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Abstract. Word Sense Disambiguation (WSD) is an important task for 
Biomedicine text-mining. Supervised WSD methods have the best results but 
they are complex and their cost for testing is too high. This work presents an 
experiment on WSD using graph-based approaches (unsupervised methods). 
Three algorithms were tested and compared to the state of the art. Results 
indicate that similar performance could be reached with different levels of 
complexity, what may point to a new approach to this problem. 

1. Introduction  
The process of selecting the accurate sense of a word is called Word Sense 
Disambiguation (WSD). Identifying the correct sense of words helps to improve text-
mining systems. Among the approaches developed, there are those with specific 
purpose, in which WSD is restricted to a particular knowledge domain. In the 
biomedical domain, knowledge-rich systems are projected employing Natural Language 
Processing (NLP) techniques to deal with the ambiguity inherent to texts.  MedLEE1 
and PubMed2 are examples of such systems. MedLEE extracts information from 
radiology texts. It organizes and classifies information like a controlled vocabulary. 
PubMed is an indexer of biomedical articles. In both cases, the search for information is 
associated with the identification and classification of concepts present in texts.  
 However, the process of automatically identifying the accurate sense of a word 
in a text is still an open problem. For example, consider the search for the word glucose 
in the PubMed indexer. According to the UMLS (Unified Medical Language System) 
metathesaurus (Humphreys et al. 1998), specialized in Biomedicine, the word glucose is 
present in three concepts: glucose, plasma glucose measurement and glucose 
measurement. The user searching for the word glucose in the PubMed indexer might be 
unaware of, or even not desire, the results with the plasma glucose measurement and 
glucose measurement concepts. To identify the accurate sense of a word, the context in 
which it was used plays a very important role. Generally, concepts or simply the 
surrounding words (i.e. words that are before and after the ambiguous word in a text) 
represent the context. Together with this kind of information, it is possible to make use 
of automatic methods that consider the situation in which the word was employed, and 
then select the most adequate sense according to a predetermined set of possible senses, 
such as, for example, those established in the UMLS. 

                                                
1 http://www.cat.columbia.edu/?page_id=84 Last access: 9th April 2015. 
2 http://www.ncbi.nlm.nih.gov/pubmed/ Last access: 9th April 2015. 



  

 Approaches based on supervised learning have the best results in WSD of 
Biomedicine texts (Navigli 2012; Preiss and Stevenson 2013; Trivedi et al. 2014). 
However, they demand labeled examples for training, which might not be available or 
be too costly to be developed. This limitation means that the supervised approaches may 
disambiguate a sample of words to which a set of training data was elaborated, and this 
limits their practical use. On the other hand, unsupervised approaches do not require 
labeled examples. As they use structured knowledge sources, there is no need for 
training and testing sets. Unsupervised and semi-supervised approaches have been 
previously explored with the use of UMLS (Garla and Brandt 2012; Navigli 2012; 
McInnes and Pedersen 2013). Furthermore, knowledge sources might also be taken as a 
graph, where the topology can suit the unsupervised method. UMLS, as well as 
WordNet (Miller 1995), are examples of this case: semantic relations are established 
between the concepts in form of a graph. 
 There are specific algorithms (also known as metrics) that take into account the 
structure of a graph and determine the importance of a vertex. The most popular graph-
based algorithms associated to information retrieval on the Internet are PageRank (Page 
et al. 1998) and HITS (Kleinberg 1999). In WSD, the personalized PageRank, Degree 
Centrality and Key Player Problem algorithms have also been explored in specialized 
and non-specialized domains (Agirre and Soroa 2009; Agirre et al. 2010; Navigli and 
Lapata 2010). The results obtained with these algorithms made it possible to identify the 
best ones for different scenario settings (i.e. knowledge domain, knowledge source, 
corpora for testing), but there are gaps to be filled. 
 In such context, the present work proposes a study of the problems and solutions 
related to WSD in the Biomedicine domain. Three algorithms based on graphs were 
investigated aiming to compare, identify gaps and broaden the results found until that 
point. The results indicate that those algorithms employed for general knowledge 
domain do not behave in the same way in the specific domain of Biomedicine. 
Furthermore, the experiment reveals that results with similar performances may be 
reached with algorithms of different complexity levels, what might bring gain on 
computational processing time. 

2. Word Sense Disambiguation 
WSD using lexical samples each ambiguous word is associated to a list of possible 
meanings, called candidates, usually related to some dictionary. Information about the 
ambiguous word is then used to select its sense. This information may be comprised in 
the text itself or in external sources. The information comprised in the text can be, for 
example, the surrounding words of the ambiguous word (context) or the 
morphosyntactic categories of these words. External sources contain additional 
information about the ambiguous word, its context or the candidates for sense 
disambiguation. Annotated corpora, ontologies and thesauri are examples of external 
knowledge sources. 

2.1. Graph Approaches for WSD 
Structured sources are one type of external knowledge source that can be employed in 
WSD. They depict semantic relations among concepts, whether of specialized domain 



  

or not, which enable automated processing. Thesauri and ontologies are examples of 
this kind of resource (Navigli 2009). 
 UMLS is considered a structured resource. It represents the unification of a 
broad set of controlled vocabularies of Biomedicine, besides classification systems. The 
organization of this metathesaurus is based on concepts identified by a Concept Unique 
Identifier (CUI). For example, the following CUIs are associated to the term 
“Adjustment”: C0376209 (Individual Adjustment), C0456081 (Adjustment Action) and 
C0683269 (Psychological Adjustment). The metathesaurus also contains information 
about relations among CUIs arranged in database tables.  Using these tables it is possible 
to build a graph that represents the concepts as nodes and the relations as edges. This 
approach can be employed in the representation of candidate concepts and in the 
representation of the ambiguous word context as well. So graph structure can be used to 
determine the importance of nodes in selecting senses. Therefore, it is necessary to 
establish a method to build the graph from this information, to this end. 

2.2. Building graphs from texts 
Navigli and Lapata (2007) present a method to build such a graph. Consider the 
following paragraph as an example to understand better this process: 

… and the regression coefficient of percentage decline in FEV1 with log 
dose, were calculated ("slope", after transformation), with and without 
calibration of nebulizers by weight and adjustment for nonresponse bias. 
Standardization for baseline lung function and variation in smoking 
prevalence was applied to slope. Results were ... 

This text was extracted from the NLM-WSD corpus proposed in (Weeber et al. 2001). 
The corpus has 50 ambiguous annotated words. For each of these ambiguous words, 
100 instances were annotated. A total of 5000 abstracts forms the corpus. The abstracts 
were randomly extracted from the MEDLINE base, year 1998. The instances were 
manually disambiguated by 11 annotators who annotated each occurrence of the term 
with the corresponding meaning in UMLS. The word adjustment, for example, has three 
possible meanings, indicated in the corpus as: Individual Adjustment, Adjustment Action 
and Psychological Adjustment. In this case, the first option represents the sense chosen 
by the annotators. Some instances were classified as none to indicate that the annotators 
did not find a possible meaning for the term in UMLS. 
 Other concepts in the context must be identified to build the G graph that 
represents the terms present in the context of the ambiguous word. Considering a 
window of 20 concepts, 10 before the ambiguous word and 10 after it, we have the 
following annotation: 

… and the regression coefficient of [percentage]-10 decline in [FEV1]-9 with 
[log]-8 [dose]-7, were [calculated]-6 ("[slope]-5", after [transformation]-4), 
with and without [calibration]-3 of [nebulizers]-2 by [weight]-1 and 
[adjustment]0 for nonresponse [bias]+1. [Standardization]+2 for [baseline]+3 
[lung function]+4 and [variation]+5 in [smokin]+6 [prevalence]+7 was 
[applied]+8 to [slope]+9. [Results]+10 were ... 

The words between square brackets determine the concepts and the right brackets are 
followed by their position in relation to the ambiguous word. For example, the sixth 



  

word before the ambiguous word is calculated. Compound words can be found (e.g. 
[lung function]+4). As the concepts in the context are those found in the UMLS 
metathesaurus, they can be ambiguous, such as in the case of [variation]+5. In this 
situation, the first sense found is the one used in this example.  
 Considering the paragraph previously presented and the three possible meanings 
for the term adjustment, each candidate and its context allow the generation of a 
different graph. An example is the graph of the candidate sense Psychological 
Adjustment (C0683269), presented in Figure 1. In this graph, the CUIs of each concept 
in the paragraph are expressed according to UMLS. The grey ellipses represent the 
concepts found in the context. The gray rectangle represents the candidate term for 
disambiguation. The others are terms that establish an indirect relation between the 
candidate concept and the ones found in the context. 

 

2.3. Connectivity algorithms 
The classification of the candidate vertex is necessary, according to its importance, to 
select the accurate sense, based on some connectivity degree measure. There are several 
proposals for this, among which the ones that obtained the best unsupervised results 
were selected, according to (Navigli and Lapata 2007) and (Navigli and Lapata 2010). 
Consider E as the set of all edges and V as the set of all vertices. 
 Degree Centrality, or simply Degree, is the simplest way to measure the 
importance of a vertex. It is determined by its degree, that is, the number of vertex 
edges. Thus, we have: 

deg(v) = {{u,v}∈E :u,v∈V}  (1) 

 
Figure 1. Graph for the Psychological Adjustment concept 



  

where the degree of a v vertex, deg(v), is determined by the number of edges between v 
and each vertex in the graph. A vertex is central if and only if it has a high degree. In the 
same way, an unconnected vertex is zero degree. The centrality degree is normalized by 
its maximum degree, that is, the number of vertices in the graph except itself. Thus, we 
have: 

CD = deg(v)
V −1

 (2) 

 Within the Key Player Problem (KPP), a vertex is considered important if and 
only if it is relatively close to all other vertices (Borgatti 2006).  Thus, we have: 

KPP(v) =

1
d(u,v)u,v∈V:u≠v∑

V −1
 (3) 

where the numerator is the sum of the inverses of the distances between v and all the 
other nodes. The denominator is the number of nodes in the graph, except for v. 
 The PageRank algorithm (Page et al. 1998; Brin and Page 1998) is a method for 
classifying graph vertices according to their relative structural importance. A variation 
of PageRank employed in WSD is the personalized PageRank algorithm (Haveliwala 
2002). It calculates the structural importance of a graph’s vertices when some of them 
are more relevant than others for a specific situation. Be M a transition probability 
matrix N x N, where Mij = 1/di (inverse of the degree of an i vertex) if there is a way 
from vi to vj, otherwise it is zero. Be w a normalized stochastic vector N x 1 whose 
values are all 1/N. Then, the P PageRank Vector over the G graph is obtained by the 
following equation: 

P = cMP + (1− c)w  (4) 

 In PageRank the w vector is evenly distributed, thus determining equal 
probabilities to all vertices in the graph when there are random jumps. However, in the 
personalized PageRank the w vector might be non-uniform and determine higher 
probabilities for specific vertices, conducting to preferential vertices. Additional 
examples and details can be found in (Agirre et al. 2010). 
 Navigli and Lapata (2010) carried on an experimental study applying eight 
connectivity algorithms over three corpora. The objective was to compare the 
performance of these algorithms, and to study them against two baselines. Navigli and 
Lapata used WordNet as a knowledge source (graph) to distinguish the senses, as well 
as the lexical and semantic relations of the corpora. According to Navigli and Lapata, 
the experiments' results with the Degree and PageRank algorithms are statistically 
similar. Apart from the external knowledge source used, the value of a node for 
PageRank is proportional to its degree in undirected graphs. On the other hand, a 
significant difference between them is complexity. Degree is considered O(n) and 
PageRank is O(n2), in other words, the time for the terms’ analysis increases linearly 
and quadratically, respectively. 
 Another important finding regards external knowledge sources. Denser semantic 
relations, present in EnWordNet (an enhanced version of WordNet), increased the 
algorithms performance up to 9% (when in lexical samples modality). This increase is 
related to the fact that these approaches benefit from the number of relations to better 



  

distinguish the importance of the vertices. The average number of relations exclusive to 
EnWordNet present in terms selected by the Degree algorithms is 20.5 edges. The 
original WordNet has hyperonymy and hyponymy as its most expressive relations, 
representing together the 9.29-edge average number in terms correctly selected by the 
Degree algorithm. Navigli and Lapata consider that, besides having a higher degree, the 
exclusive relations in EnWordNet establish important transversal connections and also 
those that are not necessarily part of taxonomy. 

2.4. Graph Approach for WSD in Biomedicine texts 
Studies that employ structured (graph) resources from external sources, in domain 
independent WSD, frequently use WordNet as structured knowledge source. Likewise, 
methods based on graphs were employed in specific domains, as it is the case of the 
Biomedicine domain. 
 Agirre et al. (Agirre et al. 2010) propose the use of the graph based approach for 
the Biomedicine domain. In this work, the personalized PageRank algorithm is 
employed in WSD, with the UMLS metathesaurus as knowledge source. The relations 
present in the UMLS are used for building a graph, which is then analyzed by the 
algorithm. Thus, the ranking of each candidate concept is generated based on its relative 
importance regarding the other concepts in the context of the ambiguous concept. This 
algorithm was previously used in a domain-independent context, employing WordNet 
as a knowledge base. It obtained better results than other proposals based on graphs, as 
analyzed by (Agirre and Soroa 2009).  
 Using the NLM-WSD corpus (Weeber et al. 2001), which is composed by 
abstracts on Biomedicine, the PageRank algorithm results were compared to the two 
baselines. Furthermore, the results were compared to those of (McInnes 2008), who 
used a subset of the NLM-WSD corpus. From these, around 54% are “difficult” cases 
according to Weeber et al. (2001).  The relevance of the results obtained is one of the 
discussions pointed in (Agirre et al. 2010). Only 13 of the 50 concepts present in the 
NLM-WSD are related. This reduced set was initially established by Humphrey et al. 
(Humphrey and Rogers 2006), and was then used by McInnes (McInnes 2008). 
Humphrey et al. obtained most part of the best individual results. Around 76% of the 
concepts obtained the best result. The average achieved was 68.26% of correctness. 
McInnes’s approach did not obtain better individual results featuring a 48.11% average 
of correctness.  Agirre et al.’s approach reached a 56.14% average of correctness. It 
obtained the best individual results in 3 concepts (around 23% of the total). In other two 
cases it was close to the best results. A highlighting fact is that Humphrey et al.’s 
approach uses a semi-supervised method. In comparison to the other unsupervised 
methods, the graph approach considerably increases the general performance of the 
WSD system in this reduced testing set. 

3. Experiment 
Considering the results from Agirre et al.’s experiment with an approach based on 
graphs in a specific domain, and Navigli and Lapata’s experiment on graphs in an 
independent domain, a new experiment is proposed. Degree, KPP and PPR were 
compared on Biomedicine domain. 



  

 In order to compare the results, the same requirements and means of 
interpretation used by (Agirre et al. 2010) were adopted. A set of instructions proposed 
by the authors, in addition to the material used, was collected from the website 
http://ixa2.si.ehu.es/ukb/ and other sources. All steps were performed taking into 
account the standard window of context (20 concepts, 10 before and 10 after the 
ambiguous one). The tools distributed by the authors run in two steps. In the first step 
the text file of the UMLS table should be used to generate a binary version of this table. 
The objective is to reduce execution time and optimize memory use. The second step 
uses binary version, a dictionary of concepts/CUIs, besides the ambiguous terms and 
their contexts. The results with the experiment’s reproduction had a correctness 
percentage of 66.16%, considering 50 concepts. Similarly to how Agirre et al. (Agirre et 
al. 2010) positioned themselves, the annotated cases such as none are not part of this 
analysis.  
 The experiments performed with the two new algorithms, Degree and KPP, use 
the same framework, resources and parameters employed when reproducing the 
experiment with PPR.  

3.1. Results  
Agirre et al. (Agirre et al. 2010) presented a table with the disambiguation results for 
each concept in the corpus. Similarly to this, Table 1 contains the results excerpt of the 
two new algorithms proposed in our experiment. The concepts in italic represent the 
difficult cases according to (Weeber et al. 2001). The “#totalInst” column contains the 
amount of instances assessed by the algorithm for each concept. In other words, it 
represents all the instances of ambiguous concepts that were not classified as none by 
the annotators. The “#inst” columns show the amount of instances correctly classified 
by each algorithm. The percentage (%) columns present the rate of instances correctly 
classified, considering the “#inst” columns and the “#totalInst” column. In some cases 
more than one algorithm achieved the best result. The “Agirre et al. (2010)” column 
reproduces the percentage results that article presents for each concept. The absolute 
values of instances correctly classified are not shown.   

 
Among the 5000 corpus’ instances, 3983 concept’s instances were assessed. PPR 
correctly classified 2635 instances. From this total, only this algorithm reached the 
accurate sense of 580 instances (14.5%). KPP correctly classified 1676 instances and, 
among these, 676 (16.9%) were reached only with this algorithm. At last, 129 instances 
(3.2%) could be classified only by the Degree algorithm, which in its turn correctly 
classified 1833 instances. Some instances were correctly classified by more than one 
algorithm. In this situation, 458 instances (11.4%) were correctly classified by PPR and 

Table 1. Result excerpt 

Concept #totalInst Degree KPP PageRank 
#inst % #inst % #inst % Agirre et al. (2010) 

adjustment 93 13 13.98 15 16.13 29 31.18 35.50 
cold 95 12 12.63 5 5.26 24 25.26 28.40 
fit 18 0 0.00 18 100.00 2 11.11 11.10 
reduction 11 2 18.18 2 18.18 5 45.45 54.50 
resistance 3 3 100.00 3 100.00 3 100.0 66.70 
secretion 100 97 97.00 1 1.00 99 99.00 99.00 
transport 94 93 98.94 93 98.94 93 98.94 69.10 
#inst sum 3983 1833  1676  2635   
Average   46.02  42.08  66.16 65.89 



  

KPP. A total of 1162 instances (29.1%) were correctly classified by PPR and Degree. 
KPP and Degree correctly classified 107 instances (2.6%) of the NLM-WSD corpus. 
Around 435 instances (10.9%) were correctly classified by all algorithms.  
 Ultimately, none of the three algorithms could correctly classify 436 instances 
(10.9%). Figure 2's diagram presents a distribution of the classification of instances in 
relation to algorithms. 

 

3.2. Discussion 
First, let's consider some particularities regarding the values listed on Table 1. The 
reproduction of Agirre et al.’s experiment led to a better result (66.16%) than the one 
reached with the experiment originally performed by the authors (65.89%). Two factors 
seem to account for this difference. The first one is that the parameters used by the 
UMLS table extraction tool might not be the same. There is no precise documentation 
about which vocabularies should be selected. The second one is that the UMLS may 
have received minor updates between the version used by the authors and the one used 
in the reproduction. Therefore, the graph structure and, consequently, the relations 
between concepts might be altered. The other algorithms did not achieve a better 
general result than the one reached by PageRank.  
 Another issue related to the results in Table 1 is the variation between the 
algorithms. Among the best results, in thirteen concepts (26% of the total) only one 
algorithm obtained a result higher or equal to double the other algorithms. For example, 
for the fit concept, KPP correctly classified 100% of the analyzed instances, and PPR 
only 11.1%. Contrary to what was presented in (Agirre et al. 2010), the determining 
factor for the classification choices is not the density with which the senses are 
connected. KPP distinguishes those that are central in the graph structure, besides the 
relation density. This behavior led to a contrary effect with KPP, where the secretion 
concept reached the worst result of the three algorithms (1% correctness). The lead, 
resistance and transport concepts had approximately 100% of the instances correctly 
classified by the three algorithms. In short, PPR obtained 62% (8) of the best results, 
while KPP reached 38% (5). Degree did not stand out in any of the concepts. The 
algorithms discussed in (Navigli and Lapata 2007; Navigli and Lapata 2010), which 

 
Figure 2. Distribution of the correctly classified instances per algorithm 



  

outperformed on nonspecific domain, did not repeat such performance in the specific 
domain of Biomedicine. 
 All these aspects associated with result variations among algorithms and 
concepts led us to consider their performance at the instance level. If some algorithms 
can have very poor or very good results in relation to others, it is necessary to identify 
the proportion and the distribution of these results. Among those instances that were 
correctly classified, each algorithm's result for a corresponding instance allows to 
establish a set of thoughts. Firstly, PPR obtained the best general result (Table 1), KPP 
exclusively classified the highest number of instances. Those were 676 cases (16.94% 
of the 3983 instances) against 580 of the PageRank algorithm (14.56%). 
Notwithstanding, Degree correctly classified around 60% of the instances  (1597) 
classified by PPR. However, according to (Navigli and Lapata 2010), the complexity of 
PPR and Degree is, respectively, O(n2) and O(n). 

4. Conclusions and future work 
The experiment revealed that similar performances can be reached with different levels 
of complexity. Indeed, more than half of the instances can be analyzed in a shorter 
period of time if the Degree algorithm is used, for example. Furthermore, the possibility 
of identifying the most adequate algorithm to classifying a certain instance seems to be 
promising. A significant number of instances can be classified by just one of the 
algorithms, what identifies a correlation between instances and algorithms. On the other 
hand, a significant number of instances can be correctly classified by more than one 
algorithm. A study on this correlation between algorithms and instances is being 
developed as a continuation of this work. The objective is to identify instance features 
and a set of heuristics that allow the selection of the most adequate algorithm for the 
classification of words in the Biomedicine domain. Besides, we wish to identify and 
assess cases in which the right choice of algorithms with lower complexity can 
positively influence on performance. 
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