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ABSTRACT

Microservices have become a leading architectural style for creating
scalable systems. Designing these architectures involves breaking
down large APIs into well-defined service boundaries. While many
existing clustering techniques rely on having access to the com-
plete source code, API specifications (such as OpenAPI) are often
more readily available in practice. This is particularly true when
code is distributed across different teams, linked to legacy systems,
or expensive to analyze. However, API specifications are often
poorly documented, which hampers the effectiveness of clustering.
Large Language Models (LLMs) present a promising solution by
inferring semantic relationships even from sparse or incomplete
descriptions. This paper introduces ODAM (OpenAPI Documenta-
tion Analysis and Modeling), a Python-based pipeline that (i) fills
missing endpoint descriptions with ChatGPT, (ii) embeds all texts,
(iii) performs an intermediate topic induction, and (iv) feeds the
resulting vectors to either K-Means or hierarchical clustering. We
investigated the ODAM’s feasibility using a real-world API (Twilio,
45 microservices), comparing six pipeline variants—three inter-
mediate strategies crossed with two description settings—against
an expert-defined reference, using four evaluation criteria: suc-
cess rate, failure rate, Silhouette score, and execution time. The
results showed the LLM-augmented pipeline achieved a 64% success
rate—34% higher than the best non-LLM baseline—and uncovered
five coherent business domains at k=5, where Silhouette peaked at
0.55. Statistical pipelines ran in under 100 seconds, while the LLM-
enhanced version took 1.6 hours, but dropped to under one minute
with cached descriptions. Final clustering quality remained stable
across K-Means and hierarchical algorithms, with 0.05 variation in
Silhouette scores. Overall, injecting LLM-generated semantics into
sparsely documented APIs materially improves microservice clus-
tering accuracy and exposes high-level capabilities; practitioners
can trade runtime for precision via a simple cache toggle.
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1 Introduction

Modern software systems increasingly adopt microservice architec-
tures to achieve scalability, modularity, and ease of maintenance [1].
Nevertheless, many organizations still operate monolithic systems
or legacy APIs that have evolved organically over time, leading to
unclear service boundaries and undocumented functionalities. This
complexity hinders efforts to understand, maintain, and modernize
software portfolios [20]. In practice, the code underlying these sys-
tems may be fragmented across multiple repositories, maintained
by different teams, tied to outdated build processes, or subject to
access restrictions—making direct source code analysis costly or
impractical. In such contexts, the API specification (e.g., OpenAPI)
often serves as the most accessible, standardized artifact from which
to reason about system capabilities.

Clustering microservices into coherent groups is a key step to-
ward simplifying these systems, yet it remains a challenging task
[24]. Manual decomposition is time-consuming and error-prone
[27]. Existing automated methods often assume full access to source
code or richly documented OpenAPI endpoints—conditions rarely
met even within a single organization [18, 22]. Real-world scenar-
ios include post-merger system integration, governance of large
API portfolios across distributed teams, and preliminary audits of
legacy systems where code exists but is prohibitively expensive
to analyze in depth. These situations motivate the need for tools
capable of extracting, enriching, and clustering service descriptions
from limited or incomplete system information.

In this paper, we explore whether Large Language Models (LLMs),
particularly ChatGPT, can bridge documentation gaps and improve
the automated functional grouping of microservices [13, 14]. To
that end, we introduce ODAM (OpenAPI Documentation Analysis
and Modeling), a Python-based pipeline that performs: (i) automatic
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completion of missing descriptions via ChatGPT, (ii) linguistic pre-
processing using SpaCy, (iii) semantic vectorization and topic in-
duction, and (iv) clustering using traditional algorithms such as
K-Means or hierarchical clustering.

We evaluated ODAM on the Twilio REST API—a public and het-
erogeneous system encompassing 45 microservices—using expert-
curated groupings as the reference standard. The experiments tested
various configurations of intermediate strategies and clustering
algorithms [17], with and without LLM-based completion. Our
findings demonstrate that LLM-augmented pipelines significantly
outperform traditional approaches, achieving up to 64% correct pair-
ings and uncovering high-level functional domains with minimal
manual intervention.

The contributions of this paper are threefold: (i) an end-to-end,
reproducible pipeline that integrates LLMs with NLP and clustering
techniques for service grouping; (ii) an empirical evaluation com-
paring six pipeline variants, highlighting accuracy—-cost trade-offs;
and (iii) practical guidelines for selecting clustering strategies based
on service characteristics and architectural goals.

Overall, ODAM offers a scalable and effective solution for mi-
croservice clustering in scenarios where source code is unavail-
able or documentation is sparse. It enables practitioners to recover
functional groupings and gain architectural insights while also con-
tributing to ongoing research on LLM-driven software engineering
automation.

The remainder of this paper is structured as follows. Section 2 re-
views foundational concepts and related work. Section 3 introduces
our microservice-identification approach, and Section 4 details the
validation methodology. Section 5 presents the experimental results
and expert evaluation, while Section 6 discusses implications for
research and practice. Section 7 addresses threats to validity. Finally,
Section 8 concludes the paper and highlights directions for future
research.

2 Fundamentals

In this section, we first outline the core principles of Microservices.
Then, we review traditional and LLM-based approaches, highlight-
ing how our study uniquely addresses functional grouping from
textual requirements.

Microservice foundations Modern web applications must in-
gest large data volumes and support rich user interactions while
remaining flexible and highly scalable [16]. Early systems met these
needs with a monolithic style, placing all functionality in a single
deployable unit [9]. Although monoliths simplify testing and initial
deployment, their tightly coupled code bases hamper scalability,
reliability, and technology evolution [1]. To overcome such limits,
the community embraced the microservice architecture: a system is
decomposed into many small, autonomous services, each owning
a well-defined business capability [20, 25]. A typical deployment
might assign user authentication to one service and e-mail handling
to another, each documented through OpenAPI specifications that
expose endpoints, parameters, and usage contracts [11].

While microservices solve several monolithic pain points, they
introduce new challenges—chiefly the operational overhead of de-
ploying, synchronizing, and monitoring dozens (or hundreds) of in-
dependent services [15]. As a system grows, architects must decide
how to partition these services into clusters that share infrastruc-
ture—optimising resource use, reducing inter-service latency for
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frequent collaborators, and trimming maintenance costs relative to
“one host per service” deployments [7].

Related work. Several research efforts offer solutions to the
problem of clustering or otherwise organizing microservices based
on functional or structural similarity. Traditional NLP-centric ap-
proaches remain influential: Al-Debagy et al.[5] proposed decom-
posing monoliths via semantic similarity combined with hierar-
chical clustering over OpenAPI descriptions, exploiting fastText
and Word2Vec embeddings to infer the number of clusters auto-
matically. Baresi, Garriga, and De Renzis [8] also rely on semantic
analysis of OpenAPI specifications but emphasise carefully defined
interface boundaries to achieve an appropriate granularity of candi-
date services. Subsequently, Al-Debagy et al.[4] introduced quality
metrics such as the Service Granularity Metric (SGM) and the Lack
of Cohesion Metric (LCOM) for assessing microservice designs
produced by API analysis. Rocha Araujo et al. [12] moved away
from monolith-to-microservice decomposition and instead applied
topic-modelling (LDA, LSI, NMF) to cluster API descriptions di-
rectly, laying the groundwork for grouping functionally related
services without access to source code.

More recently, LLM-driven approaches have begun to augment
or replace classical NLP pipelines. Adams et al.[2] showed that
ChatGPT-4 can scaffold a complete SockShop-style microservice
system, automatically producing Spring-Boot services and con-
trollers, though human validation is still required to fix outdated
dependencies and handle context-window limits. Stojanovi¢ and
Lazarevi¢ [23] demonstrated that GPT-3.5 can propose plausible ser-
vice boundaries directly from textual requirements, making it useful
in early architectural design while still demanding expert review
to avoid oversimplifications. Quevedo et al.[19] went a step fur-
ther by injecting static-analysis artefacts—such as call graphs—into
ChatGPT prompts; the enriched context markedly improved an-
swers to architecture-level queries about existing microservice sys-
tems. Alsayed et al.[6] introduced MicroRec, a dual-encoder LLM
framework that leverages Stack Overflow posts, Dockerfiles, and
README files to recommend relevant microservices, achieving up
to 14x higher precision than traditional search. Chauhan et al.[10]
presented an API-first generator in which an LLM iteratively re-
fines server-side code derived from an OpenAPI definition, closing
the loop with log analysis to accelerate prototyping. Complement-
ing these automation-focused studies, Ahmad et al.[3] explored
human-bot collaborative architecting, outlining roles and hand-off
patterns that let architects steer ChatGPT while the model handles
repetitive design tasks—underscoring that effective microservice
design will likely emerge from synergistic workflows rather than
full autonomy.

Taken together, these LLM-centric studies push the state of the
art beyond classical clustering by: (i) automating the generation
and iterative refinement of microservice code, (ii) enriching archi-
tectural analyses with artifacts drawn from the running system
(e.g., call graphs, logs), and (iii) supporting search, recommenda-
tion and discovery in large service ecosystems. At the same time,
they expose fresh challenges—dependency drift, context-window
limits, and the persistent need for expert oversight—that argue for
hybrid pipelines combining traditional similarity metrics with LLM-
powered semantic reasoning. Our work positions itself within this
trajectory: we strive to deliver service clusters that capture both
functional intent and structural cohesion, while keeping manual
intervention to a minimum.
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3 Proposal of the Microservice Identification
Process

This study explores the feasibility of leveraging LLMs to derive func-
tional groupings from textual software requirements. To support
this investigation, we introduce ODAM, a Python-based pipeline
that analyzes and organizes the textual content of microservice
OpenAPI specifications. The goal is to cluster services based on
functional similarity, enabling structured understanding and com-
parison of service roles. ODAM enables the identification of seman-
tic relationships between services, facilitating their management,
maintenance, and evolution within a microservices-based architec-
ture.

1. Identifying and extracting descriptions
(Requirements + Reference Architectures)

2. Generating missing descriptions

3. Processing descriptions

4. Identifying similar struc-
tures and functionalities

5. Generating a unique repre-
sentation for each document

6. Document clustering
(visualization of the functional re-
lationships between microservices)

Figure 1: Methodological Workflow.

ODAM proceeds through six consecutive stages that match those
in Figure 1. It begins by identifying and extracting every textual
description found in the OpenAPI specifications, requirements, and
reference architectures (Step 1). When a description is missing, the
tool automatically generates a concise replacement with ChatGPT,
using endpoint metadata (resource name, HTTP verb, and parame-
ters) as context (Step 2). All collected texts then undergo lightweight
NLP pre-processing—tokenisation, stop-word removal, and lemma-
tisation—to yield a clean lexical representation (Step 3). Next, the
processed descriptions are embedded and grouped to uncover re-
current functional themes, thereby revealing similar structures and
behaviors (Step 4). Each microservice is subsequently encoded as a
single vector that aggregates its membership across those themes,
providing a compact numerical portrait of its functionality (Step 5).
In the final step, these vectors are fed to either K-Means or hierar-
chical clustering to form the definitive microservice groups (Step
6). The following subsections detail every step.

Step 1: Identifying and Extracting Descriptions

The first stage of our approach consists of identifying and extracting
the textual descriptions associated with the methods defined in each
OpenAPI specification file. This procedure involves systematically
traversing all routes declared in the specifications, collecting the
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available descriptions at each endpoint, regardless of the microser-
vice to which they originally belong. All extracted descriptions are
stored in a common set, which facilitates their subsequent treatment
from a unified perspective.

Each endpoint in the OpenAPI specification contains metadata
that describes its functionality, with the description section be-
ing a key source of semantic information. This stage is critical, as
the collected descriptions constitute the textual basis from which
vectorization and, later, clustering algorithms will be applied. De-
scriptions were chosen as the primary input for the process due to
their high informational value. These descriptions contain struc-
tural information about the service and references to its behavior
and functional purpose.

This semantic richness enables a more precise representation of
each microservice’s characteristics, facilitating the identification
of functional similarities in subsequent stages. Figure 2 illustrates
this procedure, showing how descriptions extracted from different
specification files are consolidated into a single set, which will be
used as the basis for the semantic analysis and clustering phases.

Filel.yml

Path1:
put: Decription]]
get: Description|

Path2:
get: Description|
delete: Descri

1-Descriptionl

Descition1| 2-Description2
3-Description3

File2.yml 4-Description4
Path1: 5-Description6

put: Description 6-De5cr|ptyon7
get: Description| 7-Description8

Path2: 8-Description9
get: Descriptiond 11-Description1]
delete: Group 12-Description12|
13-Description13

File3.yml
Path1:
put: Description1il
get: Descriptionl
Path2:
get: Description]]

Figure 2: Extraction of descriptions from OpenAPI docu-
ments.

Step 2: Generating Missing Descriptions

In many cases, OpenAPI documents lack descriptions for the de-
fined methods, either due to developer oversight or the use of
automatic tools that do not include this section [8]. This gap rep-
resents a significant limitation, as descriptions are a key source of
semantic information. To address this issue, a module for automatic
description generation using ChatGPT is incorporated, a natural
language model capable of generating coherent text based on the
provided context.

ChatGPT usage is enabled by including a personal authentica-
tion key in the configuration file. Through a predefined prompt,
the model is requested to generate a brief and representative de-
scription of a specific endpoint’s functionality. Here is an example
of a predefined prompt:
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Predefined prompt

Given the following endpoint from an OpenAPI file,
generate a description that briefly explains the endpoint’s
functionality. The description should be generated as a single
sentence.

Then, ODAM generates this description:

Generated Description

The /pet endpoint with the PUT method allows modifying an
existing pet in the database, using information from the
request in JSON or XML format, and requires authentication to
access its write and read operations.

All generated descriptions are stored in a “GeneratedDescrip-
tions.txt” file, where each path and its corresponding generated
description are specified.

Step 3: Processing Descriptions

To optimize the semantic analysis of descriptions, they undergo
a linguistic pre-processing procedure using the SpaCy library, a
high-performance tool for natural language processing in Python.
The objective is to extract the most representative terms from each
description to facilitate subsequent clustering. The processing con-
sists of four stages:

e Removal of stop-words.

e Calculation of word frequency.

e Selection of the most relevant terms.

e Restructuring of the description based on these terms.

For example, an initial description such as the below example is
transformed through this process into a compact representation, in-
cluding terms such as fax, endpoint, allow, user, access, manipulate,
send, receive, highlighting both structural and functional aspects
of the service.

Initial Description

This endpoint allows users to access and manipulate fax
resources in order to send, receive, and manage faxes using
the Twilio API.

Step 4: Identifying Similar Structures and Functionali-
ties

Once processed, the descriptions are grouped based on their seman-
tic similarity in a process called Identifying Similar Structures and
Functionalities. This intermediate clustering does not consider the
source of the descriptions, treating them as a single set. The goal
is to identify common functional patterns that allow characteriz-
ing microservices in more abstract and homogeneous terms. Three
approaches were implemented for this step:

e Traditional algorithms such as K-Means and hierarchical
clustering.

o Clustering based on semantic similarity between descrip-
tions.

e An approach based on ChatGPT, leveraging its contextual
comprehension capabilities.

The choice of method is configured via the method parameter
in the corresponding configuration file, where each execution uses
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a single method. The clustering output is represented in JSON
format, where each key represents a group, and the values are the
numeric identifiers of the descriptions belonging to each group. In
the implementation, when using ChatGPT, group names should be
representative of the elements being clustered. Figure 3 illustrates
how descriptions 1 and 3 are associated with group 1, description 2
with group 3,

1-Descriptionl
2-Description2
3-Description3
4-Description5
5-Description6
6-Description6 >
7-Description7
8-Description8
9-Description10
11-Description11
12Description13

Group1:
Description1
Description3
Description8

Group2:
Description4
Description6
Description11

Group3:
Description2
Description13

Figure 3: Mapping descriptions to their corresponding group.

Method 1: Clustering Using ChatGPT Only. This method
explores the use of ChatGPT as the sole tool to cluster processed
descriptions based on their semantic similarity. It starts with a
prompt requesting the grouping of numbered items into representa-
tive groups, requiring JSON format and descriptive names for each

group:

Given a list of numerically identified topics, group them
according to their semantic relationship into well-defined
and representative groups. A topic cannot belong to more than
one group; no ungrouped topics are allowed, and no topic may
appear in multiple groups. The response will be in JSON format,
where each attribute will be the group name and the value a
numeric list of the corresponding topics. The group names must
be descriptive and represent the theme of the topics in their
group. Also, avoid creating groups with only one topic.

J

Given the token limit of the ChatGPT API, when the permitted
threshold is exceeded, the task is split into multiple queries, in-
cluding the previously generated groups in each. However, several
limitations were detected: incomplete or incorrect group names,
multiple inclusions of descriptions in different groups, omission of
some descriptions, and incorrect response formats. Although it is
possible to reiterate the query to correct errors, this significantly
increases execution time and token-associated costs. Consequently,
manual assistance was chosen to review and correct the output
generated by the model.

Method 2: Clustering Using ChatGPT and SpaCy. This ap-
proach seeks to reduce queries to the model by using ChatGPT
solely for generating new groups while SpaCy verifies if a descrip-
tion can be included in an existing group. This is done through
the similarity function !, which returns a value between 0 and 1
to measure semantic similarity. If the value exceeds a configurable
threshold, the description is assigned to the corresponding group.

For example, if a description has a similarity of 0.85 with an
existing group and the threshold is 0.7, it is considered part of that

Uhttps://spacy.io/usage/spacy-101#vectors-similarity
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group. Descriptions not exceeding the threshold are processed by
ChatGPT to generate new groups.

To optimize the process and limit errors, the number of allowed
tokens per query is configured via the chunks attribute. It is rec-
ommended not to exceed 4000 tokens (approximately 10,000 input
characters) due to model limitations and the need for space for the
response. Additionally, a mechanism is implemented to prevent the
same description from appearing in multiple groups, retaining only
its first occurrence.

This method leverages the semantic generation capabilities of
ChatGPT and minimizes errors and resource consumption while
employing NLP tools like SpaCy for automatic validations.

Method 3: Using Clustering Algorithms. As an unsuper-
vised alternative, classic clustering algorithms were implemented
to group vectorized descriptions. The Tfidf Vectorizer from the
Scikit-Learn library 2 was used, transforming each description into
a vector based on the frequency and importance of words in the
corpus. This vector reflects the relevance of each term, allowing
clustering techniques to be applied.

It is important to note that high dimensionality and word dis-
persion can introduce noise and outliers in the data, affecting the
quality of the generated groups.

Two main algorithms were tested:

o K-Means: efficient for large data volumes, requires prior defi-
nition of the number of clusters. It is sensitive to initialization
and may converge to suboptimal solutions if centroids are
not properly configured.

e Hierarchical Clustering: builds a hierarchy of groups repre-
sented by a dendrogram. It does not require predefining the
number of clusters, making it useful for exploring internal
structures. Its main limitation is the high computational cost
when working with large datasets.

Step 5: Generating a Unique Representation for Each
Document

Each description is assigned to a group and represented as a binary
vector, where a “1” indicates the group to which it belongs. For
example:

e Group 1: (1,0,0).
e Group 2: (0,1,0).
e Group 3: (0,0,1).

In this way, each OpenAPI document can be described as a vector
formed by the summation of the vectors it contains. For example,
Figure 4 shows how document 1 is vectorized, where the group is
first replaced by the corresponding vector and then the summation
is performed.

Filel.yml
Pathl:

put: Groupl

get: Group3
Path2:

get: Groupl

Path3:
delete: Group2
et: Group2

Filel.yml
Pathl:
put: (1,0,0)
get: (0,0,1)

Path2:

get: (1,0,0)
Path3:

delete: (0,1,0)

get: (0,1,0

(2,2,1)

Figure 4: Vector generation for a microservice based on its
functionality and structure.

Zhttps://scikit-learn.org/
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This final vector indicates that the document has 2 descriptions
from group 1, 2 from group 2, and 1 from group 3. To enhance
this representation, the semantic relationship between groups is
considered, particularly useful in cases where a description could
belong to more than one group (border areas). Using SpaCy and its
similarity method, relationships between group names are calcu-
lated. For example, if group 1 has a similarity of 0.8 with group 2
and 0.3 with group 3, its vector is adjusted from (1,0,0) to (1, 0.8, 0.3),
generating vectors richer in semantic information and improving
clustering. This improvement is applied only when ChatGPT is
used for initial clustering, as it ensures representative and coherent
group names.

Step 6: Document clustering

Once the documents are vectorized, clustering algorithms can be
directly applied to group them by similarity. Unlike previous meth-
ods (e.g., ChatGPT or semantic similarity) that work with text, this
stage requires vector inputs. The tool allows configuring the type
of clustering algorithm to use: K-Means or hierarchical clustering,
enabling comparison between both approaches to determine which
generates more accurate clusters.

K-Means. K-Means is a widely used clustering algorithm due
to its simplicity and efficiency. Its operation is based on dividing a
dataset into a fixed number of clusters, which must be defined in
advance. Each cluster is represented by a centroid, and the algorithm
assigns each data point to the cluster with the nearest centroid.
It then recalculates the centroids and repeats this process until
the assignments no longer change significantly. One of the main
advantages of K-Means is its low computational cost, making it ideal
for working with large datasets. However, it has some important
limitations. The need to specify the number of clusters beforehand
can be problematic if there is no prior domain knowledge.

Additionally, as it works solely with quantitative variables, it
is not suitable for categorical data. Another aspect to consider
is that its results can vary between runs due to randomness in
centroid initialization, which can lead to local rather than global
optimal solutions. K-Means is also sensitive to outliers, as these
can significantly alter the centroid positions, affecting clustering
quality. To minimize these effects, it is recommended to normalize
the data and remove outliers before applying the algorithm.

In summary, K-Means is a powerful tool for segmenting data
into groups, with advantages such as ease of implementation and ef-
ficiency in handling large datasets. However, it presents challenges,
including the need to define the number of clusters in advance,
its limitation to quantitative variables, the lack of convergence to
consistent solutions, and its susceptibility to outliers.

Hierarchical Clustering. Hierarchical clustering proposes a
different approach to grouping data. Instead of requiring a fixed
number of clusters, it builds a tree-shaped hierarchy where data
are progressively merged or split based on their similarity. This
approach can be agglomerative (starting with each data point as an
independent cluster and then merging them) or divisive (starting
with all data in one group and then splitting them).

The main advantage of hierarchical clustering is that it does not
require pre-specification of the number of clusters, allowing the
user to explore different dendrogram cuts (the visual representation
of the tree) depending on the desired granularity. It is also more
robust to noise or outliers, as it considers the global structure of
the dataset at each process stage. Additionally, it allows the use of
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various distance metrics, providing greater flexibility to adapt to
different data characteristics.

However, its main drawback is the high computational cost,
especially when working with large datasets, which can hinder
its application in large-scale scenarios. Moreover, as the number
of elements increases, interpreting the dendrogram can become
complex, making it difficult to identify meaningful groups.

In summary, hierarchical clustering is a valuable technique in
data analysis due to its ability not to require predefining the num-
ber of clusters, its resistance to noisy data, and its flexibility in
adjusting distance metrics. However, it has disadvantages in terms
of computational costs, scalability, and the difficulty of interpreting
dendrograms in large datasets.

The choice between K-Means and hierarchical clustering will
depend on the specific analysis needs and data characteristics. Both
methods have strengths and limitations. The decision between them
will depend on the dataset size, available resources, and analysis
objectives.

Analyzing Clusters. After applying clustering algorithms, it is
crucial to analyze the obtained results to assess how effectively the
groups have been formed. For this purpose, metrics that measure
cluster quality are used. This study employs the Silhouette measure,
a widely recognized metric that combines concepts of cohesion
and separation between data points [21]. Cohesion refers to how
close points within the same cluster are to each other, while separa-
tion evaluates the distance between formed clusters. Ideally, points
within a cluster should be as close as possible (high cohesion) and
as far as possible from points in other clusters (high separation).

The Silhouette coefficient is calculated for each point considering
both metrics and is expressed by the Equation 1:

b(i) - a(i)

s@) = max{ a(i), b(1)}’

1

where

o a(i) (Cohesion) is the average dissimilarity (e.g., Euclidean
distance) between point i and all other points in its own
cluster;

o b(i) (Separation) is the smallest average dissimilarity be-
tween point i and the points in any other cluster (i.e., the
nearest neighboring cluster).

This value can range from -1 to 1. A value close to 1 indicates that
the point is well assigned to its cluster and that there is good sepa-
ration from other clusters. A value close to 0 suggests that the point
is on the boundary between two groups, while a negative value
implies poor assignment. Averaging the Silhouette coefficients of
all points yields a global metric indicating the overall clustering
quality. This metric is key to validating whether the constructed
vector representation of the documents is precise enough to enable
coherent microservice segmentation. If low or negative values are
obtained, it will be necessary to review earlier stages, such as de-
scription clustering or vectorization processes, to identify possible
improvements.

Graphical Representation of Points in Space. In addition
to numerical analysis, it is also useful to have a graphical repre-
sentation of the documents in vector space to visually understand
how the points are distributed and how they might cluster. Figure
5 provides an example of how each document can be represented
as a three-dimensional vector. These vectors correspond to points
in a three-dimensional space. As illustrated in Figure 6, observing
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the arrangement of points A (Doc1) and B (Doc2), and C (Doc3)
and D (Doc4), one can infer that A and B form a cluster due to
their proximity, as do C and D. This visualization facilitates cluster
interpretation when the number of documents is small.

||Dn-cument|| Vector |
[Doct A -(2,22)
[Doc2 B-(1,32)
[Doca C -(2,1,0)
[Doc4 D -(2,1,1)

Figure 5: Representation of documents as vectors.

However, in practice, when working with large datasets and high-
dimensional vectors, it is not always possible to visualize points
directly. Therefore, the use of automatic clustering algorithms be-
comes essential to discover patterns without supervision or prior
knowledge of data relationships.

Figure 6: Representation of 3-dimension points.

4 Proposal Validation

This section specifies how we validated ODAM. It covers the Re-
search Questions (RQs), experimental factors, subject system, pro-
cedure, response variables, and data-analysis methods.

Objectives. The overarching goal is to determine whether
ODAM can recover functionally meaningful clusters of microser-
vices from OpenAPI specifications. We distilled this goal into six
RQs:

RQ1 Which intermediate technique (ChatGPT, SpaCy-semantic, or
unsupervised vector clustering) is most effective at uncovering
semantic relationships among endpoint descriptions?

RQ2 Does auto-completing missing descriptions with ChatGPT
improve the final clustering quality?

RQ3 What is the optimal number of clusters (k) for the final group-
ing step?

RQ4 How different are the final clusterings produced by the com-
peting pipelines?

RQ5 Which pipeline offers the shortest execution time?

RQ6 Between K-Means and hierarchical clustering, which delivers
the best final grouping when fed with ODAM’s document
vectors?
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The RQ1 targets the very first decision point in ODAM: if con-
ceptually related endpoints are not recognized early, downstream
steps cannot recover a coherent architecture. RQ2 addresses the
chronic sparsity of industrial OpenAPI files and tests whether LLM
augmentation truly adds value. RQ3 is concerned with architectural
granularity: too few clusters blur distinct services, whereas too
many fragment cohesive domains. RQ4 gauges robustness; high
variance between pipelines would expose configuration sensitivity.
RQ5 introduces a pragmatic angle—reverse engineering must scale
to large codebases and CI/CD cycles. Finally, RQ6 contrasts the
two most common clustering back-ends, giving practitioners guid-
ance on the trade-off between K-Means’ speed and Hierarchical
clustering’s determinism.

Subject System. We used the Twilio REST API® as the sole case-
study system. Its public OpenAPI bundle describes 45 microservices
that cover SMS, voice, fax, video, e-mail, and verification features.
This system was chosen because (i) it is publicly available under a
permissive license, ensuring full replicability; (ii) its 45 microser-
vices span heterogeneous domains—SMS, voice, video, e-mail, verifi-
cation and IoT—thereby stressing ODAM with diverse vocabularies;
(iii) roughly one-third of its endpoints lack human-written descrip-
tions, providing a realistic test case for RQ2; and (iv) Twilio’s rich
documentation and wide user base allowed two independent soft-
ware architects—each with over 10 years of experience in service-
oriented and API-based system design, and no prior involvement
with Twilio—to produce an expert-defined clustering used as the
gold standard for evaluation. Both experts had previously worked
on microservice decomposition projects in large-scale distributed
systems. They independently grouped the 45 Twilio services into
functional domains based solely on the available OpenAPI spec-
ifications, producing labeled cluster assignments that were then
consolidated through consensus.

Experimental Factors. To explore how ODAM behaves un-
der different configurations, we systematically manipulated four
independent variables—each selected to reflect a meaningful archi-
tectural or algorithmic decision point:

o Finy: Intermediate clustering technique, with three levels:
, ChatGPT, ; SpaCy-semantic, ; TF-IDF+clustering,. This factor gov-
erns how functional themes are derived from endpoint descrip-
tions. It reflects the balance between traditional NLP (TF-IDF),
lightweight semantic matching (SpaCy), and LLM-based seman-
tic abstraction (ChatGPT). Comparing them tests whether deep
semantic inference outperforms shallow text similarity.

® Fyeec: Description completion (yes vs. no). Many OpenAPI files are
partially documented. This factor tests whether auto-generating
missing endpoint descriptions with ChatGPT significantly im-
proves the quality of downstream clustering. It simulates realistic
documentation scenarios, especially in brownfield systems.

® Fpy: Final clustering algorithm (k-Means vs. hierarchical). These
are two widely adopted clustering methods with distinct
characteristics—K-Means is scalable and fast, while hierarchi-
cal clustering yields interpretable dendrograms and requires no
prior k. The goal is to assess their impact on ODAM’s grouping
quality when applied to functional vectors.

o Fy: Target number of clusters 5,10, 15, 20. This factor allows us
to test different levels of architectural granularity. Fewer clus-
ters may expose broader business domains, while more clusters

3https://www.twilio.com/docs/usage/api
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may capture finer-grained services. It directly addresses RQ3 on
optimal cluster count.

Together, this 3 X 2 X 2 X 4 full-factorial design yields 48 distinct
experimental treatments. Each combination simulates a plausible
ODAM usage scenario, enabling a robust, comparative evaluation
across configurations that vary in semantic depth, documentation
completeness, algorithmic strategy, and clustering resolution.

Response Variables. To assess ODAM’s clustering quality and
practical viability, we selected four response variables that capture
both semantic accuracy and operational performance:

o Success Rate (SR): the proportion of elements grouped together
by ODAM that are also grouped together by the expert. This
metric reflects how well the automated clustering aligns with
human architectural understanding. It directly measures func-
tional coherence from a domain-specific perspective, making it
essential for evaluating the utility of the output.

e Failure Rate (FR): the proportion of elements grouped by ODAM
that should not be grouped according to the expert baseline.
While SR captures correctness, FR captures overgeneralization
or noise. Together, they provide a balanced view of precision and
error.

o Silhouette Score (SS): a widely used internal metric for clustering
validation, it quantifies how tightly grouped an element is within
its assigned cluster (cohesion) versus how far it is from other clus-
ters (separation). Values near 1 indicate well-defined clusters, and
scores above 0.5 are generally considered acceptable. This metric
is algorithm-independent and offers insight into the structural
quality of the vector representations.

o ExecTime: the total wall-clock time (in seconds) from the begin-
ning of the pipeline to the generation of the final JSON output.
This metric reflects ODAM’s feasibility for real-world use, espe-
cially in large-scale or time-constrained environments such as
CI/CD pipelines.

These variables were chosen because they jointly address both
effectiveness (semantic alignment and cluster cohesion) and effi-
ciency (runtime overhead). SR and FR rely on expert judgment and
domain knowledge, capturing external validation. SS and ExecTime,
in contrast, reflect internal validation and performance trade-offs,
enabling a comprehensive evaluation of the ODAM in different
usage scenarios.

Experimental Procedure. In what follows, we describe the
main steps performed in experimental activities.

(1) Dataset preparation — download Twilio’s OpenAPI files and
normalize them to a single directory.

(2) Description completion — if Fyese = yes, invoke ChatGPT on
every endpoint whose description field is empty.

(3) Pre-processing — tokenise, lemmatise and remove stop-words
with SpaCy; persist cleaned texts.

(4) Intermediate clustering — apply the technique selected by Fiyt
to group individual descriptions into functional topics; store
the mapping description — topic.

(5) Vectorization — turn each microservice into a binary or
weighted membership vector over the discovered topics.

(6) Final clustering — cluster those vectors using the algorithm
and k dictated by Fg, and F; export the JSON result.

(7) Measurement — compute SR, FR, SS and ExecTime; log all
raw data for replication.
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Each treatment was executed three times to mitigate randomness
in both ChatGPT completions and algorithm initialization. Results
were averaged per treatment.

Data Analysis. Our analysis is strictly descriptive, mirroring the
data that were collected. For every treatment, we ran three replicates
and reported the arithmetic mean of each response variable.

e For RQ1-4 we juxtapose Success Rate (SR), Failure Rate
(FR) and Silhouette Score (SS) across treatments. No
null-hypothesis testing is performed; We simply highlight
the largest deltas and interpret them in the context of the
RQs.

e RQ5 is answered by comparing mean wall-clock ExecTime.
Because variance is low (coefficient of variation < 5%), visual
inspection of the values is sufficient.

e For RQ6, we hold k constant and contrast the means obtained
with K-Means versus hierarchical clustering. The discussion
focuses on practical trade-offs (speed vs. stability of the cen-
troids) rather than on statistical significance.

Artifacts Availability. All OpenAPI descriptions, entries,
ODAM source-code files, JSON files, among other artifacts used to
compute the study’s results, are available online in our supplemen-
tary material  to ensure transparency and facilitate replication.

5 Validation Results

Our experimental matrix combines three intermediate strategies
(ChatGPT topic induction, unsupervised K-Means/Hierarchical, and
SpaCy semantic matching) with two description-completion set-
tings (on / off) and two final clusters (K-Means, Hierarchical). Each
setting is replicated four times, totaling 3 X 2 X 2 X 4 = 48 pipeline
runs. Accuracy is first judged at the expert’s reference granularity
(k = 15); later, k is varied to probe cohesion (RQ3).

Because the expert solution partitions Twilio into 15 clusters,
we kept k = 15 while comparing pipelines head-to-head on success,
failure, and execution time. Three “macro-scenarios” emerge:

e Scenario 1 - ChatGPT groups descriptions semantically.

e Scenario 2 - Unsupervised statistical grouping (K-
Means/Hierarchical) without LLM semantics.

e Scenario 3 — SpaCy cosine similarity—based grouping.

Within each scenario, we evaluate the impact of (i) enabling
description completion and (ii) choosing K-Means or Hierarchi-
cal as the final grouper. The outcomes are summarized in Table
1, which reports the mean SR, FR, and wall-clock time for every
configuration.

Regarding the SS, it was used to evaluate the experiment in two
aspects. Firstly, it analyzed the intermediate clustering methods,
hierarchy, and K-Means. Secondly, after defining the best interme-
diate clustering method, it was used to analyze different “k” values
to determine the optimal number of final clusters. The best SS was
obtained with k = 5 (0.55), indicating that, from a vector perspective,
the set of microservices could be organized into fewer well-defined
groups. This response to RQ3 suggests that the optimal number of
clusters may differ from that established by the expert, depending
on the chosen criterion (semantic vs. structural).

RQ1 - Which intermediate technique is most effective?. Ta-
ble 1 leaves little doubt that the ChatGPT-driven pipeline (Scenario
1) is the clear front-runner: when completion is enabled, it attains
an average success rate of 0.64 while keeping failure at 0.40—a

“https://doi.org/10.6084/m9.figshare.29495540

Di Sabato et al.

34% relative improvement in correct pairings over the best purely
statistical alternative (Scenario 2, 0.48). Two mechanisms explain
the gap. First, the LLM synthesizes short, information-dense sen-
tences that inject the same domain nouns (“verify”, “token”, “voice
call”) into endpoints that originally shared no lexical overlap; this
densification gives TF-IDF and cosine similarity something tangi-
ble to work with. Second, the grouping prompt forces ChatGPT
to assign high-level labels (“Identity verification”, “Programmable
voice”) that act as ready-made semantic centroids. Once such cen-
troids exist, whether the final grouper is K-Means or hierarchical
matters little (A SR < 0.01), confirming that representation quality
dominates the downstream algorithm.

RQ2 - Does completing missing descriptions help?. Figure 7
shows that completion is always beneficial, but its payoff is pipeline-
dependent. In Scenario 1, filling the 31% of Twilio endpoints that
lacked text is transformative, pushing SR from 0.48 to 0.64 and
cutting FR by one-third. In Scenarios 2 and 3, the lift is more modest
(+3-5 pp), yet still valuable: short, consistent sentences reduce
vocabulary sparsity and keep cosine distances from collapsing to
zero. In other words, completion turns opaque API stubs into usable
signals; the more semantic the downstream stage, the larger the
dividend.

Success and Failure Rate (with generated descriptions)
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Figure 7: Success and fail rates.

RQ3 - What cluster count (k) maximizes cohesion and sep-
aration?. After locking in the best pipeline from RQ1, we varied k
and recomputed Silhouette (Table 2). The curve crests at k = 5 (SS
= 0.55), then plateaus. Manual inspection shows these five groups
map almost one-to-one to Twilio’s business domains—Messaging,
Voice, Video, Email, and Trust & Safety—suggesting that ODAM
surfaces a high-level capability view that even Twilio’s documen-
tation leaves implicit. Values of k beyond 10 add little cohesion;
values below 5 begin to merge orthogonal capabilities (e.g., SMS
and Voice). Thus, ODAM gives architects an evidence-based upper
and lower bound for meaningful granularity.

RQ4 - How sensitive are the results to pipeline configura-
tion?. Changing the final cluster, toggling completion, or swapping
the statistical intermediate method moves the final Silhouette by
at most 0.05 (Tables 2 and 3). Even when ChatGPT is removed en-
tirely, the ranking of intermediate strategies remains stable. This
low variance indicates that ODAM’s two-level vectorization (topics
— document vectors) absorbs noise and provides a configuration-
robust output, crucial when the tool must be executed in automated
workflows that favor default settings.
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Table 1: Analysis of the scenarios according to success rate (SR) and failure rate (FR) metrics (k = 15).

k=15
Scenario Intermediate Clustering Final Grouping Success

Hierarchical 0.64

1 Chrigior K-Means 0.64

. . Hierarchical 0.47

2 Hierarchical K-Means 0.46
Hierarchical 0.48

2 K-Means K-Means 0.44

3 Semanti Hierarchical 0.49
cmantic K-Means 0.51

Table 2: Silhouette score (SS) analysis for different k values
using ChatGPT as intermediate clustering method

Final Method Final Score
5 k-means 0.55
hierarchical 0.53
10 k-means 0.49
hierarchical 0.49
15 k-means 0.49
hierarchical 0.50
20 k-means 0.50
hierarchical 0.50

RQ5 - Which pipeline is fastest?. Execution-time columns in
Table 1 reveal a stark, two-order-of-magnitude split. Statistical and
SpaCy pipelines finish in 40-100 s, compatible with CI/CD feedback
loops. ChatGPT pipelines, however, require about 5.600 s (1.6 h)
because every missing description triggers an API call. At current
OpenAl pricing, the full run costs roughly $0.45—economically
trivial but operationally slow. A pragmatic workflow is therefore to
cache completed descriptions on disk and re-run the slow pipeline
only when the OpenAPI spec changes; day-to-day builds can rely
on the cached text and enjoy sub-minute runtimes.

RQ6 — K-Means or hierarchical for the final step?. Finally,
answering RQ6, both Table 2 and Table 3 show that the final scores
do not represent a significant difference in the results obtained.
Therefore, it can be stated that while either method is suitable for
the final clustering, the needs and computational requirements of
the developer must be considered. On one hand, K-Means has lower
computational costs, but its results may vary between runs due to
centroid initialization. On the other hand, hierarchical clustering
can produce identical results in different runs at the cost of higher
computational requirements.

Table 3: Silhouette score analysis in intermediate clustering
methods

With Generated Descriptions

Intermediate | Final Method | Intermediate | Final Score
Method Score
k-means k-means 0.02 0.67
k-means hierarchical 0.02 0.67
hierarchical k-means 0.01 0.65
hierarchical hierarchical 0.01 0.67

Without Generated Descriptions

Failure ExecTime (sec) Success Failure ExecTime (sec)
0.40 5586.16 0.48 0.60 1813.85
0.40 5585.24 0.47 0.60 1813.89
0.51 39.40 0.46 0.57 23.67
0.52 38.78 0.40 0.59 23.09
0.54 38.62 0.48 0.55 23.00
0.58 37.99 0.47 0.59 22.93
0.55 98.62 0.59 0.59 60.73
0.55 98.56 0.59 0.62 60.66

6 Main Implications

The findings of this study carry implications across three dimen-
sions: software engineering research, industrial practice, and archi-
tectural tooling. These implications are grounded in the empirical
evidence obtained from our evaluation of ODAM.

From a research perspective, the results confirm that LLMs
may improve the quality of architectural clustering when compared
to traditional NLP pipelines. Specifically, RQ1 and RQ2 demon-
strated that ChatGPT-augmented descriptions led to a 34% improve-
ment in grouping accuracy over pipelines relying solely on TF-IDF
or semantic similarity. This finding reinforces the growing under-
standing that LLMs are not merely text generators but effective
instruments for semantic abstraction and knowledge structuring.
Additionally, RQ6 showed that once high-quality intermediate rep-
resentations are in place, the choice of clustering algorithm (K-
Means vs. Hierarchical) has minimal impact on the final outcome.
This suggests that future work should focus on enhancing the ex-
pressiveness and robustness of vector representations—through
better embedding strategies or hybrid techniques—rather than only
optimizing clustering parameters. Furthermore, the reliance on a
manually curated expert clustering highlights a recurring challenge
in this line of research: the lack of standardized, multi-annotator
benchmarks for evaluating microservice decompositions. This limi-
tation suggests an avenue for the community to invest in shared
datasets and evaluation frameworks for architectural recovery.

In terms of practical implications, the study offers action-
able insights for engineering teams working on legacy systems or
undocumented APIs. The evidence from RQ2 suggests that LLMs
are particularly effective at compensating for incomplete documen-
tation, which is common in brownfield contexts. Moreover, RQ5
introduced an important trade-off: while ChatGPT-based pipelines
provide superior clustering accuracy, they incur higher execution
times. Fortunately, the overhead can be mitigated by caching the
generated descriptions, allowing organizations to benefit from LLM-
enhanced analysis without compromising runtime efficiency. The
results from RQ3 also suggest that there is no single “correct” level
of decomposition. For instance, a cluster count of k = 5 yielded
the highest Silhouette score, even though the expert reference used
k = 15. This indicates that ODAM can support different levels
of architectural granularity depending on the business or oper-
ational goals—ranging from coarse domain-level partitioning to
fine-grained service analysis.

Finally, regarding tooling, our findings highlight that ODAM
can serve as a clustering engine and enabler of architectural vis-
ibility and governance. By injecting consistent terminology and
high-level group labels, ChatGPT facilitates the interpretation of
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clusters, bridging the gap between informal documentation and
structured design artifacts. This aligns with insights from RQ1 and
RQ4, which show that pipelines integrating semantic enrichment
produce more interpretable and stable clusters. In addition, the
sub-minute execution time achievable via caching (RQ5) makes
ODAM suitable for integration into CI/CD workflows or developer
platforms such as Backstage or Visual Studio Code. In such contexts,
ODAM could support tasks like service refactoring, architectural
drift detection, or automated validation of domain boundaries.

7 Threats to Validity

Despite the promising results, several validity threats may influence
the generalizability and replicability of our findings. These are
organized under four commonly adopted dimensions in empirical
software engineering: construct validity, internal validity, external
validity, and reliability [26].

Internal Validity. The internal consistency of the results may
be affected by the inherent variability of LLM-generated content.
Although standardized prompts were used to mitigate variance,
ChatGPT’s outputs are sensitive to prompt phrasing, context win-
dow constraints, and token sampling randomness. Moreover, de-
cisions such as group name assignment and error correction in
clustering outputs required occasional human intervention. These
steps, while minimal, introduce a risk of unconscious bias. In addi-
tion, as all experiments were conducted on a single dataset (Twilio),
there is a potential risk of overfitting pipeline configurations (e.g.,
thresholds or prompt styles) to that particular dataset, limiting their
generalizability.

Construct Validity. We chose the Silhouette score and expert-
defined service groupings as our primary evaluation criteria.
While these are widely used in clustering assessments, they do
not fully capture domain semantics, business logic alignment, or
performance-driven constraints inherent in microservice design.
Additionally, the representation model assumes that textual simi-
larity correlates with functional cohesion, which may not hold in
all architectures (e.g., when two services have distinct roles but
share similar verbs like “get”, “create”, or “send”). Furthermore, the
expert-curated reference architecture used as a gold standard is
itself subjective and may reflect individual bias or domain-specific
assumptions. Multiple annotators and inter-rater agreement mea-
sures could provide a more robust ground truth in future studies.

External Validity. Our empirical evaluation is limited to a sin-
gle domain-specific case (Twilio API), which—though heteroge-
neous—is still a communication-centric platform. Systems in fi-
nance, healthcare, IoT, or manufacturing might exhibit different doc-
umentation styles, domain vocabularies, and service partitioning
philosophies. Therefore, further studies on diversified API ecosys-
tems are needed to validate ODAM’s effectiveness across different
verticals and document quality conditions.

Reliability. While most stages of the ODAM pipeline are auto-
mated and reproducible, some configurations—especially ChatGPT-
based groupings—rely on API calls whose responses may drift over
time as the model evolves. This raises concerns about reproducibil-
ity unless ChatGPT versions, prompts, and outputs are cached and
archived. Additionally, some decisions—like threshold tuning for
SpaCy similarity—were made empirically rather than through cross-
validation or statistical optimization, leaving room for future re-
finement. Finally, the pipeline depends on third-party services (e.g.,
OpenAl API), whose availability, pricing, and underlying model
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behavior may change over time, potentially affecting ODAM’s long-
term sustainability and repeatability.

8 Final Remarks

This study set out to determine whether text-based service de-
scriptions—augmented by LLMs—can drive an automated, function-
oriented clustering process for microservices. To that end, we intro-
duced ODAM (OpenAPI Documentation Analysis and Modeling), a
four-stage pipeline that: (i) fills in missing endpoint descriptions us-
ing ChatGPT, (ii) distills salient terms with SpaCy;, (iii) encodes the
resulting texts as vectors, and (iv) applies three alternative group-
ing strategies—ChatGPT-only, ChatGPT + SpaCy validation, and
classical unsupervised algorithms—to generate coherent clusters of
services.

The RQ1 showed that the ChatGPT-only strategy delivers the
most semantically aligned intermediate clusters. RQ2 confirmed
that LLM-generated descriptions boost clustering quality across
all methods. In RQ3, we observed that a smaller number of final
clusters (k = 5) maximizes the silhouette coefficient, whereas the
expert baseline used k = 15. RQ4 revealed no statistically significant
difference between K-Means and hierarchical clustering when fed
high-quality vectors. RQ5 highlighted a clear trade-off: ChatGPT of-
fers the best precision but incurs the highest execution time. Finally,
RQ6 demonstrated that either K-Means or hierarchical clustering
can serve as the final step, provided the earlier description grouping
is robust.

Our work contributes (i) ODAM, a reproducible end-to-end tool
that unifies LLM augmentation with traditional NLP for service
clustering; (ii) an empirical comparison of six pipeline variants,
offering practitioners guidance on accuracy-versus-cost trade-offs;
and (iii) the first benchmark, to our knowledge, that contrasts hu-
man expert groupings with LLM-enhanced clustering of real-world
OpenAPI microservices.

Looking for future work, we plan to broaden ODAM’s reach be-
yond the current case study by validating it on finance, e-commerce,
and IoT APIs, thereby testing its robustness across distinct busi-
ness domains. We will also enrich the input signals—combining
runtime traces, log semantics, and version-control histories with
the existing documentation pipeline—to capture both evolutionary
and functional relationships among services. To make these capa-
bilities actionable, we aim to embed ODAM in developer tooling
such as Backstage or VS Code, complete with interactive visual-
izations and “what-if” regrouping that supports live architectural
decision-making. Finally, we intend to investigate ensemble strate-
gies that blend multiple LLMs and classical algorithms, mitigating
single-model bias and boosting clustering stability. Together, these
directions move us closer to fully automated, text-driven support
for designing, evolving, and governing microservice architectures.
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