
Dynamic Optimization for Fast Image Transfer and
Visualization for Mobile and Stationary Devices: A

Performance Evaluation Using Animati Viewer

José Eduardo Venson1,2, Fernando Bevilacqua1, Carlos Edmilson da Silva Maia3,
Marcos Cordeiro d’Ornellas4

1Universidade Federal da Fronteira Sul (UFFS), Chapecó, SC, Brazil

2Instituto de Informática (INF), Universidade Federal do Rio Grande do Sul (UFRGS),
Porto Alegre, RS, Brazil

3Animati - Computação Aplicada à Saúde, Santa Maria, RS, Brazil

4Laboratório de Computação Aplicada (LaCA),
Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil

jevenson@inf.ufrgs.br, fernando.bevilacqua@uffs.edu.br,

{edmilsonmaia,marcosdornellas}@gmail.com

Abstract. A medical application running outside the workstation environment
has to deal with several limitations, such as reduced available memory and low
network bandwidth. Adaptations and novel approaches are required to make ap-
plications overcome such problems. This paper presents an approach that uses
a combination of client- and server-side procedures to dynamically optimize the
data flow for fast image transfer and visualization on mobile and stationary
devices. The main goal of our approach is to minimize the amount of data trans-
ferred to and used in the host device without sacrificing the user experience. Our
approach was implemented and validated using a real use case, the application
Animati Viewer, which is a web visualizer for diagnostic images. The evaluation
was measured using metrics such as the accumulated amount of network trans-
ferred data and the amount of memory used in the host device. The results show
that our approach is feasible and, in one of our tests, it transferred only 7.73%
of the amount of data downloaded by the OsiriX mobile.

1. Introduction
Mobile technology has contributed to the management of chronic diseases, alerting people
on medication schedule and improving the efficiency of health systems [West 2012]. For
the usage on picture archiving and communication system - PACS, the access to images
on mobile devices has broken physical barriers. The software and hardware evolution on
portable devices with screens that have ever-increasing resolutions has created new pos-
sibilities for diagnostics. A wider access within mobile devices means less time between
the exam execution and the medical report, which improves the diagnosis workflow.

This paper presents as its main contribution an approach that uses a combination
of client- and server-side procedures to dynamically optimize the data flow for fast im-
age transfer and visualization on mobile and stationary devices. The main goal of our



approach is to minimize the amount of data transferred to and used in the host device
without sacrificing the user experience. Despite the resource limitation in the device, the
user is still able to perform complex medical actions, such as image windowing. Another
contribution is the implementation of our approach in the mobile application Animati
Viewer as a use case. It is part of the Animati PACS, a system for distribution and im-
age diagnostics developed by the company Animati - Computação à Saúde from Santa
Maria/RS - Brazil.. A set of test cases based on real medical behavior were used to test
our approach. One of such tests was performed in the Animati Viewer and the OsiriX
mobile, as a simplified way to compare them.

2. Related Work

There are several initiatives to make the diagnostic procedures available beyond the work-
station environment. In order to identify such initiatives, we conducted a search using the
string ”DICOM viewer”, selecting works whose results were viewable on desktop and/or
mobile devices. Correa et al. (2008) presents a novel approach to extend the access of
medical images on mobile devices. They developed a distributed system composed of a
web server, responsible for processing computer aided diagnostics (CAD) algorithms on
the images, and a mobile device client, which is able to the visualize the results of such
process. The combination of both ends provide physicians with a solution containing
extra information regarding the diagnosis, not only a visualization tool.

Similarly Pasha et al. (2012) explores the use of mobile and stationary devices
as a platform for collaborative discussion of medical images among hospital personnel.
The patient images are uploaded from the workstation to a web server, which makes them
available to mobile devices in the network. Using a mobile application, which access the
web server, the doctor can view DICOM images and collaboratively discuss the diagnosis
with colleagues. The problem of limited memory available in mobile devices is miti-
gated by compressing large DICOM images to JPEG before sending them to the portable
devices.

Kaserer (2013) presents a DICOM web viewer able to display uncompressed DI-
COM files. Even though the viewer is able to run on desktop and on mobile platforms, it
has some limitations, such as no integration with PACS systems and the ability to display
only uncompressed DICOM images. A more complete and widely used mobile applica-
tion, however, is the OsiriX mobile, whose implementation is described by Choudhri and
Radvany (2011). The application has tools for viewing and processing DICOM images,
allowing users to perform several operations as zoom and rotation. All images are down-
loaded to the application as uncompressed DICOM files, then processed locally for all
subsequent actions.

Our approach focus on delivering a visualization solution that works outside the
workstation environment and is consistent on a variety of platforms, such as desktops and
low- to high-end mobile devices. Our approach constantly uses compressed images in
order to minimize data transferring, as opposed to some of the previous works. We also
introduce a novel approach that uses a buffer to download a set of images on-demand,
favoring JPEG compressed files instead of uncompressed DICOM images when needed
to overcome network bandwidth limitations.



3. Mobile Diagnostics
Several technical requirements are needed to make a mobile diagnostic application able
to be used for interpretation of medical images. Compared to the environment of a work-
station, a mobile application must deal with several constraints such as limited processing
power, fewer memory and lower network bandwidth.

Despite such adversities, mobile diagnostics is a valid and trending solution. As
pointed by Chandratilleke and Honeybul (2013) , the use of mobile tools can reduce the
time gap between the image acquisition and the moment it is viewed by the medical team,
decreasing the time a patient has to wait for a diagnosis. De Maio et al (2014) presented
the accuracy of mobile diagnostics related to intra-articular knee pathology, concluding
that an iPhone DICOM Viewer can be used and it is similar to that of a conventional
radiology workstation. Bhatia et al. (2013) also presented that mobile devices such as
the Apple iPad can display adequate resolution of CT and MRI sequences to accurately
diagnose acute central nervous system injuries and other non-acute pathology. John et al.
(2012) suggest that the emergency conditions commonly encountered in CT and MRI can
be diagnosed using a portable device DICOM viewer with good concordance to the work-
station evaluation. Choudhri et al. 2012 presents similar results regarding the evaluation
for acute appendicitis on abdominal CT studies using a mobile device.

In order to create a tool that allows the interpretation of medical images on mobile
devices, one has to structure the application and its workflow in such a way to minimize
the environment constraints. Compressed images can be used to reduce memory con-
sumption and the download time. The hardware differences among mobile devices and
the limited bandwidth, e.g. poor connection in a 3G network, requires the application
to adapt to the available computing resources, balancing tasks and strategies in favour
of usability and/or performance. The next section presents our approach to make a mo-
bile diagnostic application able to overcome the previously mentioned adversities, which
makes it capable of running on different scenarios and devices.

4. Architecture Overview
Our approach to creating a mobile DICOM viewer tries to reduce to a minimum the
amount of information downloaded and processed by the application. This goal is
achieved by orchestrating two modules: the on-demand downloader manager (ODM)
and the dynamic windowing module (DWM). Both modules use compression and cache
strategies as well as a combination of client- and server-side processing to reduce the
amount of transferred data.

The ODM controls the flow to fetch data from the server, deciding how many
images should be downloaded when the user clicks a serie or uses the image selector,
for instance. The DWM allows the user to perform windowing operations (e.g. adjust
contrast) on the currently selected image, deciding if this operation is best executed locally
(client-side) or remotely (server-side). The following sections describe in detail how those
two modules work.

4.1. On-demand Download Manager
The on-demand download manager (ODM) acts as a new level in the memory hierarchy.
When the user clicks a series, ODM fetches the corresponding images of that series from



the server. After the first one is downloaded, the user can navigate through the images
using a slider. In order to save on data transferring and meet any memory constraints, the
ODM module will fetch just a set of the images from the server, downloading them as
JPEG files (compression quality 75). The number of slots in the download set is based
on the ODM buffer size, which depends on the device available memory. According to
Wang et al. (2011) the size of a browser cache is about 300MB for desktops, several times
bigger than 6MB available in the Android Gingerbread browser cache, for instance. For
that reason, the ODM will adjust its buffer size to meet the memory constraints of the host
system.

As the user moves the image selector, which changes the currently active image
on the screen, called the pivot, the ODM will calculate and decide new fetches. If the
pivot is about to exceed the ODM download set boundaries, which means that the user
wants to see an image that was not downloaded yet, the ODM will fetch more images
from the server. The already downloaded images that are in the set, but far from the pivot
(the ones at the beginning of the set, for instance), will be removed from memory by the
ODM in order to make room for the upcoming images being downloaded and added to
the set. The ODM will always try to make the pivot the central image in the buffer, which
means it will fetch images to the left and to the right of the pivot until the buffer is full.
As a consequence, the user will be able to navigate back and forth in the image selector
while the ODM controls the download process in background. This approach was used to
ensure the Animati Viewer would meet the memory constraints of the system it is running
on. A CT exam, for instance, typically has 500 images in a study, which accounts for
250MB of data [Pianykh 2009]. Without the ODM, the viewer would have to download
all images of the study, which could be impractical on mobile devices, for instance.

4.2. Dynamic Windowing Module

A windowing action can be seen as a contrast adjustment performed in the images of the
study being analyzed by the user. It is used to enhance a specific tissue in the images,
e.g. bones or muscles [Bourne 2010]. The dynamic windowing module (DWM) allows
the user to perform such actions.

The module was designed to minimize the amount of information downloaded
during windowing actions, without sacrificing the user experience. The module will work
alongside the ODM module performing its actions based on three main variables: waiting
time between windowing actions, size of the uncompressed version of the images and
available memory in the device. The DWM allows the user to input windowing parameters
to adjust the contrast of the currently active image. The user is not allowed to navigate
the image selector while the DWM interface is in place. As the user inputs windowing
values, the DWM will constantly update the currently active image to present the new
contrast selected by the user, so the user can input values until the desired windowing
configuration is achieved. The update process can be performed locally (on the client’s
browser) or remotely (on the server). The DWM will choose between the local and the
remote windowing approach based on the size of the uncompressed (raw) version of the
image being windowed. If the raw image fits the memory constraints, the DWM will
choose a local approach, using the raw image to calculate the adjustments, which allows
the application to instantly render all updates as they are inputted by the user. In that case,
after the raw image is downloaded, all windowing calculations are performed locally and



the result is instantly rendered to a canvas element placed in front of the active image. A
CT study, for instance, has an average size of 512KB for each raw image [Pianykh 2009],
so the DWM will perform all windowing adjustments locally for CT studies. Even though
the user has to wait for the download of the raw image before inputting windowing values,
any adjustment made after the raw is downloaded will be instantly rendered by the DWM.
It avoids network traffic while the windowing is in place and allows the user to use a finger
or the mouse cursors to adjust contrast dynamically, performing hundreds of windowing
operations with no network cost.

If the size of the raw version does not fit the memory constraints, the DWM will
choose the remote windowing. In that case, the DWM transmits to the server every win-
dowing value the user inputs. All windowing operations are performed server-side. When
the server finishes the current operation, the DWM downloads the result as a JPEG image
and presents it to the user. The process is repeated while the user decides which window-
ing configuration to use. The DWM uses the remote windowing for mammographies, for
instance, whose size of a raw image is about 58MB [Pianykh 2009]. After the windowing
process is over, the user is allowed to navigate the image selector and use any visualiza-
tion tools again. From that moment on the new windowing configuration is stored and
used to fetch images from the server, so the user is able to analyze the study using the se-
lected windowing. Every time a windowing parameter changes, the DWM has to inform
that to the ODM, making it re-download its JPEG compressed images to match the newly
defined windowing configuration, otherwise the user sees images featuring the old win-
dowing configuration. The user can input several windowing values before the desired
configuration is achieved, so the DWM was designed to trigger the ODM re-download
only after the user is done inputting values, not after every interaction. Since the user is
not able to interact with the rest of the application when the windowing interface is in
place, the DWM can precisely decide when the windowing is over, triggering the ODM
re-fetch. The re-fetch is expensive because the ODM will remove from memory all al-
ready downloaded images whose windowing configuration is different from the one the
user just inputted and re-fetch them using the newly inputted windowing parameters.

5. Results

This section presents the results of our approach, which was implemented and integrated
into the Animati Viewer. All data were collected using Google Chrome Developer Tools,
which profiled the application while it was running on a desktop and a mobile device.
The tests were organized as a set of test cases designed to stress the ODM, forcing it to
eventually download all images of a study. Each test case was classified as ”less likely”,
”likely” and ”more likely” to happen according to empirical information provided by
medical specialists. The test cases are presented in Table 1.

Case I, classified as likely to happen, occurs when the user opens a study by mis-
take. Cases II, III, IV, V and VII represent cases where the download set must be re-
fetched several times. Finally case VII happens when the user directly selects a particular
image without navigating through all images in the image selector, which is likely to hap-
pen depending on the study type. According to our empirical analysis, cases I, III and
V are more likely to happen compared in a common medical workflow because the user
often inspects all images of a study before providing a diagnosis.



Table 1. Test cases related to image navigation

The test cases were reproduced and validated against real and anonymized data
from the Animati PACS database, arranged as three studies: study A, a CT containing
628 images, with an average size of 29.5KB per image; study B, a CT containing 3760
slices, with an average size of 38KB per image; and study C, a CT containing 40 slices,
with an average size of 20.5KB per image. The average size of all images was calculated
using the JPEG-compressed version of all slices. The amount of memory used in the host
device is related to the average size of each image in the study, since the ODM will fetch
and keep in memory just a subset of the study images. For that reason, we decided to
measure the memory usage by analyzing study B (biggest one) with no specific test cases.
When the ODM was disabled, the application downloaded and stored in memory all the
study’s images, which consumed a maximum amount of 134.5MB of memory in the host
device. When the ODM was enabled, its strategy of downloading a few images at any
given time instead of them all made the application use a maximum amount of 7.5MB
of memory. The ODM re-fetching behavior ensures the Animati Viewer uses a constant
amount of memory during the whole time the user is analyzing the study. The amount, in
this case, is about 5% of the total size of the study, which is enough to allow the user to
navigate the slices without having to wait for any download happening in background.

The accumulated amount of data transferred by the application was measured us-
ing different test cases. Figure 1 presents the results when a user performs test cases I,
III and V while study A is active. Test case I, when the user opens a study by mistake,
and test case III, when the user sees all images of a study, demonstrate that the ODM
transferred an amount of data less than or equal to the total size of study, which is the
expected result. In test case V, when the user navigates from the beginning of the image
selector to its ends then to the beginning again, the ODM transferred more data than the
total size of the study. It happens because the ODM will remove images from memory as
it fetches new images closer to the pivot in order to honor the memory constraint limit as
previously explained.

Test case V was performed again, but this time allowing the browser where the
Animati Viewer is running to use its internal cache system, which is not controlled by the
ODM. The results, presented as V* in Figure 1 show that the ODM can save even more
on network transferring if the browser has the necessary memory to serve the ODM fetch



Figure 1. Accumulated amount of data transferred by the application. Y axis:
amount of MBs transferred by each test case; X axis: test cases under Study A.
Case V* is case V with the browser cache enabled.

requests from the device’s cache. Even though test case V* is more efficient, it is dan-
gerous according to our tests, because the browser might experience severe performance
penalties due to the constrained amount of available memory.

Finally Figure 2 shows the results achieved by the DWM regarding the accumu-
lated amount of data transferred by the application when the user performs a set of win-
dowing actions, using both local and remove approaches, while study C is active.The
remote (server-side) windowing approach causes the application to download an amount
of 1.5MB as a result of 72 windowing actions inputted by the user. As previously men-
tioned, the remote approach requires the download of a new JPEG image from the server
for each windowing action, which produces a linear growth in the amount of transferred
data. The local approach (client-side), however, requires the download of a single file,
which is the uncompressed version of the image being windowed. As illustrated in Figure
2, after the download of the uncompressed file, the accumulated amount of data trans-
ferred remains the same for all subsequent windowing actions. If the user performs up
to 24 windowing actions, the remote approach transfers less data compared to the local
approach, as indicated by intersection point A in Figure 2. After 24 windowing actions,
the savings achieved by the local approach becomes evident as the user performs more
windowing actions and the accumulated amount of data transferred remains the same.

As an additional way of checking the performance of our approach, the Animati
Viewer was compared to the OsiriX mobile. The comparison was based on the accumu-
lated amount of data transferred by the applications while viewing study A (CT with 628
slices) under test case III, followed by a windowing action. OsiriX mobile transferred
314MB at the end of the test, which is the result of downloading all images of the study
as uncompressed files [Choudhri and Radvany 2011]. The Animati Viewer transferred
24.3MB at the end of the test, which corresponds to 18.1MB of JPEG compressed im-
ages downloaded while the user was analyzing the images, followed by an additional un-
compressed image of 0.5MB when the windowing action was performed. After the user
had finished the windowing action, the ODM download buffer was invalidated, triggering
a re-fetch operation that downloaded additional 5.7MB of JPEG compressed images. The



Figure 2. Accumulated amount of data transferred by the application during win-
dowing actions under Study C, highlighting differences between local and remote
approaches. Y axis: amount of MBs transferred; X axis: number of windowing
actions performed on the image during the test.

re-fetch operation downloaded enough images to fill the ODM download buffer and then
stopped, preventing the application from transferring unnecessary images. For this spe-
cific test, the Animati Viewer transferred an amount of data that corresponds to 7.73% of
the amount transferred by the OsiriX mobile.

6. Discussion
Our results show that a hybrid approach using server- and client-side procedures is able
to optimize the data flow. The two modules used in our design, the on-demand download
manager (ODM) and the dynamic windowing module (DWM), work together to keep
the application within the memory constraints, minimizing data transferring whenever
possible. This combination proved to be useful, allowing the application to run on a
variety of devices (including mobile ones) without sacrificing the user experience.

The ODM plays an important part in the process of controlling how much memory
is used by the application. Its internal buffer dictates how many images will be stored in
memory, which allows the application to estimate and adjust its memory consumption
based on the available resources. As presented in the results, the amount of memory used
by our implementation is constant, which is a key aspect to make the approach suitable
to run on resource-constrained devices. The ODM also uses compressed JPEG images in
the whole process, which saves on network transferring, making the application capable
of being used in situations where the connectivity is not ideal, e.g. 3G networks. Even
though the compression process might interfere with the image original data, Kim et al.
(2011) shows that compressed medical images have already been used with good results
in a system for rapid emergency care via mobile networks, using the JPEG2000 algorithm.
The results are encouraging to support the idea of using JPEG images to minimize data
transferring without sacrificing medical judgment.

At any moment, the user can view the uncompressed version of an image or adjust
its contrast by using the windowing tool. When it happens, our approach relies on the



DWM, which analyzes the size of the uncompressed image and decides the better way
to apply the windowing action. It ensures the user is always able to perform windowing
actions, even when the network bandwidth is not suitable. As illustrated by the results,
the accumulated amount of data transferred by the DWM can be adapted based on the
circumstances. Under adverse conditions (e.g. poor connectivity) the DWM will perform
all windowing actions in the server, downloading the result as a compressed JPEG, which
is not ideal, but fulfills the user request. When conditions are ideal, the DWM will down-
load the uncompressed version of the image and perform the windowing action locally.
As previously mentioned, it allows the processing of virtually unlimited windowing ac-
tions without network transfers, except the download of the uncompressed image used by
the DWM to start the process.

7. Conclusion and Future Work
This paper presented an approach that provides dynamic optimization for fast medical
image transfer and visualization suitable for mobile and stationary devices. Our approach
was implemented and validated using a real use case, the application Animati Viewer,
which is a web visualizer for diagnostic images, part of the Animati PACS. A performance
evaluation was conducted using mobile and desktop devices.

Our approach, mainly composed of the on-demand download manager (ODM)
and the dynamic windowing module (DWM), proved to be useful to optimize the amount
of information transferred by the application. The ODM is able to control how many
images are downloaded to and stored in the device, working within its the memory con-
straints. The DWM allows the user to perform windowing actions, which can be server-
or client-side based on the image size. The combined activities and orchestration of both
sub-systems allow the application to run on resource-constrained environments, such as
those with low network bandwidth or few available memory. The Animati Viewer, after
equipped with our solution, was able to minimize the amount of information downloaded
using the network, without sacrificing the user experience. Our approach of using a com-
bination of compressed (JPEG) and uncompressed medical images during the process
proved to be a feasible solution. In some cases, the user was able to perform virtually
an unlimited number of windowing actions with instant feedback, all locally processed
and with no network cost past the setup stage. For a specific test case, our approach
downloaded only 7.73% of the amount of data downloaded by OsiriX mobile.

As future work we recommend further tests regarding the use of JPEG-compressed
images in diagnostics tools. The use of compressed images is a key aspect to keeping the
download rate acceptable in network-constrained environments. Another suggestion is a
field test involving hospital personnel to evaluate how our approach performs in a medical
context. We also recommend a more detailed comparison between our approach and the
one used in the OsiriX mobile, since the former is widely used as a mobile diagnosis tool.

8. Acknowledgments
The study and applications of this research are part of the project Appification of Med-
ical Reports - Distribuição de Laudos e Imagens por meio de Apps, developed in An-
imati - Computação Aplicada á Saúde and financed by the Brazilian Public Agency
MCTI/SETEC/CNPq No. 17/2012 - RHAE, Pesquisador na Empresa - Conselho Na-
cional de Desenvolvimento Cientı́fico e Tecnológico/CNPq.



References
Bhatia, A., Patel, S., Pantol, G., Wu, Y.-Y., Plitnikas, M., and Hancock, C. (2013). Intra

and inter-observer reliability of mobile tablet pacs viewer system vs. standard pacs
viewing station-diagnosis of acute central nervous system events.

Bourne, R. (2010). Fundamentals of digital imaging in medicine. Springer Science &
Business Media.

Chandratilleke, M. and Honeybul, S. (2013). Modifying clinicians use of pacs imaging.
Journal of digital imaging, 26(6):1008–1012.

Choudhri, A. F., Carr III, T. M., Ho, C. P., Stone, J. R., Gay, S. B., and Lambert, D. L.
(2012). Handheld device review of abdominal ct for the evaluation of acute appendici-
tis. Journal of digital imaging, 25(4):492–496.

Choudhri, A. F. and Radvany, M. G. (2011). Initial experience with a handheld device
digital imaging and communications in medicine viewer: Osirix mobile on the iphone.
Journal of digital imaging, 24(2):184–189.

Correa, B., Ishikawa, E., Ziviani, A., and Faria, M. (2008). Medical image analysis using
mobile devices. In Proceedings of the 2008 ACM Symposium on Applied Computing,
SAC ’08, pages 1380–1384, New York, NY, USA. ACM.

De Maio, P., White, L. M., Bleakney, R., Menezes, R. J., and Theodoropoulos, J. (2014).
Diagnostic accuracy of an iphone dicom viewer for the interpretation of magnetic res-
onance imaging of the knee. Clinical Journal of Sport Medicine, 24(4):308–314.

John, S., Poh, A. C., Lim, T. C., Chan, E. H., et al. (2012). The ipad tablet computer
for mobile on-call radiology diagnosis? auditing discrepancy in ct and mri reporting.
Journal of digital imaging, 25(5):628–634.

Kaserer, M. (2013). DICOM Web Viewer. PhD thesis, Technische Universität Wien.

Kim, D. K., Kim, E. Y., Yang, K. H., Lee, C. K., and Yoo, S. K. (2011). A mobile tele-
radiology imaging system with jpeg2000 for an emergency care. Journal of digital
imaging, 24(4):709–718.

Pasha, M. F., Supramaniam, S., Liang, K. K., Amran, M. A., Chandra, B. A., and Ra-
jeswari, M. (2012). An android-based mobile medical image viewer and collaborative
annotation: development issues and challenges. JDCTA, 6(1):208–217.

Pianykh, O. S. (2009). Digital imaging and communications in medicine (DICOM): a
practical introduction and survival guide. Springer Science & Business Media.

Wang, Z., Lin, F. X., Zhong, L., and Chishtie, M. (2011). How effective is mobile browser
cache? In Proceedings of the 3rd ACM workshop on Wireless of the students, by the
students, for the students, pages 17–20. ACM.

West, D. (2012). How mobile devices are transforming healthcare. Issues in technology
innovation, 18(1):1–11.


