworks, and design patterns has
become crucial for the competitiveness and sustainability of modern
software organizations [42].

Although the theoretical benefits of software reuse are well es-
tablished, practical implementation faces significant challenges,
particularly related to the developer experience [47]. Difficulties
such as the complexity of integrating reusable components [5], the
lack of adequate documentation [3], the challenge of finding and
evaluating suitable components, the need for ongoing maintenance
and updates of reused software, and the potential mismatch be-
tween reused components and specific project requirements all
negatively impact developer productivity and satisfaction [10, 47].
These challenges are essential for improving reuse practices and
maximizing their benefits.

Claudia Maria Lima Werner
werner@cos.ufrj.br
PESC - UFR]
Rio de Janeiro, Brazil

Claudio Miceli de Farias
cmicelifarias@cos.ufrj.br
PESC - UFR]

Rio de Janeiro, Brazil

Enhancing developer satisfaction and motivation is critical for
numerous organizations, given its potential to enhance produc-
tivity and bolster employee retention [12]. Recent studies have
concentrated on comprehending the factors influencing developer
productivity and satisfaction, encompassing aspects associated with
software reuse [19, 36, 44]. The influence of these factors on devel-
opers’ productivity and satisfaction varies across individual, team,
organizational, and project-specific contexts [14].

Developer experience (DX), articulated by Fagerholm and Munch
[12], is a broader concept perspective encompassing developers’
sentiments, thoughts, and perceptions regarding their work. This
definition suggests that DX is influenced by various factors such
as team culture, work environment, and daily tasks. Similar to
satisfaction, DX is also deeply personal [12, 14].

There is a gap in the literature and industrial practices regard-
ing the real experience of developers in software reuse. Many ap-
proaches focus on technical aspects, neglecting the perspective of
developers who often face psychological obstacles [30, 46]. Further-
more, over the years, the growing number of publications under-
scores that software reuse continues to be a subject of consider-
able interest in software engineering [30, 46]. In this context, the
practical question to be addressed in this study is: How is devel-
oper experience characterized in software reuse? Identifying
factors that influence DX - such as lack of documentation, orga-
nizational culture, and developers’ professional experience with
software reuse - can assist professionals in the software industry
in enhancing their activities in software reuse environments. A
Rapid Review (RR) was conducted to answer this study’s practical
question. RR studies are secondary research endeavors to uncover
evidence to help solve practical problems [7, 24].

As a result, we identified 15 factors that affect DX in software
reuse. These factors were classified into technical, organizational,
and human/social categories. Additionally, we identified 7 barriers
that hinder developers from improving the factors affecting DX in
software reuse. We also identified 13 strategies to improve DX in
software reuse. In this regard, the findings of these studies can raise
awareness about the influence of these factors on software reuse,
aiding professionals and researchers in developing more effective
practices to address the impact of these factors in this context.

The remainder of this paper is organized as follows: Section 2
presents background; Section 3 presents related work; Section 4
depicts the method and protocol; Section 5 shows the results of the
study; a discussion on the results and contributions of the study
are presented in Section 6; finally, Section 7 presents the threats to
validity, and Section 8 concludes the paper with final remarks and
future work.



SBCARS’24, September 30 — October 04, 2024, Curitiba, PR

2 BACKGROUND
2.1 Software Reuse

Over the years, various definitions have been proposed for software
reuse. For this article, we will adopt the definition provided by the
IEEE Standard for Information Technology Reuse Processes and
Software Life Cycle Processes [23]: “Software reuse entails capitaliz-
ing on existing software and systems to create new products”.

Under this broad definition, several terms coexist, including
Component-Based Development (CBD), Software Product Lines
(SPL), Model-Driven Development (MDD), Domain Engineering
(or Domain Analysis), and Commercial Off-The-Shelf (COTS) so-
lutions, among others [52]. Additionally, there are two primary
development approaches: by-reuse (utilizing pre-existing compo-
nents in development) and for-reuse (creating components intended
for reuse) [32]. Reuse can also be classified based on its application
scope as vertical reuse (reusing software within a specific appli-
cation domain) or horizontal reuse (reusing components across
multiple application domains) [15].

2.2 Developer Experience

The concept of experience can be viewed through various lenses
in software engineering [12, 51]. These different variations of ex-
periences are intertwined, but it is crucial to differentiate them to
prevent misunderstandings. Various experiences associated with
consuming, using, or interacting with something provided by others
include user experience (UX), product experience, brand experience,
and service experience. Thus, the definition of DX is shaped by the
concept of UX. According to ISO 9241-210:2019 [48], UX is defined
as “a person’s perceptions and responses that result from the use
or anticipated use of a product, system or service”. Experiences spe-
cific to development include programmer experience and, finally,
DX. The term “developer” refers to anyone involved in software
development, while “experience” pertains to engagement rather
than solely to expertise, although the two are interconnected [12].
So, we will adopt this definition of DX for this article.

Fagerholm and Miinch [12] approach DX from a psychological
perspective, dividing it into three distinct sub-areas or categories:
cognitive (how developers perceive the development infrastructure),
affective (how developers feel about their work), and conative (how
developers perceive the value of their contribution).

3 RELATED WORK

As research on DX is a burgeoning field, relatively few secondary
studies are available, particularly on software reuse. Our investiga-
tion has identified some literature studies exploring DX or related
concepts. Fontao et al. [13] present preliminary results from a liter-
ature study in which they applied a systematic review methodology
called snowballing and thematic analysis to explore factors influenc-
ing DX in Mobile Software Ecosystems (MSECO). They analyzed
11 papers and identified 20 factors associated with DX. They argue
that understanding these factors in the ecosystem context is crucial
for keystones that require mechanisms to ensure developers remain
accountable for productivity, robustness, and niche creation.
Morales et al. [34] conducted a systematic literature review (SLR)
of articles published in the last decade to identify definitions of

R. F. Gongalves et al.

Programmer eXperience (PX) or DX. As a result, the authors ana-
lyzed 73 articles, which highlighted the following findings: 1) The
essential elements influencing PX are programmer motivation and
the choice of tools they use in their work; 2) The majority of identi-
fied studies (59%) aimed to evaluate the influence of PX, UX, and
usability in programming environments; 3) Most studies (70%) em-
ployed methods such as usability testing and heuristic evaluation
methods; and 4) Four sets of heuristics are used to evaluate software
development artifacts about programming environments, program-
ming languages, and application programming interfaces. Unlike
the previously mentioned studies, this work investigates the factors
that influence DX in software reuse.

4 RESEARCH METHOD

We performed an RR during May and June of 2024 to conduct this
study. RR studies are secondary research efforts primarily aimed at
providing evidence to support decision-making and address prob-
lems faced by professionals in practice [7, 17]. To characterize them,
an RR is a fast-tracked approach to conduct a systematic review of
the scientific literature [18].

To conduct this RR, we followed the protocol model proposed
by Cartaxo et al. [7]. Additionally, we considered the guidelines
for conducting SLR proposed by Kitchenham and Charters [26].
The demand for an RR arose from a practical problem: technical
factors, such as compatibility with existing platforms and code
modularity, and social factors, such as effective team collaboration
and cultural acceptance of software reuse practices, may influence
DX in software reuse.

4.1 Definition of Research Questions

This RR aims to investigate factors that affect DX in software reuse.
We formulated three research questions (RQ) to achieve the research
objective. These RQ were defined closely with industry profession-
als and are presented in Table 1.

Table 1: Research Questions

ID Research Questions Focus
This RQ aims to identify and de-
What are the main factors that af- scribe the main factors that affect de-
RQ1 fect developer experience in soft- veloper experience during software
ware reuse? reuse. This includes understanding

both technical and social factors.

What barriers prevent developers This RQ aims to identify and analyze
from improving the factors affect- the main barriers that hinder the im-
ing developer experience in soft- provement of factors influencing de-
ware reuse? veloper experience in software reuse.
What are the strategies used to im- This RQ aims to identify and evaluate
RQ3  prove developer experience in soft- the current strategies to improve de-
ware reuse? veloper experience in software reuse.

RQ2

4.2 Search Strategy

To conduct automated searches for primary studies that address the
RQ defined in Table 1, we utilized the Scopus digital library!, which
consists of various relevant digital libraries [6]. Additionally, com-
bining Scopus with snowballing procedures can mitigate the gap

!https://www.scopus.com/



Investigating Developer Experience in Software Reuse

from not using other digital libraries and provide a representative
set of articles on the proposed topic [35].

A search string was defined according to the terms used in the
RQ. We defined the search string, which involved crafting and
testing different versions in the chosen digital library. The search
string was based on terms previously used in studies related to
software reuse and DX [4, 12, 14, 16]. Finally, the search string was
reviewed by two experienced researchers in experimental software
engineering. Table 2 presents the search string used in this study.
Since our research pertains to an RR, there was no need to limit the
scope to specific approaches, as our objective is to characterize DX
in software reuse in general.

Table 2: Search String

Search String
(TITLE-ABS-KEY(“software reuse” OR “software reusability” OR “product line”
OR “component-based”) AND (programmer OR developer AND (experience)))

4.3 Inclusion and Exclusion Criteria

To select studies, we defined and applied inclusion criteria (IC) and
exclusion criteria (EC) to the retrieved studies (Table 3). Studies
were included if they met all IC and excluded if they met at least
one EC criterion.

Table 3: Selection Criteria

ID Description

The study presents evidence based on scientific ex-
perimental methods and experience reports (e.g., in-
terviews, opinion surveys, case studies, etc.).

IC2  The study answers at least one RQ.

EC1  The study does not meet at least one IC.

EC2  The study is duplicated.

The study is unavailable for free download or through

Inclusion IC1
Criteria

EC3 institutional access.
Exclusion The study is not peer-reviewed or is a Master’s or
. EC4 .
Criteria Doctoral thesis.

EC5  The study is not written in English or Portuguese.

EC6 The study brings the concept of DX as the time of
experience or seniority.

EC7  The study is not related to software reuse.

4.4 Study Selection Process

This study employed a seven-stage selection process: (1) Executing
the automated search of primary studies (Search execution); (2) 1st
Filter: Removal of duplicate studies (applying EC2); (3) Applying
the 2nd Filter: reading title, abstract, and keywords; (4) Applying
the 3rd Filter: reading introduction and conclusion; (5) Applying
the 4th Filter: complete reading of the study; (6) Applying backward
snowballing (BS) technique; and (7) Data extraction and synthesis.

The stages were based on the selection process defined by Car-
taxo et al. [6], where each stage’s output feeds into the next stage.
Notably, BS was conducted by analyzing the references of the 6 stud-
ies included after stage 5 and was performed by the first researcher.
In the first iteration, 196 studies were analyzed. After applying the
criteria from Table 3 and implementing filters 1, 2, 3, and 4, only
3 studies were included. In the second iteration, 274 studies were
analyzed (referenced in the study included in the first iteration of

SBCARS’24, September 30 — October 04, 2024, Curitiba, PR

BS). However, no studies were included. Figure 1 provides a more
detailed view of the process results.

4.5 Data Extraction and Synthesis

The first researcher conducted the extraction process, after which
another, more experienced researcher verified the results. All data
were systematically extracted using the Parsifal? tool to record the
necessary information. A form containing the following fields was
used to address the research questions: (1) study identifier (ID); (2)
title; (3) authors; (4) year; (5) publication venue; (6) country; (7) fac-
tors affect DX in software reuse; (8) barriers preventing developers
from improving these factors; and (9) strategies used to enhance
DX.

To address the RQ, we utilized data synthesis. According to
Kitchenham and Charters [27], two primary methods for data syn-
thesis exist: (i) descriptive (qualitative) and (ii) quantitative. In this
study, we employed the qualitative method to analyze the extracted
data and answer the RQ, resulting in a descriptive data synthesis
[11]. Initially, we adopted an open coding approach inspired by
the initial procedure of the Grounded Theory approach. Thus, we
systematically coded the data extracted from selected studies in-
ductively (bottom-up) [8]. For this analysis, we thoroughly read
the selected studies, dividing parts of the text into coherent units
(sentences or paragraphs). Subsequently, we assigned codes repre-
senting key points relevant to the RQ. Following the open coding,
we applied axial coding, following the Charmaz approach [8], to
organize the codes into categories. Table 4 presents examples of
the coding process for the selected studies (the resulting codes
and their categories). The data extraction and synthesis results are
detailed in Section 5.

5 RESULTS

The RR aimed to retrieve as many relevant studies as possible on
the research topic. Therefore, no filtering based on publication year
was applied, meaning all studies returned up until June 2024 were
considered. The first researcher analyzed and selected the returned
studies, while the second validated the selected studies. Figure 1
provides a more detailed view of the process results. Initially, 328
studies were returned. Following the selection process, 10 studies
were included.

Table 5 presents a summary of data extraction from the selected
studies in ascending order based on the year of publication. Each
study’s identification code (ID) references the respective study in
the subsequent sections. Figure 2 illustrates the chronological pro-
gression of the included studies according to their year of publi-
cation. Most of these studies were published over 10 years ago,
indicating that interest in and research on the topic have been more
intense in past decades. This distribution reveals that most studies
are dated, with a significant concentration of publications between
2003 and 2010. This fact highlights the need for new studies on
this theme to update and expand existing knowledge, considering
recent technological and social changes. Additionally, considering
only the countries of the lead author of each study, it was found

Zhttps://parsif.al/



SBCARS’24, September 30 — October 04, 2024, Curitiba, PR

R. F. Gongalves et al.

Table 4: Illustration of the Coding Process

Coherent unit: “Feedback and Evaluation Establishing feedback mechanisms and conducting regular evaluations of reuse practices can help identify areas for improvement,
address challenges faced by developers, and refine reuse strategies to better align with organizational goals”. E1

Preliminary Code | Focused Code [ Category

Establishing feedback mechanisms [ Feedback and Evaluation [ Strategy

Scopus
i' 7777777777 |
Stage 1 | Total !
i | n
Search execution : 328 Studies :
v
L L L L AN
—— — —— >
Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7
1st Filter: 2nd Filter: 3rd Filter: 4th flter: Application of| Data
Removal of || reading title, reading complete backward extraction
Duplicate abstract and introductign reading snowballing and
studies keywords and conclusion| | of the study synthesis
_____ LRy Ry R NS U S
i Total " Total " Total " Total " Total " Total !
IL 324 studies 1 :. 61studies 1! 23studies 11 6 studies / ! !
________________ [ At [ TP | SONPPup U | SR,

Figure 1: Results of the Study Selection Process

1 1 1 1 1 1 1
0
1997 2002 2003 2004 2006 2007 2008 2010

Figure 2: Number of Studies per Year

that the United States (3 studies), Norway (2 studies), and coun-
tries such as Germany, Qatar, South Korea, Scotland, Switzerland
(1 study each) had publications on the subject (Figure 3).
Regarding the research method adopted by the studies, six stud-
ies (S1, S4, S5, S6, S7, and S9) conducted case studies in software
development organizations, while four (S2, S3, S8, and S10) carried
out field studies. The research techniques employed in these studies
included surveys, used by nine studies (S1, S2, S3, S4, S6, S7, S8,
S9, and S10), semi-structured interviews, applied in four studies
(S2, S4, S9, and S10), and structured interviews, utilized in three
studies (S5, S6, and S7). The raw data and all the steps necessary to

Switzerland I 1
Scotland I 1
South Korea I 1
Qatar I 1
Germany I 1
Norway " 2
United States I——— 3

0 1 2 3 4

Figure 3: Number of Studies per Country

reproduce the research are detailed in the supplementary material
openly available via ZENODO?3.

5.1 RQ1: What are the Main Factors that Affect
Developer Experience in Software Reuse?

In the context of this research, we define “factors” as elements,
characteristics, or actions that affect DX in software reuse. Thus, we
identified 15 factors that affect DX in software reuse, classified into
three main categories: technical, organizational, and human/social
factors. Table 6 presents the identified factors. In the following
sections, we present more details about each factor identified in the
studies.

5.1.1 Technical Factors. Documentation (54, S6, S7, and S10) is
crucial for developers when reusing software components. It en-
sures flexibility and usability by providing detailed and up-to-date
information. However, developers often find documentation incom-
plete or outdated, relying instead on informal sources like personal
experience and local experts. Well-documented interfaces (APIs)
simplify integration, reducing the need to fully understand the
component’s inner workings (S10).

Understanding Software Functionality, Interactions, and
Architecture (52, S6, and S9) significantly affects DX in software
reuse. Developers struggle with deciphering framework behavior
due to complex source code, abstract classes, and dispersed func-
tionality S2. Understanding class interactions is also challenging, as
they are not visible in the source code or documentation, complicat-
ing the prediction of modification impacts. Additionally, developers
find it challenging to grasp architectural motivations and mod-
ify elements without compromising integrity, further hindered by
insufficient and outdated documentation (S2, S6, and S9).

3https://doi.org/10.5281/zenodo.12685772



Investigating Developer Experience in Software Reuse

SBCARS’24, September 30 — October 04, 2024, Curitiba, PR

Table 5: List of Selected Studies

D ‘ Title Author Country Origin Year
S01 An Empirical Study of Software Reuse with Special Attention to Ada Lee et al. [28] South Korea BS 1997
S02 Defining the Problems of Framework Reuse Kirk and Wood [25] Scotland SCOPUS| 2002
S03 Strategies for Software Reuse: A Principal Component Analysis of Reuse Practices Rothenberge et al. [40] | United States BS 2003
S04 Barriers to adoption of software reuse A qualitative study Sherif and Vinze [43] Qatar BS 2003
S05 Project-Level Reuse Factors: Drivers for Variation within Software Development Environments Rothenberger [41] United States SCOPUS| 2003
S06 A Study of Developer Attitude to Component Reuse in Three IT Companies Lietal. [29] Norway SCOPUS| 2004
S07 | An Empirical Study of Developers Views on Software Reuse in Statoil ASA Slyngstad et al. [45] Norway SCOPUS| 2006
S08 A multi-level analysis of factors affecting software developers’ intention to reuse software assets: An empirical investigation | Mellarkod et al. [31] United States SCOPUS| 2007
S09 Code Reuse in Open Source Software Haefliger et al. [49] Switzerland BS 2008
S10 Code reuse in open source software development: Quantitative evidence, drivers, and impediments Sojer and Henkel [47] Germany SCOPUS| 2010

Table 6: Factors Affecting Developer Experience in Software
Reuse

Factors [ Study ID
Technical

Documentation S4, S6, S7 and S10

Understanding Software Functionality, Interactions, and Ar- | S2, S6 and S9

chitecture

Availability of Reuse-Compatible Infrastructure S3 and S8

License S9

Programming language S9

Quality Attributes (Non-Functional Requirements) S7
Organizational

Project Attributes S3 and S5

Client Influence S5

Perceptions About Resource Allocations S8

Project Culture S5

Requirements (Re)negotiation S6
Human/Social

Developer Reuse Experience S1,54,S5,S6 and S8

Communication and Collaboration S4

Community Knowledge S10

Self-Efficacy S8

Availability of Reuse-Compatible Infrastructure (53 and
S8). A formal, structured process for reuse helps standardize prac-
tices, making reuse efforts repeatable and predictable. The presence
of methodologies, frameworks, and standardized processes is es-
sential for the success of software reuse and influences developers’
perception of the usefulness of software assets. A well-established
reuse-compatible infrastructure enhances DX by providing clear
guidelines and reducing uncertainty (S3 and S8).

License (S9). License issues significantly impact DX in software
reuse. Legal issues arise when the licenses of potentially reusable
code are incompatible with the developer’s project, complicating
or preventing reuse. This creates additional hurdles for developers,
who must navigate and comply with various licensing requirements,
affecting software reuse’s ease and feasibility (S9).

The Programming Language (S9) used in a project significantly
influences DX in software reuse. For example, certain languages
may make it challenging to integrate popular libraries, limiting the
ease of reuse. Project architectures may not be sufficiently modular
to facilitate the seamless integration of reusable code. Moreover,
compatibility issues between programming languages can further
complicate the inclusion of code from different sources.

Quality Attributes (Non-Functional Requirements) (S7).
Developers’ confidence in the quality attributes of reusable compo-
nents significantly impacts their software reuse experience. Uncer-
tainty arises when developers are unsure whether components have

been adequately tested to meet their quality requirements before
integration. Improving the specification and publication of quality
attributes and consistent component testing is crucial to enhanc-
ing developers’ confidence and facilitating smoother integration of
reusable components into projects.

5.1.2  Organizational Factors. Project Attributes (S3 and S5), such
as commonality in requirements, design, and code (S3), significantly
influence software reuse success and DX. They enable efficient com-
ponent reuse, streamline integration within the same framework,
leverage previous project solutions, and ensure compatibility with
the project domain. Optimizing these attributes enhances devel-
opers’ ability to effectively reuse components, improving overall
software development efficiency and satisfaction (S3 and S5).

Client Influence (S5) factors that affect DX in software reuse
include budget and time constraints, perceived value of reuse, and
fear of interconnectivity. Limited budgets and tight deadlines re-
strict the implementation of reusable components. If clients do
not see the benefits of reuse, they may not support it, leading to
resistance in resource allocation. Concerns about cascading fail-
ures from reused components can discourage reuse, increasing the
developer’s workload and reducing potential benefits.

Perceptions About Resource Allocations (S8). Developers’
perceptions regarding the appropriateness of resource allocations
for software reuse play a crucial role in influencing their perceived
usefulness of software assets. This factor is critical in shaping the
overall DX in software reuse. In software reuse, perceptions of
resource allocation encompass the degree to which an individual
perceives that organizational resources are sufficient for developing
and integrating reusable assets.

Project Culture (S5) reflects the different degrees of emphasis
placed or incentives offered (tangible or intangible) to an organiza-
tion. This analysis underscores the importance of a reuse-oriented
project culture in enhancing developer engagement and optimizing
the reuse process, ultimately leading to better software develop-
ment outcomes.

Requirements (Re)negotiation (S6) is a critical but often inef-
ficient aspect of software reuse that significantly affects DX. The
challenges stem from a lack of access to source code, inadequate
vendor support, and insufficient engineering expertise to modify
integrated components. Even in-house reusable components often
fail to meet all project requirements, necessitating (re)negotiation.

5.1.3 Human/Social Factors. Developer Reuse Experience. Ex-
perienced individuals, or reuse champions, are crucial for driving
initiatives, providing training, and facilitating communication (S4



SBCARS’24, September 30 — October 04, 2024, Curitiba, PR

and S1). Key factors include recognizing reuse patterns, under-
standing the company’s reuse model, and knowing component
availability (S5). Understanding the reuse model is a long process,
partially achievable through training and informal communication
(S6). Thus, as developers gain experience, they recognize the value
of software assets, finding them more accessible and valuable to
adopt. Reuse-related experience positively influences the perceived
usefulness and ease of reusing software assets, enhancing DX (S8).

Effective Communication and Collaboration (S4) between
different teams and stakeholders are essential for successful soft-
ware reuse. Encouraging information sharing and involving mul-
tiple teams in design reviews help overcome barriers. Improved
communication and teamwork foster a more cohesive development
environment, enhancing the overall DX and reuse initiatives.

Community Knowledge (S6). Developers often rely on their
project’s community, such as mailing lists, for direct and efficient
information about reusable knowledge and code. This community
knowledge is crucial for finding solutions, sharing best practices,
and accessing reusable components. Active participation in these
communities helps developers stay informed and supported, en-
hancing their ability to effectively reuse software assets and im-
proving their overall experience.

Self-efficacy (S8). Developers indicate that their confidence in
their skills for developing and reusing assets influences their percep-
tion of the usefulness and ease of implementing reuse technology.
When developers believe they have the necessary skills, they re-
port that reusable assets improve their job performance. Therefore,
self-efficacy is positively related to perceptions of the usefulness
and ease of reusing software assets.

5.2 RQ2: What Barriers Prevent Developers
from Improving the Factors Affecting
Developer Experience in Software Reuse?

In the paradigm of this study, “barriers” are obstacles that hinder
or prevent an individual from taking action to achieve his/her goal.
They can be physical, psychological, social, or economic. We iden-
tified 7 barriers that prevent developers from improving factors
affecting DX in software reuse. Table 7 presents the identified bar-
riers. We provide more details about each barrier identified in the
studies.

Table 7: Barriers Preventing Improvements in Developer Ex-
perience

Barrier

Lack of Top Management Support
Insufficient Training and Education
Resistance to Change

Study ID

S1, S3, S4, S5, S8 and S10
S3, S4, S5 and S8

S1, S3, S4 and S8

Lack of Access to Reusable Components S1and S9
Perceived Lack of Benefits S1
Ineffective Incentive Schemes S8
Inefficiency in Reuse S9

Lack of Top Management Support (S1, S3, S4, S5, S8 and S10).
Limited resources, time constraints, and insufficient support hinder
developers from enhancing reuse capabilities (S1 and S3). Without
this support, reuse efforts are significantly hindered (S3). Manage-
ment may hesitate to invest in reuse due to high initial costs and

R. F. Gongalves et al.

lack of immediate returns, compounded by the absence of measures
to assess benefits and costs (S4). Some organizations report reuse
success in a few projects, but many struggle to replicate this consis-
tently. This inconsistency suggests that while an organization may
have high reuse capability at the organizational level, project-level
success factors can vary, affecting overall reuse success (S5 and S8).

Insufficient Training and Education (S3, S4, S5, and S8). De-
velopers often lack the necessary training to effectively create and
utilize reusable components, and inadequate mechanisms for knowl-
edge sharing within organizations can prevent them from learning
best practices (S3). Thus, training programs and education on reuse
concepts are often insufficient, preventing developers from engag-
ing in reuse activities effectively (S4). Acquiring a thorough under-
standing of reuse is a long process that cannot be fully achieved
through training alone (S5). Furthermore, inadequate training on
the benefits and processes of software reuse hinders developers
from understanding its value and impact on their work (S8).

Resistance to Change (S1, S3, S4, and S8). In complex problem
domains, developers may find identifying and extracting reusable
components challenging, particularly when domain knowledge
is limited or fragmented within the team (S1). An organizational
culture resistant to change can impede reuse efforts, as developers
and managers may be accustomed to their existing workflows and
hesitant to adopt new practices (S3).

Developers may resist reuse due to the belief that it inhibits
creativity, a phenomenon known as the "Not Invented Here" syn-
drome. This resistance is also driven by a lack of trust in the quality
and performance of reusable components created by others (S4).
Individual attitudes and beliefs further contribute to resistance to-
wards software reuse, making it difficult for developers to embrace
reusable assets (S8).

Lack of Access to Reusable Components (S1 and S9) is a bar-
rier to improving DX in software reuse. Developers often need help
finding sufficient high-quality reusable components within their
organizations or repositories, hindering their ability to leverage
reuse effectively (S1). Additionally, only some reusable resources
are often available that meet the specific needs of a developer’s
project, making it challenging to find suitable code to reuse (S9).
Enhancing access to a well-maintained and comprehensive reposi-
tory of reusable components facilitates effective software reuse and
improves DX.

Perceived Lack of Benefits (S1) is a barrier to improving DX
in software reuse. If developers do not see immediate benefits,
such as productivity gains or quality improvements, they may be
less motivated to invest time and effort in enhancing their reuse
practices. Without clear, tangible advantages, developers might
prioritize other tasks over reuse initiatives.

Ineffective Incentive Schemes (S8). The lack of incentives or
recognition for reuse efforts can demotivate developers from ac-
tively engaging in reuse practices. With proper incentives, develop-
ers may prioritize reuse activities. Implementing effective incentive
schemes that reward reuse contributions can encourage developers
to participate more actively in reuse practices, thereby improving
their overall experience and the success of reuse initiatives.

Inefficiency in Reuse (S9). Some developers perceive that find-
ing, understanding, and adapting reusable code can be more time-
consuming than writing it from scratch. This perceived inefficiency



Investigating Developer Experience in Software Reuse

can deter them from engaging in reuse practices. To overcome
this barrier, it is essential to streamline the process of locating
and integrating reusable components, making it more efficient and
user-friendly (S9). By addressing these inefficiencies, developers
can be encouraged to adopt reuse practices, improving their overall
productivity and experience.

5.3 RQ3: What are the Strategies Used to
Improve Developer Experience in Software
Reuse?

In the paradigm of this study, the term “strategies” refers to actions
or interactions that can be employed to overcome, manage, or
respond to the phenomenon under investigation. We identified 13
strategies to improve DX in software reuse. These strategies address
various aspects of software reuse, from organizational culture to
technical infrastructure. Table 8 presents the identified strategy and
their frequency across different studies.

Table 8: Strategies to Improve Developer Experience

Strategy Study ID
Training and Incentives for Reuse S1, S3, S5 and S6
Social Support for Software Reuse S1, S8 and S9
Creating Discussion Forums S4 and S6
Creating Standards and Tools S1 and S10
Establishing Reuse Guidelines S1 and S4
Cookbooks S2

Defining Informal Communication Channels S6

Early Release and Credible Promise S9
Encouraging Experimentation S1

Feedback and Evaluation S1
Mentoring Programs S4

Reference Manuals S2
Top-Down Approach S4

Training and Incentives for Reuse (S1, S3, S5 and S6). Provid-
ing developers with training programs on software reuse practices,
tools, and techniques can enhance their skills and knowledge in
effectively identifying, creating, and utilizing reusable components
(S1). Training programs that educate developers on reuse principles,
best practices, and the use of reuse repositories are essential for
fostering a culture of reuse (S3).

The promotion and emphasis on reuse can vary across projects
due to the client’s attitude toward reuse and the project leader’s
experience. More experienced project leaders tend to prioritize
reuse during development, indicating that reuse experience factors
can moderate the internal promotion of reuse (S5 and S6).

Social Support for Software Reuse (S1, S8 and S9). Cultivating
an organizational culture that values and promotes software reuse,
recognizing and rewarding reuse efforts, and providing resources
and support for reuse initiatives can motivate developers to engage
actively in reuse practices (S1). Support from senior management,
co-workers, and project managers plays a crucial role in developers’
perceptions of the usefulness of software assets. Managers who
encourage and support reuse and co-workers’ positive perceptions
and involvement are significant factors in promoting reuse (S8).

Additionally, developers with larger personal networks within
the OSS (Open Source Software) community and experience in
more projects have better access to reusable artifacts. This network

SBCARS’24, September 30 — October 04, 2024, Curitiba, PR

allows them to find and integrate reusable code more efficiently,
enhancing their ability to leverage software reuse (S9).

Creating Discussion Forums (S4 and S6). Promoting active
communication between asset creators and users helps to identify
reuse opportunities and address issues early. Informal knowledge
transfer is particularly important in component reuse. Special in-
terest groups or mailing lists dedicated to specific components or
groups of similar components can facilitate this informal exchange.
These forums allow component users to share knowledge, experi-
ences, and best practices, enhancing their ability to utilize reusable
assets effectively (54 and S6).

Creating Standards and Tools. Investing in advanced tools and
technologies that support software reuse can significantly enhance
developers’ ability to identify and reuse components efficiently.
Integrated development environments (IDEs), version control sys-
tems, and repository management tools are crucial in streamlining
reuse (S1). Developing standards and tools that facilitate the search
and integration of software components can also reduce the costs
of finding and using reusable components (S10).

Establishing Reuse Guidelines (S1 and S4). Developing clear
guidelines and standards for software reuse is essential for stream-
lining the reuse process and guiding developers in effectively reusing
components. This includes creating comprehensive documentation
on reusable components, coding standards, and repository manage-
ment practices (S1). Establishing clear policies and standards for
creating, documenting, and using reusable assets ensures consis-
tency and quality across the organization (S4).

Cookbooks are practical guides that present solutions to com-
mon problems within a specific framework. They combine code
with natural language descriptions of the issues addressed, making
them accessible and easily understood. Cookbooks are organized
into "recipes,’ each addressing a separate problem within the frame-
work (S2).

Defining Informal Communication Channels is essential
for facilitating the flow of necessary information about reusable
components among developers. Informal channels, such as casual
conversations, chats, and impromptu meetings, can provide devel-
opers with quick access to valuable insights and experiences related
to component usage (S6).

Early Release and Credible Promise. Adopting a development
paradigm emphasizing releasing an initial functioning product ver-
sion early can significantly enhance DX in software reuse. This
strategy, known as delivering a "credible promise," increases the
likelihood of reuse by demonstrating the project’s feasibility and
merit (S9).

Encouraging Experimentation. Encouraging developers to
experiment with different reuse approaches, explore new technolo-
gies, and learn from successful and unsuccessful reuse experiences
can foster a culture of continuous improvement in software reuse
(S1). By implementing this strategy, organizations can cultivate an
environment that values innovation and continuous improvement,
enhancing DX and the effectiveness of software reuse.

Feedback and Evaluation. Establishing feedback mechanisms
and regularly evaluating reuse practices can help to identify im-
provement areas, address developers’ challenges, and refine reuse



SBCARS’24, September 30 — October 04, 2024, Curitiba, PR

strategies to better align with organizational goals (S1). Implement-
ing structured feedback systems where developers can provide
input on their reuse experiences and suggest improvements.

Mentoring Programs. Beyond formal training, mentoring pro-
grams where experienced developers guide less experienced ones
can be highly effective. Mentors can provide practical insights and
help new developers navigate the challenges of reuse (S4).

Reference Manuals describe the individual components of a
software system, documenting each class by detailing its interface
and role. These descriptions are typically organized into modules
that represent the logical structure of the system. For example,
JavaDoc extends this paradigm by incorporating hypertext links
between related classes and using source code comments to gener-
ate descriptions, helping the documentation stay in sync with the
code (S2).

Top-Down Approach. Management support is essential for
successful software reuse initiatives. Organizations should promote
a top-down approach, where top management actively supports
and invests in reuse efforts. This includes setting strategic goals
aligned with reuse and providing the necessary resources (S4).

6 DISCUSSION

The results of this study reveal various factors, barriers, and strate-
gies that influence the developer’s experience in software reuse.
This discussion contextualizes these findings within existing litera-
ture and highlights implications for practice and further research.

6.1 Factors Affecting Developer Experience in
Software Reuse

Our findings align with existing research emphasizing the impor-
tance of technical, organizational, and human/social factors in soft-
ware reuse [2, 10]. Technical factors, such as comprehensive docu-
mentation (S4, S6, S7, and S10), understanding software functional-
ity, interactions, and architecture (S2, S6, and S9), and availability of
reuse-compatible Infrastructure (S3 and S8), are consistent with the
literature indicating that clear documentation and well-structured
systems are essential for effective reuse [20, 38]. Comprehensive
documentation reduces the cognitive load on developers, making it
easier for them to understand and integrate reusable components,
thus improving their experience [14]. The influence of quality at-
tributes (Non-Functional Requirements) (S7) and programming lan-
guage (S9) on reuse effectiveness further supports previous studies
highlighting the need for high-quality, language-compatible compo-
nents [33]. Understanding software functionality and interactions
helps developers make informed decisions about the applicabil-
ity of reusable components, enhancing efficiency and satisfaction
[12]. The availability of a robust, reuse-compatible infrastructure
provides developers with the necessary tools and frameworks, sim-
plifying the integration process and boosting their confidence and
productivity [4].

Organizational factors, including project attributes (S3 and S5),
client influence (S5), and perceptions about resource allocations (S8),
underscore the role of organizational context in reuse practices.
The project culture’s impact on reuse (S5) and the necessity for
(re)negotiation of requirements (S6) reflect findings from Amorim

R. F. Gongalves et al.

and Mendonca [2], which stress the importance of aligning orga-
nizational culture and project management practices with reuse
goals.

Human/social factors, such as developer reuse experience (S1,
S4, S5, S6, and S8), communication and collaboration (S4), and self-
efficacy (S8), are pivotal in shaping reuse practices. This aligns with
literature emphasizing the importance of developer skills, effective
communication, and confidence in adopting new practices [30, 37].
Experienced developers are more adept at identifying and integrat-
ing reusable components, which enhances their productivity and
job satisfaction [10]. High self-efficacy among developers leads to a
more positive attitude towards reuse, as they feel confident in their
ability to successfully implement reusable components [2].

6.2 Barriers to Improving Developer Experience
in Software Reuse

The barriers identified, such as lack of top management support (S1,
S3, 84, S5, S8, and S10) and insufficient training and education (S3,
S4, S5, and S8), resonate with existing issues noted in the literature.
Lack of management support hampers reuse efforts by limiting
resources and strategic focus [10]. Insufficient training and educa-
tion highlight the need for continuous learning and development
to keep up with evolving reuse practices [1].

Resistance to change (S1, S3, S4, and S8) is another critical barrier,
as documented by Johar et al. [22] who note that organizational
and individual resistance can significantly impede the adoption
of new technologies and practices. The lack of access to reusable
components (S1 and S9) and perceived inefficiency in reuse (S9)
highlight practical obstacles that developers face, corroborating
findings from earlier studies [5].

Capilla et al. [5] observe that the lack of access to reusable com-
ponents (S1 and S9) and perceived inefficiency in reuse (S9) are
practical obstacles faced by developers. Their research indicates
that although many reuse techniques have been integrated into
modern software engineering processes, various factors still need
to improve systematic reuse. In particular, resistance to change can
be seen at both individual and organizational levels, where there is
reluctance to adopt new practices due to fears of failure, training
costs, and the need to alter established processes.

6.3 Strategies to Improve Developer Experience
in Software Reuse

The strategies identified in this study, such as providing training
and incentives for reuse (S1, S3, S5, and S6), social support for soft-
ware reuse (S1, S8, and S9), and creating discussion forums (54, and
S6), align with best practices suggested in the literature [21, 50].
Training and incentives are essential for building skills and motivat-
ing developers to engage in reuse. Social support mechanisms and
discussion forums facilitate knowledge sharing and collaborative
problem-solving, which are crucial for successful reuse [9].

Creating standards and tools (S1 and S10) and establishing reuse
guidelines (S1 and S4) are consistent with recommendations from
Berger [39], who advocate for structured approaches to reuse. Cook-
books (S2) and reference manuals (S2) provide practical, accessible
resources that help developers effectively understand and imple-
ment reuse practices.



Investigating Developer Experience in Software Reuse

Mentoring programs (S4) emphasize the importance of peer sup-
port and collective learning in fostering a culture of reuse. These
strategies reflect findings from Chen et al. [9] on the value of com-
munities of practice in organizational learning. Chen et al. [9]
studied the reuse relationships within open-source communities
and found that developers benefit significantly from collective intel-
ligence and collaborative environments. Their research highlights
that social computing and community-driven approaches enable
developers to share knowledge, discover patterns, and improve
software reuse practices through collective efforts.

7 THREATS TO VALIDITY

Some threats to the validity of this RR were identified. During this
research, we sought to minimize the influence of these threats and
reduce their possible risks. Descriptive validity: to mitigate this
threat, a data collection form has been designed to support data
recording to answer the questions. Theoretical validity: the studies
were analyzed and selected under the aegis of DX by Fagerholm and
Miinch [12]. The search string was defined inclusively to capture
studies related to concepts of DX in software reuse. Due to time
and resource limitations, we could not use the forward snowballing
technique. Additionally, since this study is an initial research phase,
we plan to consider applying this technique in future stages of the
study to expand the investigation. In addition, Despite its broad
coverage, Scopus alone may not capture all relevant works. Even
with the BS technique, important studies may have been overlooked,
highlighting the need to include additional sources like IEEE Xplore
and ACM for a more comprehensive review.

Generalizability: generalization is not a massive threat once we
have used a structured protocol based on Cartaxo et al. [7] and
Kitchenham and Charters [26], which facilitates replication. We
also make available the datasets in the supplementary material.
Constructing the conclusions of only 10 studies on a relatively un-
derexplored topic poses a significant threat to generalization. To
mitigate this threat, we sought to relate the findings of this study
to other works in the literature. Interpretive validity: To minimize
the researchers’ bias, when there was doubt in executing the se-
lection process, this was discussed extensively between the two
researchers, and the differences were analyzed together by a third
researcher until there was a consensus. It is worth highlighting that
the protocol for RR needs to consider the quality of the retrieved
studies.

8 CONCLUSION

This study used an RR to identify and analyze studies related to
DX in software reuse. From 328 studies retrieved, 10 were selected
for data extraction after applying defined filters and the backward
snowballing technique. The analysis comprehensively explains the
factors, barriers, and strategies shaping DX in software reuse.
The findings highlight the importance of technical, organiza-
tional, and human/social factors in influencing DX (RQ1). Key tech-
nical factors include documentation, understanding software func-
tionality, interactions, architecture, and the availability of reuse-
compatible infrastructure. They identify barriers (RQ2) such as lack
of top management support, insufficient training and education, re-
sistance to change, and access to reusable components. Addressing

SBCARS’24, September 30 — October 04, 2024, Curitiba, PR

these barriers is essential for creating an environment conducive
to software reuse and enhancing DX. Strategies identified (RQ3)
include providing training and incentives for reuse, social support
for software reuse, and creating discussion forums. These strategies
emphasize the importance of peer support and collective learning
in enhancing DX.

This study has implications for researchers and practitioners in
software reuse. Researchers can explore the dynamic interplay of
these factors, barriers, and strategies to gain deeper insights into
improving software reuse practices. Practitioners can use these
insights to enhance DX and achieve greater efficiency, productivity,
and innovation in software development.

We can identify some future work and opportunities from the
results of this study, such as: i) Investigating the relationship be-
tween factors in the context of software reuse to understand their
interactions within the software industry; and ii) Developing practi-
cal guidelines and recommendations based on this study’s insights
to enhance positive factors and mitigate negative influences on
software reuse. These guidelines can help organizations implement
effective reuse practices and improve DX.

ARTIFACTS AVAILABILITY

The raw data and all the steps necessary to reproduce the research
are detailed in the supplementary material openly available via
ZENODO*.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenacéo de Aperfeicoa-
mento de Pessoal de Nivel Superior — Brasil (CAPES) - Finance
Code 001 and CNPgq.

REFERENCES

[1] Nazakat Ali, Horn Daneth, and Jang-Eui Hong. 2020. A hybrid DevOps process
supporting software reuse: A pilot project. Journal of Software: Evolution and
Process 32, 7 (2020), e2248. https://doi.org/10.1002/smr.2248

[2] Luiz Amorim and Manoel Mendonca. 2016. A method to support the adoption
of reuse technology in large software organizations. In Software Reuse: Bridging
with Social-Awareness: 15th International Conference, ICSR. 73-88. https://doi.
org/10.1007/978-3-319-35122-3_6

[3] José L Barros-Justo, David N Olivieri, and Fernando Pinciroli. 2019. An ex-
ploratory study of the standard reuse practice in a medium sized software de-
velopment firm. Computer Standards & Interfaces 61 (2019), 137-146. https:
//doi.org/10.1016/j.cs1.2018.06.005

[4] José L. Barros-Justo, Fernando Pinciroli, Santiago Matalonga, and Nelson

Martinez-Araujo. 2018. What software reuse benefits have been transferred

to the industry? A systematic mapping study. Information and Software Technol-

ogy 103 (2018), 1-21. https://doi.org/10.1016/j.infsof.2018.06.003

Rafael Capilla, Barbara Gallina, Carlos Cetina, and John Favaro. 2019. Op-

portunities for software reuse in an uncertain world: From past to emerg-

ing trends. Journal of software: Evolution and process 31, 8 (2019), e2217.
https://doi.org/10.1002/smr.2217

[6] Bruno Cartaxo, Gustavo Pinto, and Sergio Soares. 2018. The role of rapid reviews
in supporting decision-making in software engineering practice. In International
Conference on Evaluation and Assessment in Software Engineering 2018. 24-34.
https://doi.org/10.1145/3210459.3210462

[7] Bruno Cartaxo, Gustavo Pinto, and Sergio Soares. 2020. Rapid reviews in software
engineering. Contemporary Empirical Methods in Software Engineering (2020),
357-384. https://doi.org/10.1007/978-3-030-32489-6_13

[8] Kathy Charmaz. 2006. Constructing grounded theory: A practical guide through
qualitative analysis. Sage Publications, Thousand Oaks.

[9] Mengwen Chen, Tao Wang, Cheng Yang, Qiang Fan, Gang Yin, and Huaimin
Wang. 2016. Social Computing in Open Source Community: A Study of Software
Reuse. In Social Computing: International Conference of Young Computer Scientists,

—
)

“https://doi.org/10.5281/zenodo.12685772


https://doi.org/10.1002/smr.2248
https://doi.org/10.1007/978-3-319-35122-3_6
https://doi.org/10.1007/978-3-319-35122-3_6
https://doi.org/10.1016/j.csi.2018.06.005
https://doi.org/10.1016/j.csi.2018.06.005
https://doi.org/10.1016/j.infsof.2018.06.003
https://doi.org/10.1002/smr.2217
https://doi.org/10.1145/3210459.3210462
https://doi.org/10.1007/978-3-030-32489-6_13

SBCARS’24, September 30 — October 04, 2024, Curitiba, PR

[10]

[11]

[12

=
&

[14]

[15]

[16]

[17

[18

[19

[20]

[21

[22

[23]

[24]

[25

[26]

[27

[28

[29]

[30]

[31

Engineers and Educators, ICYCSEE. Springer, 621-631. https://doi.org/10.1007/978-
981-10-2053-7_55

Xingru Chen, Deepika Badampudi, and Muhammad Usman. 2022. Reuse in
Contemporary Software Engineering Practices—An Exploratory Case Study in A
Medium-sized Company. e-Informatica Software Engineering Journal 16, 1 (2022).
https://doi.org/10.37190/e-Inf220110

Daniela S Cruzes and Tore Dyba. 2011. Recommended steps for thematic synthesis
in software engineering. In 2011 international symposium on empirical software
engineering and measurement. 275-284.

Fabian Fagerholm and Jiirgen Miinch. 2012. Developer experience: Concept
and definition. In International conference on software and system process (ICSSP).
73-77. https://doi.org/10.1109/ICSSP.2012.6225984

Awdren Fontio, Arilo Dias-Neto, and Davi Viana. 2017. Investigating Factors That
Influence Developers’ Experience in Mobile Software Ecosystems. In International
Workshop on Software Engineering for Systems-of-Systems. 55-58. https://doi.org/
10.1109/JSOS.2017.10

Michaela Greiler, Margaret-Anne Storey, and Abi Noda. 2022. An actionable
framework for understanding and improving developer experience. IEEE Trans-
actions on Software Engineering 49, 4 (2022), 1411-1425. https://doi.org/10.1109/
TSE.2022.3175660

Martin Griss, Ivar Jacobson, Chris Jette, Bob Kessler, and Doug Lea. 1995.
Systematic software reuse (panel) objects and frameworks are not enough.
In Proceedings of the 1995 Symposium on Software reusability. 17-20. https:
//doi.org/10.1145/223427.213969

Jenny Guber and Iris Reinhartz-Berger. 2023. Privacy-Compliant Software Reuse
in Early Development Phases: A Systematic Literature Review. Information and
Software Technology (2023), 107351. https://doi.org/10.1016/j.infsof.2023.107351
Michelle M Haby, Evelina Chapman, Rachel Clark, Jorge Barreto, Ludovic Reveiz,
and John N Lavis. 2016. What are the best methodologies for rapid reviews of
the research evidence for evidence-informed decision making in health policy
and practice: a rapid review. Health research policy and systems 14 (2016), 1-12.
https://doi.org/10.1186/s12961-016-0155-7

Candyce Hamel, Alan Michaud, Micere Thuku, Becky Skidmore, Adrienne
Stevens, Barbara Nussbaumer-Streit, and Chantelle Garritty. 2021. Defining
rapid reviews: a systematic scoping review and thematic analysis of definitions
and defining characteristics of rapid reviews. Journal of Clinical Epidemiology
129 (2021), 74-85. https://doi.org/10.1016/j.jclinepi.2020.09.041

Catherine M Hicks, Carol S Lee, and Morgan Ramsey. 2024. Developer Thriving:
four sociocognitive factors that create resilient productivity on software teams.
IEEE Software (2024). https://doi.org/10.1109/MS.2024.3382957

Stanislaw Jarzabek and Daniel Dan. 2017. Documentation reuse: Managing similar
documents. In International Conference on Information Reuse and Integration (IRI).
372-375. https://doi.org/10.1109/IR1.2017.52

Xiaoyu Jin, Charu Khatwani, Nan Niu, Michael Wagner, and Juha Savolainen. 2016.
Pragmatic software reuse in bioinformatics: How can social network information
help?. In Software Reuse: Bridging with Social-Awareness: International Conference.
Springer, 247-264. https://doi.org/10.1007/978-3-319-35122-3_17

Monica Johar, Vijay Mookerjee, and Suresh Sethi. 2015. Optimal software design
reuse policies: A control theoretic approach. Information Systems Frontiers 17
(2015), 439-453. https://doi.org/10.1007/s10796-013-9421-1

Huma Hayat Khan and Muhammad Noman Malik. 2017. Software standards and
software failures: a review with the perspective of varying situational contexts.
IEEE access 5 (2017), 17501-17513. https://doi.org/10.1109/ACCESS.2017.2738622
Valerie J King, Adrienne Stevens, Barbara Nussbaumer-Streit, Chris Kamel, and
Chantelle Garritty. 2022. Paper 2: Performing rapid reviews. Systematic Reviews
11, 1 (2022), 151. https://doi.org/10.1186/s13643-022-02011-5

D. Kirk, M. Roper, and M. Wood. 2002. Defining the problems of framework reuse.
In Proceedings 26th Annual International Computer Software and Applications.
623-626. https://doi.org/10.1109/CMPSAC.2002.1045073

Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing system-
atic literature reviews in software engineering. Technical Report. Evidence-Based
Software Engineering (EBSE) Project.

Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing System-
atic Literature Reviews in Software Engineering. Technical Report EBSE 2007-001.
Keele University and Durham University Joint Report.

Nam-Yong Lee and C.R. Litecky. 1997. An empirical study of software reuse with
special attention to Ada. IEEE Transactions on Software Engineering 23, 9 (1997),
537-549. https://doi.org/10.1109/32.629492

Jingyue Li, Reidar Conradi, Parastoo Mohagheghi, Odd Are Szehle, @ivind Wang,
Erlend Naalsund, and Ole Anders Walseth. 2004. A study of developer attitude
to component reuse in three IT companies. In Product Focused Software Process
Improvement: 5th International Conference, PROFES. 538-552. https://doi.org/10.
1007/978-3-540-24659-6_39

Niko Mikitalo, Antero Taivalsaari, Arto Kiviluoto, Tommi Mikkonen, and Rafael
Capilla. 2020. On opportunistic software reuse. Computing 102 (2020), 2385-2408.
https://doi.org/10.1007/s00607-020-00833-6

Vidhya Mellarkod, Radha Appan, Donald R Jones, and Karma Sherif. 2007. A
multi-level analysis of factors affecting software developers’ intention to reuse

[32

[33

(34]

@
2

[36

(37]

[38

[39

[40]

[41

[42

"~
&

[44

[45

=
&

[47

(48

[49

[50

a
=

[52]

R. F. Gongalves et al.

software assets: An empirical investigation. Information & Management 44, 7
(2007), 613-625. https://doi.org/10.1016/j.im.2007.03.006

H. Mili, F. Mili, and A. Mili. 1995. Reusing software: issues and research directions.
IEEE Transactions on Software Engineering 21, 6 (1995), 528-562. https://doi.org/
10.1109/32.391379

Sonia Montagud, Silvia Abrahao, and Emilio Insfran. 2012. A systematic review
of quality attributes and measures for software product lines. Software Quality
Journal 20 (2012), 425-486. https://doi.org/10.1007/s11219-011-9146-7

Jenny Morales, Cristian Rusu, Federico Botella, and Daniela Quifiones. 2019.
Programmer eXperience: A Systematic Literature Review. IEEE Access 7 (2019),
71079-71094. https://doi.org/10.1109/ACCESS.2019.2920124

Rebeca C. Motta, Kathia M. de Oliveira, and Guilherme H. Travassos. 2019. A
conceptual perspective on interoperability in context-aware software systems.
Information and Software Technology 114 (2019), 231-257. https://doi.org/10.
1016/j.infsof.2019.07.001

Abi Noda, Margaret-Anne Storey, Nicole Forsgren, and Michaela Greiler. 2023.
DevEx: What Actually Drives Productivity: The developer-centric approach
to measuring and improving productivity. Queue 21, 2 (2023), 35-53. https:
//doi.org/10.1145/3595878

Mohd Akmal Faiz Osman, Mohamad Noorman Masrek, and Khalid Abdul
Wahid. 2022. Software Reuse Practices among Malaysian Freelance Devel-
opers: A Conceptual Framework. In Proceedings, Vol. 82. MDPI, 30. https:
//doi.org/10.3390/proceedings2022082030

Mohamed A Oumaziz, Alan Charpentier, Jean-Rémy Falleri, and Xavier Blanc.
2017. Documentation reuse: Hot or not? An empirical study. In 16th International
Conference on Software Reuse. 12-27. https://doi.org/10.1007/978-3-319-56856-
0.2

Iris Reinhartz-Berger. 2024. Challenges in software model reuse: cross application
domain vs. cross modeling paradigm. Empirical Software Engineering 29, 1 (2024),
16. https://doi.org/10.1007/s10664-023-10386-9

M.A. Rothenberger, KJ. Dooley, U.R. Kulkarni, and N. Nada. 2003. Strategies
for software reuse: a principal component analysis of reuse practices. IEEE
Transactions on Software Engineering 29, 9 (2003), 825-837. https://doi.org/10.
1109/TSE.2003.1232287

Marcus A Rothenberger. 2003. Project-Level Reuse Factors: Drivers for Variation
within Software Development Environments. Decision sciences 34, 1 (2003),
83-106. https://doi.org/10.1111/1540-5915.02252

Di Shang, Karl Lang, and Roumen Vragov. 2022. A Market-Based Approach to
Facilitate the Organizational Adoption of Software Component Reuse Strategies.
Communications of the Association for Information Systems 51, 1 (2022), 36. https:
//doi.org/10.17705/1CAIS.05140

Karma Sherif and Ajay Vinze. 2003. Barriers to adoption of software reuse:
A qualitative study. Information & Management 41, 2 (2003), 159-175. https:
//doi.org/10.1016/S0378-7206(03)00045-4

Gustavo Silva, Carla Bezerra, Anderson Uchda, and Ivan Machado. 2023. What
Factors Affect the Build Failures Correction Time? A Multi-Project Study. In
Brazilian Symposium on Software Components, Architectures, and Reuse (SBCARS
’23). 41-50. https://doi.org/10.1145/3622748.3622753

Odd Petter N Slyngstad, Anita Gupta, Reidar Conradi, Parastoo Mohagheghi,
Harald Renneberg, and Einar Landre. 2006. An empirical study of developers
views on software reuse in statoil asa. In ACM/IEEE International Symposium
on Empirical Software Engineering. 242-251. https://doi.org/10.1145/1159733.
1159770

Dalia Sobhy, Rami Bahsoon, Leandro Minku, and Rick Kazman. 2021. Evaluation
of software architectures under uncertainty: A systematic literature review. ACM
Transactions on Software Engineering and Methodology (TOSEM) 30, 4 (2021), 1-50.
https://doi.org/10.1145/3464305

Manuel Sojer and Joachim Henkel. 2010. Code reuse in open source software
development: Quantitative evidence, drivers, and impediments. Journal of the
Association for Information Systems 11, 12 (2010), 868-901.  https://doi.org/
abstract=1489789

10 Standardization. 2019. Part 210: Human-centred design for interactive systems.
(2019).

Sebastian Spaeth Stefan Haefliger, Georg von Krogh. 2008. Code Reuse in Open
Source Software. Management Science 54, 1 (2008), 180-193. https://doi.org/10.
1287/mnsc.1070.0748

Hongyi Sun, Waileung Ha, Min Xie, and Jianglin Huang. 2015. Modularity’s
impact on the quality and productivity of embedded software development: a case
study in a Hong Kong company. Total Quality Management & Business Excellence
26, 11-12 (2015), 1188-1201. https://doi.org/10.1080/14783363.2014.920179

Sri Lakshmi Vadlamani and Olga Baysal. 2020. Studying software developer
expertise and contributions in Stack Overflow and GitHub. In IEEE International
Conference on Software Maintenance and Evolution (ICSME). 312-323. https:
//doi.org/10.1109/ICSME46990.2020.00038

Julia Varnell-Sarjeant and Anneliese Amschler Andrews. 2015. Comparing reuse
strategies in different development environments. In Advances in Computers.
Vol. 97. Elsevier, 1-47. https://doi.org/10.1016/bs.adcom.2014.10.002


https://doi.org/10.1007/978-981-10-2053-7_55
https://doi.org/10.1007/978-981-10-2053-7_55
https://doi.org/10.37190/e-Inf220110
https://doi.org/10.1109/ICSSP.2012.6225984
https://doi.org/10.1109/JSOS.2017.10
https://doi.org/10.1109/JSOS.2017.10
https://doi.org/10.1109/TSE.2022.3175660
https://doi.org/10.1109/TSE.2022.3175660
https://doi.org/10.1145/223427.213969
https://doi.org/10.1145/223427.213969
https://doi.org/10.1016/j.infsof.2023.107351
https://doi.org/10.1186/s12961-016-0155-7
https://doi.org/10.1016/j.jclinepi.2020.09.041
https://doi.org/10.1109/MS.2024.3382957
https://doi.org/10.1109/IRI.2017.52
https://doi.org/10.1007/978-3-319-35122-3_17
https://doi.org/10.1007/s10796-013-9421-1
https://doi.org/10.1109/ACCESS.2017.2738622
https://doi.org/10.1186/s13643-022-02011-5
https://doi.org/10.1109/CMPSAC.2002.1045073
https://doi.org/10.1109/32.629492
https://doi.org/10.1007/978-3-540-24659-6_39
https://doi.org/10.1007/978-3-540-24659-6_39
https://doi.org/10.1007/s00607-020-00833-6
https://doi.org/10.1016/j.im.2007.03.006
https://doi.org/10.1109/32.391379
https://doi.org/10.1109/32.391379
https://doi.org/10.1007/s11219-011-9146-7
https://doi.org/10.1109/ACCESS.2019.2920124
https://doi.org/10.1016/j.infsof.2019.07.001
https://doi.org/10.1016/j.infsof.2019.07.001
https://doi.org/10.1145/3595878
https://doi.org/10.1145/3595878
https://doi.org/10.3390/proceedings2022082030
https://doi.org/10.3390/proceedings2022082030
https://doi.org/10.1007/978-3-319-56856-0_2
https://doi.org/10.1007/978-3-319-56856-0_2
https://doi.org/10.1007/s10664-023-10386-9
https://doi.org/10.1109/TSE.2003.1232287
https://doi.org/10.1109/TSE.2003.1232287
https://doi.org/10.1111/1540-5915.02252
https://doi.org/10.17705/1CAIS.05140
https://doi.org/10.17705/1CAIS.05140
https://doi.org/10.1016/S0378-7206(03)00045-4
https://doi.org/10.1016/S0378-7206(03)00045-4
https://doi.org/10.1145/3622748.3622753
https://doi.org/10.1145/1159733.1159770
https://doi.org/10.1145/1159733.1159770
https://doi.org/10.1145/3464305
https://doi.org/abstract=1489789
https://doi.org/abstract=1489789
https://doi.org/10.1287/mnsc.1070.0748
https://doi.org/10.1287/mnsc.1070.0748
https://doi.org/10.1080/14783363.2014.920179
https://doi.org/10.1109/ICSME46990.2020.00038
https://doi.org/10.1109/ICSME46990.2020.00038
https://doi.org/10.1016/bs.adcom.2014.10.002

	Abstract
	1 Introduction
	2 BACKGROUND
	2.1 Software Reuse 
	2.2 Developer Experience

	3 Related Work
	4 RESEARCH METHOD
	4.1 Definition of Research Questions
	4.2 Search Strategy
	4.3 Inclusion and Exclusion Criteria
	4.4 Study Selection Process
	4.5 Data Extraction and Synthesis 

	5 RESULTS
	5.1 RQ1: What are the Main Factors that Affect Developer Experience in Software Reuse?
	5.2 RQ2: What Barriers Prevent Developers from Improving the Factors Affecting Developer Experience in Software Reuse?
	5.3 RQ3: What are the Strategies Used to Improve Developer Experience in Software Reuse?

	6 DISCUSSION
	6.1 Factors Affecting Developer Experience in Software Reuse
	6.2 Barriers to Improving Developer Experience in Software Reuse
	6.3 Strategies to Improve Developer Experience in Software Reuse

	7 THREATS TO VALIDITY
	8 CONCLUSION
	Acknowledgments
	References

