Reengineering an Adaptive System to Dynamic Software Product
Lines: An Experience report

Dhyego Tavares M. da Cruz
Institute of Computing (IC), Federal
University of Bahia (UFBA)
Salvador, Brazil

dhyegocruz@ufba.br

Marcus Elias Silva Freire
Institute of Computing (IC), Federal
University of Bahia (UFBA)
Salvador, Brazil
marcus.elias@ufba.br

Cassio V. S. Prazeres
Institute of Computing (IC), Federal
University of Bahia (UFBA)
Salvador, Brazil
prazeres@ufba.br

Maycon L. M. Peixoto
Institute of Computing (IC), Federal
University of Bahia (UFBA)
Salvador, Brazil

Nilton F. S. Seixas
Institute of Computing (IC), Federal
University of Bahia (UFBA)
Salvador, Brazil
nilton.seixas@ufba.br

Rodrigo R. G. Souza
Institute of Computing (IC), Federal
University of Bahia (UFBA)
Salvador, Brazil

rodrigorgs@ufba.br

Ivan do Carmo Machado
Institute of Computing (IC), Federal
University of Bahia (UFBA)
Salvador, Brazil
ivan.machado@ufba.br

Hérsio Massanori Iwamoto
Positivo Tecnologia
Curitiba, Brazil
hersio@positivo.com.br

Mayki dos Santos Oliveira
Institute of Computing (IC), Federal
University of Bahia (UFBA)
Salvador, Brazil
maykioliveira@ufba.br

Frederico A. Durao
Institute of Computing (IC), Federal
University of Bahia (UFBA)
Salvador, Brazil

fdurao@ufba.br

Gustavo B. Figueiredo
Institute of Computing (IC), Federal
University of Bahia (UFBA)
Salvador, Brazil
gustavobf@ufba.br

Eduardo Santana de Almeida
Institute of Computing (IC), Federal
University of Bahia (UFBA)
Salvador, Brazil

maycon.leone@ufba.br

ABSTRACT

Dynamic Software Product Lines (DSPLs) extend traditional Soft-
ware Product Lines by enabling runtime adaptation through pre-
defined variability points. Despite their benefits, the migration of
legacy or adaptive systems to DSPLs remains underexplored, es-
pecially through the use of feature toggles. This study aims to
investigate how an adaptive Al-based smart home system can be
refactored into a DSPL using feature toggles to manage runtime
variability and improve modularity, flexibility, and performance.
The research involved (i) a literature review on DSPLs and fea-
ture toggle strategies, (ii) the creation of feature models from code
analysis, documentation, and expert interviews, and (iii) the incre-
mental implementation of 13 feature toggles across three system
modules (RecSys, ChatBot, Vision). Two experiments using factorial
design were conducted to assess the impact on performance metrics.
The refactored system demonstrated improved adaptability and re-
duced resource usage without performance degradation. Feature
toggles enabled real-time activation/deactivation of functionalities,
allowing for user-specific configurations and subscription models.
However, limitations were found in toggle dependency manage-
ment, requiring manual coding solutions. Feature toggles proved
to be an effective and practical strategy for transforming an adap-
tive system into a DSPL, enhancing runtime flexibility and system
evolution capabilities. The study highlights key considerations for
managing toggles, such as modularization, architectural process,
and the importance of documentation.

eduardo.almeida@ufba.br

KEYWORDS
Feature flag, Feature toggle, DSPL

1 Introduction

The Software Product Line (SPL) is a systematic approach that en-
ables the development of a family of software systems based on a
shared set of reusable assets [25, 36]. Its primary advantage lies in
the reuse of components, which reduces costs, effort, and develop-
ment time while improving the quality and consistency of products
[25]. Furthermore, SPL facilitates customization to address diverse
market needs and enhances portfolio scalability. However, adopting
an SPL approach can pose challenges, such as the high initial imple-
mentation cost, the need for detailed and specialized planning, and
the complexity of managing product variability [25]. Additionally,
transitioning from traditional methods to an SPL approach may
require significant changes in processes and organizational culture,
necessitating training and adaptation from the teams involved [26].

Dynamic Software Product Lines (DSPLs) represent a significant
evolution from traditional Software Product Lines (SPLs), integrat-
ing adaptability into system design, focusing on predefined adapta-
tion points [2]. Unlike conventional SPLs, which generate prede-
fined solutions based on a shared set of functionalities, DSPL-based
systems are distinguished by their ability to dynamically adapt at
runtime and excel in managing these changes [39]. This enables the
software to automatically adjust its functionalities in response to
changes in the environment or user requirements, enhancing flexi-
bility and responsiveness. Such capabilities are particularly valuable

SBCARS’25, September 22-26, 2025, Recife, PE

in contexts where requirements can shift rapidly, such as mobile
systems, IoT applications, and dynamic enterprise environments.

The advantages of DSPLs are considerable. Firstly, their ability
to adapt in real-time reduces the need for manual interventions,
leading to more efficient and cost-effective system maintenance
[1, 29, 30]. Moreover, the advanced customization offered by this
approach enhances the user experience by tailoring specific func-
tionalities to individual needs and usage contexts [30, 36, 38]. This
not only improves user satisfaction but also provides a competi-
tive advantage in markets characterized by a demand for constant
innovation and agility. Furthermore, the scalability and flexibility
inherent in DSPL systems enable organizations to address mul-
tiple operational scenarios without the need to develop separate
products for each case [3, 5, 26].

On the other hand, the absence of a DSPL system can lead to sig-
nificant limitations. Static systems that cannot adapt to changes in
the environment or user preferences may quickly become obsolete,
particularly in dynamic industries [15, 26, 29, 38]. Additionally, the
lack of flexibility can result in higher operational costs, as updates
and modifications require frequent manual interventions [1, 29].
Such systems also struggle to manage variability and meet diverse
user demands, compromising both their competitiveness and effi-
ciency [5, 30, 36, 38]. Therefore, adopting a DSPL approach becomes
a strategic measure not only to optimize resources but also to ensure
the longevity and relevance of the developed systems. To ground
this investigation in a practical context, this study focuses on the
reengineering of a real-world, adaptive Al-based smart home sys-
tem. This system is the outcome of a university-industry research
and development (R&D) project [6, 10, 11, 19, 24, 35], making it
a relevant candidate for exploring the challenges and benefits of
migrating a legacy system to a more flexible architecture.

DSPLs are commonly implemented using techniques that enable
runtime adaptation, such as variability modeling with feature mod-
els and component- and service-based reconfiguration [3, 4, 36].
These techniques employ architectural models to capture the com-
plexity and dynamics of the systems. The models are used to gen-
erate code and adaptation policies, which are then executed by
middleware. Another strategy that could also be applied is the use
of feature toggles, which allow features to be dynamically enabled
or disabled without modifying the source code or interrupting sys-
tem execution [33].

For this purpose feature toggles can offer a practical solution
for runtime flexibility, enabling conditional activation or deacti-
vation of features without system rebuilds [8, 14, 21-23, 32, 33].
They streamline development cycles and reduce risks by support-
ing: gradual rollout, introducing new functionality incrementally;
experimentation, testing feature variations with user groups; and
production control, disabling features swiftly without deploying
new versions [23].

Feature toggles enable real-time dynamism and mutability in
code. However, to the best of our knowledge, no prior studies have
investigated the use of this technique to fully refactor a system into
a dynamic software product line (DSPL). This study proposes the
transformation of an existing system into a DSPL by adopting fea-
ture toggles as the primary mechanism for implementing variability
points. While the primary goals are to enhance modularity

Tavares et al.

and runtime flexibility, it is critical to validate that these ben-
efits do not come at a prohibitive performance cost. Therefore,
to assess the practical implications and non-functional impact of
this approach, a performance evaluation was conducted to compare
system behavior before and after the integration of feature toggles.

The remainder of this paper is organized as follows: Section 2
introduces the concepts of feature toggles. Section 3 reviews related
work on smart homes and the intersection of DSPL with feature tog-
gles. Section 4 details the research design, including the creation of
feature models and the implementation of toggle management. Sec-
tion 5 explains the experimental design for performance evaluation.
Section 6 presents the preliminary results from the experiments.
Section 7 discusses the findings, benefits, and challenges encoun-
tered. Finally, Section 8 concludes the paper and outlines future
work.

2 Feature Toggles

Feature Toggles are a technique that allows developers to enable or
disable a feature or specific part of the code [22], offering control
over code behavior without requiring a system redeployment in a
runtime execution, as shown in Listing 1. This approach facilitates
the incremental integration of new features and experiments, even
when the features are not fully ready for release or when developers
need to deliver them to a specific group of users.

The code in Listing 1 demonstrates a basic implementation of
a feature toggle using the Unleash! tool feature toggle manage-
ment system to control the activation of a specific functionality
at runtime. In this example, the function() checks the status of a
feature toggle toggle _name using the feature.enable method, which
accepts the toggle name and a fallback option for default behavior.
If the toggle is not enabled, the code inside the if block runs, rep-
resenting the current implementation or the new functionality. If
the toggle is disabled, the code in the else block executes, reflecting
an alternative or previous implementation. Both blocks return the
respective implementation based on the toggle’s status.

def function () :
if not feature.enable('toggle name', fallback)

#current implementation
return implementation
else s
#another current implementation

return another current implementation

Listing 1: Example of feature toggle in a method

Furthermore, feature toggles can be applied in continuous de-
velopment and A/B testing environments, facilitating real-time
adjustments and risk mitigation by quickly disabling problematic
features [23]. This work contributes to the growing body of re-
search that highlights the potential of feature toggles as a flexible,
scalable tool to support the high adaptability required in DSPLs,
particularly in smart home applications.

!https://github.com/Unleash/unleash/tree/main

Reengineering an Adaptive System to Dynamic Software Product Lines: An
Experience report

3 Related Work

To explore this intersection, we divided this section into two parts:
the first subsection discusses studies in the smart home domain—the
context of our system—while the second subsection highlights re-
search connecting DSPL with the feature toggle methodology.

3.1 Smart Home Domain

This present study aims to adapt a recommendation system for
smart homes, equipped with artificial intelligence, into a dynamic
software product line, based on approaches described in the lit-
erature [6, 19]. This system seamlessly integrates with real smart
devices, learns user behavior patterns, and strives to deliver en-
hanced, personalized recommendations for these devices.

Some works discuss innovative solutions and challenges in the
field of smart homes and DSPL [7-9, 35]. The application of fea-
ture models and executable reconfiguration plans stands out as
a strategy to adapt systems to changes in the environment and
user actions, ensuring runtime compatibility [8]. Additionally, the
use of Aspect-Oriented Programming (AOP) in DSPLs has demon-
strated advantages in modularity and coupling, although it requires
attention to the propagation of changes [7]. In terms of device in-
tegration and artificial intelligence, distributed architectures with
cloud-based services have proven effective in learning user habits to
recommend actions that optimize comfort and energy consumption
[19]. Other solutions, such as the Rudas system, emphasize energy
efficiency and remote control in IoT networks [9].

Cetina et al. [8] paper proposes a model-based approach for the
dynamic reconfiguration of smart homes, utilizing feature models
to specify how the system can evolve. The approach enables smart
homes to self-configure in response to changes in user activities and
the physical environment. Feature models are used to define the
boundaries within which the system can evolve, avoiding technical
details and specifying reconfiguration possibilities declaratively.
The system includes a Context Monitor that assesses contextual
conditions, a reconfigurator that leverages resolutions associated
with these conditions to query the feature model, and a Reconfigu-
ration Plan to modify the system architecture. The approach also
incorporates model-based validation to analyze configurations and
ensure specific properties.

Complementing these findings in Carvalho et al. [7] work, the
feature model was employed as a central tool to define and manage
reconfiguration scenarios for a smart home environment, enabling
the specification of conditions for dynamic system variations. This
approach aligns with the principles of DSPL engineering by using
feature models to support runtime adaptations. The reconfigura-
tion points identified in the study were strategically categorized
into three key domains: security, lighting, and temperature control.
These categories illustrate the focus on adaptability and evolution
in system functionality, addressing the need for tailored variations
to meet specific runtime conditions and requirements.

3.2 Feature Toggles and DSPL

Numerous studies have investigated the application of feature tog-
gles in software development [12, 21, 22, 28, 32, 33]. Among these,
Meinicke et al. [28] conducts a comparative analysis of two distinct
approaches, elucidating their technical similarities, differences, and

SBCARS’25, September 22-26, 2025, Recife, PE

potential avenues for cross-disciplinary learning based on insights
gathered from expert interviews. Similarly, Mahdavi-Hezaveh et al.
[22] examines the advantages of feature toggles in the context of
continuous integration and delivery, while also emphasizing the
risks associated with their misuse. Mahdavi-Hezaveh et al. [22]
identified 17 industry best practices for the effective management
of feature toggles, derived from a qualitative analysis of both gray
literature and peer-reviewed publications. A notable finding is the
prevalent adoption of specialized management systems, such as
LaunchDarkly [20] and Split [34], which have become integral tools
in this domain.

Expanding on this, Mahdavi-Hezaveh et al. [21] proposes heuris-
tics and metrics to improve feature toggle practices, aiming to
reduce complexity, enhance maintainability, and limit technical
debt. The study emphasizes that toggles should be used judiciously,
be self-descriptive, avoid code duplication, and be removed when
obsolete. Two core practices are recommended:

e Management Practices: Implementing a feature toggle
management system is crucial for organizing and reducing
code complexity.

e Clean-up Practices: Regularly removing unused feature
toggles is essential to prevent dead code, control complexity,
and minimize technical debt.

In another study Jézéquel et al. [18] explores the integration of
Feature Toggles with Software Product Lines (SPL). The study high-
lights how Feature Toggles provide a runtime variability resolution
alternative for managing multiple feature branches in the source
code. The authors propose a unified approach that models variabil-
ity using a feature model, enabling partial resolution during the
design phase and activating toggles at runtime. They demonstrate
this concept through a toy example and a configurable authentica-
tion system, interacting with popular frameworks such as Togglz?.
The article discusses the advantages and disadvantages of various
implementation strategies, emphasizing the need for structured
patterns to effectively manage variability in major programming
languages like Java and C.

In this work, we explored the integration of feature toggles
within smart home environments to DSPLs. Unlike previous stud-
ies that focused on using predefined feature models for system
reconfiguration based on user or environmental changes, our ap-
proach dynamically manages feature activation and deactivation at
runtime, without requiring significant architectural modifications.
As noted by Weyns et al. [39], runtime adaptation can be chal-
lenging, sometimes leading to instability and inefficiency; however,
feature toggles offer a solution by enabling flexibility in system
behavior, allowing for rapid modifications and incremental feature
implementations [23].

4 Research Design

In this section, we delve into the methodology employed to execute
the refactoring process of our system. This approach is structured
into two key parts. First, we provide a detailed description of how
we designed the system’s feature architecture using feature models,
highlighting the principles and strategies that guided this design. In

https://www.togglz.org/

SBCARS’25, September 22-26, 2025, Recife, PE

Tavares et al.

Table 1: Description of the Features and Interactions of RecSysModule

Feature Function Interactions
Intelligence Responsible for all the intelligence of the module UsageHistory
EnvironmentBehavior Controls the behavior of the devices in the environ- UsageHistory
ment
EventPrevision Forecasts possible events in the environment UsageHistory
Anomaly Detects an anomaly in the usage of devices UserNotification, HumanizedMessage, UsageHistory
ActionRecommendation Recommends actions for the devices HeuristicRules, HumanizedMessage
UsageHistory Records the usage of the devices Intelligence
HumanizedMessage Transcribes low-level messages to high-level mes- ActionRecommendation, Anomaly
sages
HeuristicRules Set of rules for handling recommendations EnvironmentBehavior
UserNotification Generates notifications for users HeuristicRules

RecommendationSuggestion Notifies users with recommendation suggestions

UncommonPresence
DeviceAnomaly

Notifies detected anomalies in devices

Intelligence, UsageHistory, HumanizedMessage

Notifies of uncommon presence in the environment Intelligence, UsageHistory, HumanizedMessage

Intelligence, UsageHistory, HumanizedMessage

the second part, we explore the feature management techniques im-
plemented to control feature toggles, discussing the tools, practices,
and mechanisms that ensure effective feature handling throughout
the refactoring process.

In this study, we refactored an artificial intelligence (AI) system
originally structured into three main modules, aiming to improve
its overall efficiency and organization: the RecSysModule, which
includes essential features such as device control, usage tracking,
heuristic rules, devices anomaly detection, and event prediction;
the ChatBotModule, designed for direct user interaction with
the system and message logging; and the VisionModule, which
provides the system with vision-based capabilities, including fa-
cial recognition, object detection, intruder detection, and security
management. In addition to the three main modules, our system
includes a broker that manages communication between modules
and handles inputs from the smart home.

The transition to a dynamic system was carried out through a
carefully structured three-step process: (1) an in-depth literature
review to provide a solid foundation and guide the overall approach,
(2) the creation of a detailed model to organize and represent how
features were structured within the system using feature models,
as illustrated in Figure 1, and (3) the implementation of feature tog-
gles derived from the developed feature models to enable dynamic
control and flexibility. Each of these steps is elaborated in greater
detail in the subsequent sections.

4.1 Literature Review

This initial phase of article search was of fundamental importance,
as it allowed us to identify and evaluate development techniques
that would facilitate the system transition. Our primary objective
was to transform the existing system rather than rebuild it from
scratch. Following this stage, we were able to determine the most
suitable technique to apply in our work and conduct a comparative
analysis with other methodologies to validate its appropriateness
and effectiveness.

The first step in acquiring related studies was conducting a re-
view of the state of the art, focusing on DSPL. This process involved

searching prominent conferences such as VaMoS, SPLC, SEAMS,
GPCE, ICSE, FSE, ASE, and SBCARS, as well as renowned journals
like JSS, IST, IEEE TSE, and ACM TOSEM. The searches were per-
formed using the DBLP indexer, covering relevant publications from
2005 onward. This initial effort aimed to map recent advancements
and identify significant contributions to the field.

To refine the scope, the study focused on research where "feature
toggle" was the central theme. Searches were conducted in widely
recognized databases, including ACM Digital Library, IEEE Xplore,
and ScienceDirect, using terms such as "feature toggle,’ "feature
flag," and similar keywords. These terms were derived from trusted
sources, including Martin Fowler’s blog and the work of Hezaveh et
al. [14, 22]. Following this stage, duplicate results were removed, and
a “snowballing” technique [40] was employed to identify additional
relevant studies by analyzing references from the collected articles.

This literature review process not only mapped the intersection
of feature toggles and DSPL but also provided a deeper understand-
ing of academic progress in the field. It offered insights into best
practices and methodological choices discussed in the literature and
most used tools, providing a broader and more grounded view of
the academic contributions to the use and development of feature
toggles.

4.2 Design of Feature Models

The transition from the existing adaptive system to a DSPL man-
aged through feature toggles entailed an incremental and carefully
planned refactoring process. The primary objective was not only
to incorporate runtime variability capabilities but also to ensure
that this adaptation occurred in a manner that minimized system
complexity and overhead. This process involved the identification
of variability points, their mapping to feature toggles as illustrated
in Figure 1, and the gradual integration of these mechanisms across
the system’s three core modules: RecSys, ChatBot, and Vision. The
implementation of 13 feature toggles required a thorough analysis
of the legacy codebase and the application of targeted refactor-
ing strategies to accommodate the newly introduced variability

Reengineering an Adaptive System to Dynamic Software Product Lines: An

Experience report SBCARS’25, September 22-26, 2025, Recife, PE
RecSys
m;eg‘ UsageHistory | HumaniieiiMessage | ’ HeuristicRules
EnviromentBehavior ’m%m | UsersNotification ‘ | PoliceNotification ‘

’ActionRecommendation |RecommendatlonSujestion| | UncommonPresence ‘ ’DeviceAnomaIy

‘ ® Optional < Mandatory . OR Alternative l:l Concrete ‘

Figure 1: Example of feature model for the RecSys Module.

Code Analysis Feature Identification Feature Model Creation Validation and Refinement
Conducting an extensive examination Systematically abstracting core Developing a visual model of Iteratively validating and
of code and history and optional features features refining models

Discussions with Component Descriptive Table
Experts Connections Analysis Creation
Engaging with experts to clarify Exploring interconnections and Compiling a detailed table of

and validate findings data flows features

Figure 2: Roadmap of processes followed before refactoring

mechanisms. Table 1 complements this by offering a comprehen- tools were employed to facilitate the detection of architec-
sive description of the features present within the RecSysModule. tural components, class hierarchies, and potential technical
Together, these resources serve as valuable tools for understanding debt areas that could impact the dynamization process.
the design and functionality of the recommendation system. ¢ Discussions with Experts: Structured interviews and fo-
Through these discussions and code reviews, we gained valuable cused workshops with developers, system architects, and
clarity on the interconnections between components, uncovering domain practitioners. These interactions were designed to
features that were distributed across multiple sets of classes rather clarify doubts arising from documentation and code reviews,
than confined to specific methods. This exploration enabled us to gain insights into design rationales, and understand the prac-
construct a detailed feature model, representing the implemented tical challenges faced during development and maintenance.
features while highlighting potential points of variability. The re- This step also helped validate our initial findings and refine
sulting model provided a clear and structured visualization, serving our understanding of complex system behaviors.
as a crucial guide for the dynamization process and ensuring a cohe- e Feature Identification: Systematic abstraction of function-
sive approach to enhancing the system’s adaptability and flexibility. alities based on insights gathered from documentation, code
In summary, we follow the steps below to design and structure analysis, and expert discussions. The focus was on identify-
the system before refactoring. These steps can also be visualized in ing core features, optional capabilities, and potential variabil-
a simplified way in the Figure 2: ity points, particularly within complex modules like the rec-

ommendation system. This process involved defining clear
feature boundaries and dependencies, ensuring that all rele-

e Code Analysis: An extensive examination of the project vant aspects of the system were captured.
repositories, focusing on both the source code and the ver- ® Compf)nent Connfzctlons Analysis: In-depth exploration
sion control history. This analysis aimed to map implemented of the interconnections between system components, em-
functionalities, identify code patterns, and uncover hidden phasizing how functionalities are distributed across different

dependencies not explicitly documented. Static code analysis classes and modules. This step involved tracing data flows,

SBCARS’25, September 22-26, 2025, Recife, PE

control flows, and interaction patterns to understand how
disparate components collaborate to achieve system objec-
tives. Special attention was paid to cross-cutting concerns
that might influence the dynamization strategy.

o Feature Model Creation: Development of a detailed vi-
sual model (Figure 1) to represent the identified features
and their interrelations. This feature model provided a struc-
tured framework for visualizing the system’s functional ar-
chitecture, highlighting feature hierarchies, dependencies,
and variability points. The model served as a reference for
guiding design decisions during the refactoring process.

e Descriptive Table Creation: Design and compilation of
a comprehensive table (Table 1) that details the features of
modules. Each feature was described in terms of its functions,
implementation details, and interactions with other system
components. This table complemented the feature model by
offering a granular, text-based representation of the module’s
capabilities.

e Validation and Refinement: An iterative validation pro-
cess to ensure the accuracy and completeness of the iden-
tified features and their representations. This involved re-
visiting documentation, reanalyzing code, and conducting
follow-up discussions with experts to address ambiguities
or gaps. Feedback from these activities was used to refine
both the feature model and descriptive table, ensuring their
reliability as tools for supporting the dynamization process.

4.3 Feature Toggle Management

Given the limited timeframe for implementation, it became impera-
tive to define a strategy to manage system variability effectively.
The adoption of a feature toggle management tool emerged as an
efficient approach to optimize the achievement of our objectives
and is strongly recommended in the literature [23]. The use of a
dedicated tool would simplify the development process by elimi-
nating the need to design a custom control interface and reducing
the architectural planning overhead. For an existing legacy system
such as ours, developing a new tool from scratch would entail pro-
hibitive costs, making this approach a more cost-effective solution
for achieving our goals.

To select the most appropriate tool, we established three key
requirements: it had to be open-source, easily installable and
portable, and, most importantly, provide support for user man-
agement. Open-source tools offer transparency and a cost-effective
alternative. Portability allows for rapid deployment across differ-
ent environments and ensures platform compatibility. Support for
user management was the most critical criterion, as the goal of the
system was to enable different configurations per user type, allow-
ing for scenarios such as subscription-based models. To identify
suitable candidates, we reviewed existing literature and conducted
additional searches for feature toggle repositories on GitHub.

Among the tools considered—Unleash, LaunchDarkly, Split, PostHog,

GrowthBook, and Flagsmith [13, 16, 20, 31, 34, 37]—Unleash emerged
as the most suitable option. This decision was supported by the
findings of Mahdavi-Hezaveh et al. [23], which demonstrated the
effectiveness of Unleash as well as its alignment with the three
predefined criteria. The tool provided the necessary features, such

Tavares et al.

as flexible activation strategies and access control, within an open-
source framework, thereby aligning with the technical and practical
objectives of this study.

4.4 Challenges and Mitigation Strategies

Refactoring a legacy system to incorporate feature toggles was not
without challenges. The primary obstacle lay in identifying and
managing the intrinsic dependencies among existing functionalities.
The source code, developed over an extended period, exhibited a
high degree of coupling, which hindered the clean extraction of
individual features to be controlled via toggles.

Challenge 1: Code Coupling and Identification of Variabil-
ity Points. The analysis of the legacy code revealed tightly inter-
woven functionalities, making it difficult to define clear boundaries
for toggles. To address this, we adopted a top-down impact analysis
approach, starting with high-level functionalities and drilling down
into affected subcomponents. Intensive pair programming sessions
and code reviews were conducted to map method and class invoca-
tions, thereby identifying the most appropriate injection points for
toggles.

Challenge 2: Management of Toggle Dependencies Although
tools such as Unleash simplify individual toggle activation and
deactivation, we encountered limitations in explicitly managing
logical dependencies among toggles (e.g., Feature A can only be
activated if Feature B is active). To circumvent this limitation, we
implemented manual coding solutions. Specifically, we developed
an internal orchestration module that, by querying the state of
toggles in Unleash, applied predefined validation rules to ensure
configuration consistency. For instance, a validation service was
created to verify whether the User Preferences Database toggle
toggle_user_preferences_db was active before allowing the ac-
tivation of the Advanced Personalization toggle toggle_advanced
_personalization. This module functioned as a safety and con-
sistency layer, compensating for the lack of native support for
managing complex dependencies within the tool.

Challenge 3: Validation and Testing. Introducing runtime
variability increased the complexity of testing scenarios. To address
this, we developed a comprehensive test matrix that considered all
logically possible toggle combinations for each module. Automated
integration tests were adopted to simulate different user profiles
and their respective active toggle configurations.

4.5 Lessons Learned and Applicable Knowledge

The experience of refactoring an existing adaptive system into a
DSPL using feature toggles provided valuable insights for future
legacy system migrations:

Feature Toggle Mapping. The modeling of features and their
mapping to toggles must be exhaustive and involve domain experts.
Underestimating the complexity of existing dependencies within
the legacy codebase can lead to significant integration challenges.

Effort and Planning. Incremental refactoring is essential. How-
ever, the effort required for adapting the source code and creating
variability points must be carefully planned and allocated.

Dependency Management. The absence of native support
for complex toggle dependencies in some feature management
tools may necessitate the implementation of a custom orchestration

Reengineering an Adaptive System to Dynamic Software Product Lines: An
Experience report

layer. While this introduces additional complexity, it is crucial for
maintaining functional consistency within the system.

Importance of Testing. The testing strategy must be robust
enough to cover the numerous toggle combinations. Automation
and end-to-end integration tests are indispensable to ensure system
stability across all variability scenarios.

Benefits Beyond Performance. Although we validated the
absence of significant performance degradation, the most notable
benefits were observed in the agility of releasing new functionalities,
the personalization of user experience, and the improvement of
system maintainability through modularization.

5 Experiment Design

The main goal of refactoring the adaptive smart home system into a
Dynamic Software Product Line (DSPL) was to improve modularity
and flexibility, enabling runtime variability to support diverse user
configurations and subscription models. While the focus was on
enhancing configurability and maintainability, it was also essential
to assess whether the introduction of feature toggles would lead
to unacceptable performance degradation. To ensure the increased
flexibility did not come at a prohibitive computational cost, we con-
ducted a rigorous performance evaluation to validate the practical
feasibility of our approach.

To evaluate the performance implications, we conducted two in-
dependent full factorial experiments [17]. This approach allows for
the analysis of both main and interaction effects between controlled
factors. The response variables under study include execution
time per request, CPU usage, and memory consumption.

The experiments were designed to analyze the following factors:

e Toggle Activation (Factor A in Exp. 1): This factor com-
pares the system’s performance with and without the feature
toggle mechanism. The levels are True (the refactored system
with toggles active) and False (the original legacy system).

e User Plan (Factor A in Exp. 2): Made possible by the toggle
infrastructure, this factor investigates performance based on
different feature sets available to a user. The levels are Full
(all features available) and Basic (selected computationally
intensive features, like facial recognition, are disabled).

e Scenario (Factor B in both Exp.): This factor introduces en-
vironmental variability by simulating two distinct household
profiles, House 1 and House 2, which represent different
user behaviors and device interaction patterns.

For each experiment, the general linear model used to analyze
the response variable Y is:

Y = qo +qaxa +qBxB + 4ABXAXB 1
Where:
e Y is the response variable (e.g., execution time, memory
usage).

e x4 and xp are the levels of the factors being analyzed in a
given experiment (e.g., User Plan and Scenario).

e ¢ is the grand mean (overall average).

e g4 and gp are the main effects of the factors.

® g4p is the interaction effect between the factors.

This factorial design provides a rigorous framework for quan-
tifying the individual and combined effects of toggle activation

SBCARS’25, September 22-26, 2025, Recife, PE

Table 2: Experiment Matrix: Toggle Activation, Scenario, and
User Plan

Experiment Run Toggle Scenario User Plan

1 1 True House 1 Full
1 2 True House 2 Full
1 3 False House 1 (Legacy)
1 4 False House 2 (Legacy)
2 5 True House 1 Basic
2 6 True House 2 Basic
2 7 True House 1 Full
2 8 True House 2 Full

and user configuration on system performance. All tests were con-
ducted using synthetic user behavior data generated by the HESTIA
framework, ensuring control and reproducibility.

5.1 Experimental Setup

Each of the eight experimental conditions listed in Table 2 was
applied to all three system modules (RecSys, Vision, and ChatBot),
resulting in a total of 24 runs. In each run, 300 requests were pro-
cessed per module, simulating user behavior in the house. Runs
1-4 correspond to Experiment 1 (toggle vs. legacy), while Runs 5-8
represent Experiment 2 (Full vs. Basic plan, with toggles enabled).

To introduce environmental variability, two household scenar-
ios were simulated, each representing different user behavior and
interaction patterns with smart devices:

e House 13: A single resident primarily using the bedroom,
interacting with lights, motion sensors, and smart plugs. The
routine is irregular, involving computer use and common
household tasks, with more interaction during weekends.

e House 2*: Two residents with structured and diverse rou-
tines. One focuses on work-related computing activities with
scheduled breaks; the other alternates between music, de-
vice usage, and household tasks. Activity is more dispersed
across rooms and time slots.

6 Preliminary Evaluations

The project focused on increasing system flexibility to easily tog-
gle features, enabling tailored experiences for different customer
segments from a single codebase. This approach ensures seamless
updates without requiring new downloads, delivering value to cus-
tomers and the company. Additionally, this approach could provide
the company with a subscription model that would ensure recurring
revenue, contributing to a stable and predictable financial flow.

In Figure 3, we can see a comparison of the system’s mod-
ules—Chat, RecSys, and Vision—with and without the use of feature
toggles, considering execution time, CPU usage, and memory usage.
The results indicate that the use of toggles slightly affects perfor-
mance negatively, and in some cases, it has virtually no effect. For
the Chat and RecSys modules, the execution time remains relatively
stable regardless of toggle usage. However, in the Vision module,
a slight increase is observed when toggles are enabled, slightly

3Dataset available at: https://github.com/hestia-sim/datasets/tree/main/1_resident_1_
room
4Dataset available at: https://github.com/hestia-sim/datasets/tree/main/2_resident_6_
room

https://github.com/hestia-sim/datasets/tree/main/1_resident_1_room
https://github.com/hestia-sim/datasets/tree/main/1_resident_1_room
https://github.com/hestia-sim/datasets/tree/main/2_resident_6_room
https://github.com/hestia-sim/datasets/tree/main/2_resident_6_room

SBCARS’25, September 22-26, 2025, Recife, PE

Execution time (s) per request
| | |

CPU usage (%)

Tavares et al.

Memory usage (%)
| | | |

12.12 30 |- 28.16| 30 | 28.76|
10 |~ 21.33
20 20 |17.118.08
51 10 | 10
5.06
0.79 |:| 2.36
0.18

[y A | _— ol /| ol

T T T T T T T T T

Chat RecSys Vision Chat RecSys Vision Chat RecSys Vision

Without Toggle [] [With Toggle

Figure 3: Comparison of modules with and without toggle across execution time, CPU and memory usage.

Execution time (s) per request CPU Usage (%) Memory Usage (%)
| | | | | | |
1212 30 - 28.16) 4 [28.76)
10 |- 20.7@1.33
20 |- 20 118.048.08 17.88)
[4.22
5 10l 10
D 5.06 .
079 2.52 2.492.36 ol
0.23 0.120.18
o122 012018 o [e = 0
T T T T T T T T T
CHAT RECSYS VISION CHAT RECSYS VISION CHAT RECSYS VISION

[l nBasic] O ruLL

Figure 4: Comparison of BASIC and FULL profiles across modules in terms of execution time, CPU and memory usage.

worsening the time from 11.01 seconds to 12.12 seconds, which in-
dicates a 9.15% degradation in response time per request. Regarding
CPU usage, the Chat and RecSys modules show a lower percentage
when toggles are not applied. In the Vision module, CPU usage is
also increased with toggles (18.98% without toggle compared to
28.16% with toggles). Regarding memory usage, all modules present
a small increase when toggles are enabled, with the most significant
difference in the Vision module (28.76% with toggles versus 26.62%
without toggles), which overall can be considered an insignificant
increase in memory consumption.

Figure 4 compares the BASIC and FULL usage profiles across the
same modules and metrics. As expected, the FULL profile demands
more resources than the BASIC one in all modules. For the Chat
module, execution time (0.23 seconds up to 0.79 seconds in FULL
profile) and CPU usage show little differences between the profiles
(2.52% in BASIC profile to 5.06% in FULL profile). For the RecSys
module, we did not identify such representative differences when
applying different user profiles, only a small reduction in memory
consumption (21.33% down to 20.79 in BASIC profile). In contrast,
the Vision module experiences a noticeable decrease in all metrics.
In execution time, when implemented in the BASIC profile, a high
decrease was observed (12.12 seconds in FULL profile down to 4.22
seconds in BASIC profile). In addition, CPU usage in the Vision
module demonstrated a remarkable reduction under the BASIC

profiles (28.16% in FULL profile down to 3.77% in BASIC profile).
Memory usage also reduced consistently in the BASIC profile across
the Vision module (28.76% in FULL versus 17.88% in BASIC profile).

Overall, the Vision module is the most resource-intensive across
all metrics. The results suggest that feature toggles have minimal
or even negative effects on system performance. In contrast, ap-
plying the BASIC profile led to a sharp drop across all metrics,
confirming the effectiveness of using feature toggles as a runtime
configuration mechanism that enables user-specific adaptations
and resource optimizations without altering the architecture. While
certain performance improvements were observed—particularly
under the BASIC profile—these are to be interpreted as byproducts
of functionality scoping rather than as primary objectives of the
refactoring

Furthermore, when comparing the BASIC profile with the con-
figuration without feature toggles, it is evident that the BASIC
plan offers a beneficial trade-off by reducing resource consumption
since prior to the refactoring and implementation of feature toggles
the legacy system was executed entirely in a "FULL" profile state,
maintaining acceptable performance levels.

Figure 5 presents the computed effects of each factor (A: User
Profile, B: Scenario) and their interaction (AB) on the response
variable execution time per request, using the sign table method
described by Jain [17]. It is evident that the Vision module exhibits

Reengineering an Adaptive System to Dynamic Software Product Lines: An
Experience report

Vision Recsys Chatbot
©) T T T T T T
2 AB - = =
£
g B i i i
S . i i i
5 1 1 ! ! 1 1
0 2 4 0 0.1 0.2 0.3 0 0.1 0.2 0.3

=] 1 T
S
o AB | i B N
2
g B | b N
-]
2 N -, N L L
6 A | | | | I\ | | |

-5 0 5 10 -1-0.50 051 0 05 1 1.5
5
& AB - B B
Q
b
> B B B B
2
=}
E A " B B
Y | | | | | |
= 0 2 4 6 0 02 04 0 02 04

Magnitude of Effect

Figure 5: Interaction graph showing the relationship between
factors and response variables: Execution Time Per Request,
CPU Usage, and Memory Usage. The three sets of graphs
represent the effects of the interactions of the factors.

the highest sensitivity to the user plan configuration, with a main
effect of approximately 3.95 seconds. This indicates a substantial
increase in execution time when switching from the BASIC to FULL
profile, primarily due to the activation of computationally intensive
features such as facial recognition and weapon detection.

Although the Recsys and Chatbot modules demonstrate lower ab-
solute execution times, the user profile still emerges as the dominant
factor in both, reaffirming its cross-cutting influence on resource
consumption. The interaction effect (AB) is negligible across all
modules, suggesting that the influence of the scenario (House 1 or
House 2) does not significantly alter the impact of the user profile.
These findings support the rationale for incorporating feature tog-
gles into legacy systems: enabling tailored configurations per user
profile not only provides more flexible service offerings but also
enables resource optimization and cost efficiency. This adaptability
is particularly valuable for scaling services across diverse usage
patterns while maintaining performance targets.

Regarding CPU usage, a similar trend is observed: the Vision
module is again the most affected by the user profile (factor A), with
a substantial positive effect of approximately 12.2%, indicating that
enabling the FULL profile significantly increases CPU consumption.
Conversely, for the Recsys and Chatbot modules, the effects are
minimal and oscillate around zero, reinforcing the idea that these
modules are not CPU-bound under the tested configurations. The
scenarios (factor B) and its interaction with the user profile (AB)
show negligible effects across all modules, suggesting that CPU

SBCARS’25, September 22-26, 2025, Recife, PE

demands are primarily driven by the activation of features tied to
the user plan rather than environmental or contextual variables.

In terms of memory usage, the Vision module again exhibits the
largest sensitivity, with a 5.44% increase linked to the FULL profile.
This aligns with its reliance on memory-intensive tasks such as
image processing and deep learning model inference. For Recsys
and Chatbot, the impact of the user profile is comparatively smaller,
but still present, particularly in Recsys where both factors A and
B contribute modestly. Notably, in the Chatbot module, factor B
(scenario) leads to a higher memory usage than factor A, which
may be attributed to scenario-specific dialogue states or context
caching mechanisms.

Overall, the results confirm that user profile configuration (A)
is the primary driver of resource usage across all modules, with
the Vision module being the most resource-intensive. The minimal
impact of scenario (B) and interaction (AB) effects underscores the
predictability of resource consumption patterns, supporting the
assertion that feature toggle favored the reduction of the overall
system load from the moment the BASIC profile was added to the
system.

7 Discussion

Following the mapping of system functionalities and the construc-
tion of a feature model, 27 features were identified across three core
modules. Thirteen of these features were selected and implemented
as feature toggles, introducing runtime variability points and en-
abling the transformation of the system into a more dynamic and
configurable architecture aligned with DSPL principles.

The results presented in the Preliminary Evaluations section pro-
vide empirical evidence of the practical impact of this approach. The
toggles enabled the configuration of distinct user profiles—namely,
FULL and BASIC—resulting in tangible differences in system behav-
ior and resource consumption. Notably, the Vision module exhibited
a substantial improvement in performance when operated under
the BASIC profile, with execution time per request reduced by
approximately 65% (from 12.12s to 4.22s), CPU usage lowered by
24.39 percentage points (from 28.16% to 3.77%), and memory usage
reduced by over 10%. These findings support the assertion that
feature toggles not only enhance adaptability but also facilitate
effective resource optimization based on usage context [14, 22].

Across all modules, user profile (i.e., toggle configuration) emerged
as the most influential factor in determining performance, outweigh-
ing the variability introduced by distinct usage scenarios. This re-
inforces the effectiveness of runtime variability control through
toggles, especially in adaptive systems where tailored feature sets
are required for different user types or operational contexts.

Moreover, the deployment of toggles contributed to architectural
modularization and maintainability. By decoupling critical function-
alities into independently manageable toggle points, the codebase
became more flexible to updates, testing, and rollback operations.
This modularization aligns with best practices in DSPL engineering
[2, 4], where runtime adaptation must be carefully orchestrated to
prevent system instability or unintentional side effects.

Despite these benefits, the study also identified challenges. The
toggle management tool employed lacked native support for feature

SBCARS’25, September 22-26, 2025, Recife, PE

dependencies, requiring manual coordination to preserve consis-
tency—particularly in complex modules such as RecSys. This limi-
tation highlights the need for more advanced toggle management
mechanisms in DSPL contexts, especially when feature interdepen-
dencies are nontrivial.

Additionally, the absence of clearly defined user personas and
the partial documentation of legacy components limited the po-
tential for full system dynamization. Without explicit stakeholder
requirements for user segmentation, customization efforts remained
constrained to internal code-level adjustments, rather than being
driven by external configurability.

From a DSPL lifecycle perspective, the implementation of tog-
gles introduced concerns related to technical debt—a well-known
issue in toggle-based development [22, 27]. Although the toggles
in this study were designed as permanent variability mechanisms,
standard practices for managing them were adopted to prevent
long-term code degradation. These included consistent naming
conventions, toggle usage monitoring, comprehensive testing of
feature interactions, and the use of dedicated management tools to
ensure traceability and maintainability [14, 22].

In summary, this experience report confirms the feasibility and
utility of adopting feature toggles as a central mechanism in refac-
toring legacy adaptive systems into DSPLs. While the toggle-based
strategy introduced runtime flexibility, resource control, and archi-
tectural decoupling, it also brought to light critical considerations
around tooling, documentation, and the need for structured gover-
nance. These findings offer valuable insights for practitioners and
researchers aiming to evolve existing systems into DSPLs, partic-
ularly in domains requiring real-time adaptability, such as smart
environments and context-aware applications.

8 Conclusion

This article aimed to refactor an adaptive system into a DSPL. To
address this, feature toggles emerged as a key strategy, enabling
real-time activation and deactivation of functionalities and trans-
forming a static system into a dynamic one. By analyzing system
interconnections and creating a feature model, 13 variability points
were identified, enhancing modularity and agility in addressing user
needs. The study contributes to DSPL research by demonstrating
how feature toggles can adapt systems not originally designed for
dynamic environments. It highlights the importance of modulariza-
tion and configuration management for successful adaptive systems
and provides practical insights for organizations to improve system
flexibility and user experience. Future work includes a quantitative
evaluation of feature toggles’ impact and developer interviews to
further assess their benefits and challenges.

As part of our future work, we plan to build on the results pre-
sented in this article by testing the system in a real-world environ-
ment with actual users. This will allow us to validate its behavior
outside of a simulated context and assess its performance under
practical conditions.

Additionally, we aim to conduct a comparative analysis between
the feature toggles methodology and alternative approaches. This
comparison will help us gather more concrete, data-driven insights
into how the system behaves across different scenarios and under

Tavares et al.

varying conditions. It is worth emphasizing that, although varia-
tions in performance were observed, the core contribution of this
refactoring effort lies in establishing a flexible and modular ar-
chitecture that supports dynamic system evolution, rather than
performance gains.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenacdo de Aper-
feicoamento de Pessoal de Nivel Superior - Brasil (CAPES) - Fi-
nance Code 001. It was also supported in part by the FAPESB IN-
CITE PIE0002/2022 grant, and the Conselho Nacional de Desenvolvi-
mento Cientifico e Tecnoldogico (CNPq), Brazil, grant #403231/2023-
0.

REFERENCES

[1] Emad Albassam, Hassan Gomaa, and Daniel A Menascé. 2017. Variable recovery
and adaptation connectors for dynamic software product lines. In Proceedings
of the 21st International Systems and Software Product Line Conference-Volume B.
123-128.

Mahdi Bashari, Ebrahim Bagheri, and Weichang Du. 2017. Dynamic software
product line engineering: a reference framework. International Journal of Software
Engineering and Knowledge Engineering 27, 02 (2017), 191-234.

Davide Basile, Maurice H Ter Beek, Felicita Di Giandomenico, and Stefania
Gnesi. 2017. Orchestration of dynamic service product lines with featured modal
contract automata. In Proceedings of the 21st International Systems and Software
Product Line Conference-Volume B. 117-122.

[4] Nelly Bencomo, Peter Sawyer, Gordon S Blair, and Paul Grace. 2008. Dynamically
adaptive systems are product lines too: using model-driven techniques to capture
dynamic variability of adaptive systems.. In SPLC (2). 23-32.

[5] Gunnar Brataas, Svein Olav Hallsteinsen, Romain Rouvoy, and Frank Eliassen.
2007. Scalability of decision models for dynamic product lines. In 11th Interna-
tional Conference, SPLC 2007, Kyoto, Japan, September 10-14, 2007.

[6] Denivan Campos, Luana Martins, Joselito Mota, Dhyego Tavares, Jander Pereira,
Mayki Oliveira, Denis Boaventura, Diego Correa, Eduardo Ferreira, George Pinto,
et al. 2024. Designing, Implementing, and Testing AI-Oriented Smart Home
Applications: Challenges and Best Practices. In European Conference on Software
Architecture. Springer, 83-99.

[7] Michelle Larissa Luciano Carvalho, Matheus Lessa Goncalves Da Silva, Gecy-
nalda Soares da Silva Gomes, Alcemir Rodrigues Santos, Ivan do Carmo Machado,
Magno Lui de Jesus Souza, and Eduardo Santana de Almeida. 2018. On the im-
plementation of dynamic software product lines: An exploratory study. Journal
of Systems and Software 136 (2018), 74-100.

[8] Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano. 2009. Using feature
models for developing self-configuring smart homes. In 2009 Fifth International
Conference on Autonomic and Autonomous Systems. IEEE, 179-188.

[9] Padma Nyoman Crisnapati, I Nyoman Kusuma Wardana, and Komang Agus Ady
Aryanto. 2016. Rudas: Energy and sensor devices management system in home
automation. In 2016 IEEE region 10 symposium (TENSYMP). IEEE, 184-187.

[10] Diego Corréa da Silva, Denis Robson Dantas Boaventura, Mayki dos San-
tos Oliveira, Jander Pereira Santos Junior, Eduardo Ferreira da Silva, Eduardo San-
tana de Almeida, Cassio VS Prazeres, Ivan do Carmo Machado, Maycon Leone
Maciel Peixoto, Gustavo Bittencourt Figueiredo, et al. 2025. Evaluating Multi-
Label Machine Learning Models for Smart Home Environments. Software: Practice
and Experience (2025).

Mayki dos Santos Oliveira, Denis Robson Dantas Boaventura, Eduardo Ferreira
Da Silva, Joel Machado Pires, Isaque Santana Copque, Bruno Pereira dos Santos,
Ivan do Carmo Machado, Cassio Vinicius Serafim Prazeres, Maycon Leone Maciel
Peixoto, Gustavo Bittencourt Figueiredo, et al. 2025. HESTIA: A Home Environ-
ment Simulator Targeting Inhabitant Activities. Authorea Preprints (2025).
Stefan Fischer, Gabriela Karoline Michelon, Wesley KG Assuncéo, Rudolf Ramler,
and Alexander Egyed. 2023. Designing a Test Model for a Configurable System: An
Exploratory Study of Preprocessor Directives and Feature Toggles. In Proceedings
of the 17th International Working Conference on Variability Modelling of Software-
Intensive Systems. 31-39.

Flagsmith. 2024. Flagsmith: Open-source Feature Flags and Remote Config.
https://github.com/Flagsmith/flagsmith Accessed: 2024-12-11.

Martin Fowler. [n. d.]. Feature Flag. https://martinfowler.com/bliki/FeatureFlag.
html

Hendrik Gottmann, Lars Luthmann, Malte Lochau, and Andy Schiirr. 2020. Real-
time-aware reconfiguration decisions for dynamic software product lines. In
Proceedings of the 24th ACM Conference on Systems and Software Product Line:
Volume A-Volume A. 1-11.

[2

[3

[11

[12

=
&

[14

[15

https://github.com/Flagsmith/flagsmith
https://martinfowler.com/bliki/FeatureFlag.html
https://martinfowler.com/bliki/FeatureFlag.html

Reengineering an Adaptive System to Dynamic Software Product Lines: An
Experience report

[16]
[17]

(18]

[19]

[20

[21]

[22

[23]

[24]

[25]

[26]

[27]

GrowthBook. 2024. GrowthBook: Open-source Feature Flagging and Experimen-
tation. https://github.com/growthbook/growthbook/ Accessed: 2024-12-11.
Raj Jain. 1991. The Art of Computer Systems Performance Analysis. John Wiley &
Sons.

Jean-Marc Jézéquel, Jérg Kienzle, and Mathieu Acher. 2022. From feature models
to feature toggles in practice. In Proceedings of the 26th ACM International Systems
and Software Product Line Conference-Volume A. 234-244.

Joselito Jr, Luana Martins, Dhyego Tavares, Denivan Campos, Frederico Durio,
Cassio Prazeres, Maycon Peixoto, Gustavo Figueiredo, Ivan Machado, and Ed-
uardo Almeida. 2024. Unleashing the Future of Smart Homes: A Revelation of
Cutting-Edge Distributed Architecture. In Anais do XVIII Simpésio Brasileiro de
Componentes, Arquiteturas e Reutilizacdo de Software (Curitiba/PR). SBC, Porto
Alegre, RS, Brasil, 41-50. https://doi.org/10.5753/sbcars.2024.3854
LaunchDarkly. 2024. LaunchDarkly: Feature Flags as a Service.
//launchdarkly.com/ Accessed: 2024-12-11.

Rezvan Mahdavi-Hezaveh, Nirav Ajmeri, and Laurie Williams. 2022. Feature
toggles as code: Heuristics and metrics for structuring feature toggles. Information
and Software Technology 145 (2022), 106813.

Rezvan Mahdavi-Hezaveh, Jacob Dremann, and Laurie Williams. 2021. Software
development with feature toggles: practices used by practitioners. Empirical
Software Engineering 26 (2021), 1-33.

Rezvan Mahdavi-Hezaveh, Sameeha Fatima, and Laurie Williams. 2024. Paving
a Path for a Combined Family of Feature Toggle and Configuration Option
Research. ACM Trans. Softw. Eng. Methodol. 33,7, Article 172 (Sept. 2024), 27 pages.
https://doi.org/10.1145/3672555

Luana Martins, Denivan Campos, Joselito Mota, Dhyego Tavares, Jander Pereira,
Mayki Oliveira, Denis Boaventura, Diego Correa, Eduardo Ferreira, George Pinto,
et al. 2024. A Case Study of Smart Home Development. IEEE Software (2024).
Ethan T McGee and John D McGregor. 2017. A realization effort estimation
model for dynamic software product lines. In Proceedings of the 21st International
Systems and Software Product Line Conference-Volume B. 111-116.

Holt Mebane and Joni T Ohta. 2007. Dynamic complexity and the Owen firmware
product line program. In 11th International Software Product Line Conference (SPLC
2007). IEEE, 212-222.

Jens Meinicke, Juan Hoyos, Bogdan Vasilescu, and Christian Késtner. 2020. Cap-
ture the feature flag: Detecting feature flags in open-source. In Proceedings of the
17th International Conference on Mining Software Repositories. 169-173.

https:

[28] Jens Meinicke, Chu-Pan Wong, Bogdan Vasilescu, and Christian Késtner. 2020.

[30]

[31]

[32]

[33]

[34

[35]

[36]

[37

[38]

Exploring differences and commonalities between feature flags and configuration
options. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: Software Engineering in Practice. 233-242.

Bruno Iizuka Moritani and Jaejoon Lee. 2017. An approach for managing a
distributed feature model to evolve self-adaptive dynamic software product
lines. In Proceedings of the 21st International Systems and Software Product Line
Conference-Volume B. 107-110.

Juliana Alves Pereira, Sandro Schulze, Eduardo Figueiredo, and Gunter Saake.
2018. N-dimensional tensor factorization for self-configuration of software
product lines at runtime. In Proceedings of the 22nd International Systems and
Software Product Line Conference-Volume 1. 87-97.

PostHog. 2024. PostHog: Product Analytics and Feature Flags. https://posthog.
com/ Accessed: 2024-12-11.

Md Tajmilur Rahman, Louis-Philippe Querel, Peter C Rigby, and Bram Adams.
2016. Feature toggles: practitioner practices and a case study. In Proceedings of
the 13th international conference on mining software repositories. 201-211.
Cosmin-Ioan Rosu and Mihai Togan. 2023. A Modern Paradigm for Effective Soft-
ware Development: Feature Toggle Systems. In 2023 15th International Conference
on Electronics, Computers and Artificial Intelligence (ECAI). IEEE, 1-6.

Split.io. 2024. Split.io: Feature Flags and Experimentation. https://www.split.io/
Accessed: 2024-12-11.

Dhyego Tavares, Erlon P. Almeida, Jander P. S. Junior, Felipe S. A. Paixao, Enio
G. Santana Jr., Rodrigo R. G. Souza, Frederico A. Durio, Cassio V. S. Prazeres,
Ivan C. Machado, Gustavo B. Figueiredo, Maycon L. M. Peixoto, Hérsio M.
Iwamoto, and Eduardo Santana de Almeida. 2024. Software Development Prac-
tices and Tools for University-Industry R&D Projects. In XXIII Brazilian Sympo-
sium on Software Quality (SBQS 2024), November 5-8, 2024, Salvador, Brazil. ACM,
Salvador, Brazil. https://doi.org/10.1145/3701625.3701627 Proceedings of the
XXIII Brazilian Symposium on Software Quality (SBQS 2024), November 5-8,
2024.

Pablo Trinidad, Antonio Ruiz Cortés, Joaquin Pena, and David Benavides. 2007.
Mapping Feature Models onto Component Models to Build Dynamic Software
Product Lines.. In SPLC (2). 51-56.

Unleash. 2024. Unleash: Open-source feature management. https://github.com/
Unleash/unleash/tree/main Accessed: 2024-12-11.

Markus Weckesser, Roland Kluge, Martin Pfannemiiller, Michael Matthé, Andy
Schiirr, and Christian Becker. 2018. Optimal reconfiguration of dynamic software
product lines based on performance-influence models. In Proceedings of the 22nd
International Systems and Software Product Line Conference-Volume 1. 98-109.

SBCARS’25, September 22-26, 2025, Recife, PE

[39] Danny Weyns, M Usman Iftikhar, Sam Malek, and Jesper Andersson. 2012. Claims

[40

and supporting evidence for self-adaptive systems: A literature study. In 2012 7th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). IEEE, 89-98.

Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In Proceedings of the 18th international
conference on evaluation and assessment in software engineering. 1-10.

https://github.com/growthbook/growthbook/
https://doi.org/10.5753/sbcars.2024.3854
https://launchdarkly.com/
https://launchdarkly.com/
https://doi.org/10.1145/3672555
https://posthog.com/
https://posthog.com/
https://www.split.io/
https://doi.org/10.1145/3701625.3701627
https://github.com/Unleash/unleash/tree/main
https://github.com/Unleash/unleash/tree/main

	ABSTRACT
	1 Introduction
	2 Feature Toggles
	3 Related Work
	3.1 Smart Home Domain
	3.2 Feature Toggles and DSPL

	4 Research Design
	4.1 Literature Review
	4.2 Design of Feature Models
	4.3 Feature Toggle Management
	4.4 Challenges and Mitigation Strategies
	4.5 Lessons Learned and Applicable Knowledge

	5 Experiment Design
	5.1 Experimental Setup

	6 Preliminary Evaluations
	7 Discussion
	8 Conclusion
	REFERENCES

