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Abstract. Convolutional Neural Networks (CNNs) are a powerful tool to de-
velop image-based computer-aided diagnosis systems, but as these models be-
come more complex, manual configuration becomes unfeasible. Automatic Hy-
perparameter Optimization is a promising approach to model tuning, but there is
no agreement on what algorithm is the right choice. In this work, we compared
direct search, probabilistic search and bayesian optimization for tuning 2D and
3D CNNs for lung nodule classification. Our models achieved an AUC of 0.88,
sensitivity of 87.03%, and specificity of 78.66%. Moreover, our experiments
brings evidence on the weak performance of grid search, while showing that
simple techniques such as random search can match probabilistic approaches.

Resumo. Redes Neurais Convolucionais (RNCs) são uma técnica poderosa
para sistemas de diagnóstico auxiliado por computador, mas a configuração
manual de redes complexas é inviável. A otimização automática de hiper-
parâmetros é uma abordagem promissora, mas não há consenso sobre a técnica
mais adequada. Neste trabalho, comparamos busca direta, probabilı́stica e
otimização bayesiana na otimização de RNCs 2D e 3D para classificação de
nódulos pulmonares. Foram obtidas AUC de 0,88, sensibilidade de 87,03% e es-
pecificidade de 78,66%. Nossos experimentos demonstram o fraco desempenho
da busca em grade, enquanto mostram que técnicas simples, como a busca
aleatória, pode ter desempenho comparável a abordagens probabilı́sticas.

1. Introduction
Lung cancer is the primary cause of cancer-related death worldwide, with 1.8 million
estimated deaths in 2018 [Bray et al. 2018, World Health Organisation 2019]. Early de-
tection can improve the effectiveness of patients’ treatment, being a decisive survivability
factor. If identified in its early stages, survival rates achieve results above 90%, in contrast
to a mere 15% when diagnosed in its last phases [Blandin Knight et al. 2017]. Computed
Tomography (CT) scan is the preferred method for early lung cancer detection, produc-
ing a volume of slices in high definition and contrast that allows to find small, abnormal



areas (called nodules or masses) in the lungs, especially in current or former smokers
[Blandin Knight et al. 2017, Hua et al. 2015].

However, the lung cancer diagnosis is still quite challenging, as each image gen-
erated by the CT exam has to be carefully evaluated, a time-consuming task subject to
a series of internal and external factors, such as equipment quality, expertise level, and
work-related fatigue [Chuquicusma et al. 2018]. Furthermore, most lung nodules seen on
CT scans are not cancer. They are more often the result of old infections, scar tissue,
or other causes. Those factors combined often lead to inconsistencies in the diagno-
sis between different specialists or even the same specialist in different circumstances
[Kang et al. 2017]. Computer-Aided Diagnosis (CADx) tools try to relieve this prob-
lem by providing a second opinion to the diagnosis, enhancing its speed and accuracy
[Hua et al. 2015, da Silva et al. 2017, Kumar et al. 2015].

The typical pipeline for designing CAD systems constitutes of: 1) extracting fea-
tures from the nodules’ volumes or slices; 2) using the features to train a Machine Learn-
ing (ML) model for detection (CADe) or diagnosis (CADx) [Ferreira et al. 2018]. In the
past few years, Deep Learning (DL) emerged as a promising approach for CAD systems
design [Litjens et al. 2017, Sun et al. 2016, Zhu et al. 2018]. This family of techniques is
capable of learning high-level representations directly from the data, without need for a
feature extracting step.

As CNN models evolve, they have become much more complex, requiring
increasingly higher amounts of time to be designed, trained, and evaluated. Since
these models are very susceptible to their settings, proper configuration is a challenge
[Montavon et al. 2012]. Manual configuration of these parameters through experimenta-
tion is becoming each time less feasible, still, much of the recent work on DL consists
in proposing hand-designed architectures [Miikkulainen et al. 2019]. In this scenario, au-
tomatic Hyperparameter Optimization (HO) is a promising approach for model tuning,
presenting competitive results to manual tuning made by specialists and allowing them to
focus on other aspects of the model development such as data acquisition and processing
[Bergstra and Bengio 2012]. Nonetheless, in the face of a myriad of options for HO, it is
still desirable to choose one that can lead to better results within limited time constraints.

In this study, we intended to discuss the impact of different HO techniques in op-
timizing 2D and 3D CNNs for pulmonary nodule classification in regards to performance
and time consumption.

The remainder of this paper is organized as follows: section 2 presents related
works on pulmonary nodules classification; section 3 describes the data and methodology
used in this work; section 4 presents the obtained results and its discussion; section 5
concludes this work.

2. Related Work

Until the last decade, lung nodule classification was performed by extracting features
from medical images for a machine learning classifier, such as SVM, Random Forest and
Artificial Neural Networks. With the growth of Deep Learning as a viable approach, the
attention quickly switched to this family of techniques, leading to significant improve-
ments [Litjens et al. 2017, Yang et al. 2018].



Hua et al. [Hua et al. 2015] proposed using Deep Belief Networks (DBNs) and
CNNs for the classification of pulmonary nodules into benign and malignant. A set of
2,545 CT scans containing nodules larger than 3mm were selected from the LIDC-IDRI
dataset. The results were obtained through leave-one-out cross-validation for DBN and
CNN, as well as a K-nearest neighbor and support vector machine models implemented
as baselines. The DBN model reached a sensitivity of 73.4% and specificity of 82.2%,
while the CNN got 73.3% and 78.7%, endorsing deep learning effectiveness in pulmonary
nodules classification. However, as a seminal work using deep learning to classify medical
images, the results were quickly outperformed.

Shen et al.[Shen et al. 2015] proposed a multi-scale CNN (MCNN) approach,
where different sized patches were extracted from each nodule in the CT scans, each
patch being fed into a 3D CNN and combined to extract features to be used by SVM or
Random Forest (RF) classifiers. The approach was validated in 1,375 nodules (880 be-
nign and 495 malignant) from the LIDC-IDRI dataset using 5-fold cross-validation. The
best model achieved an accuracy of 86.64% and was able to deal with noisy input. Eight
different CNN configurations were evaluated, and the SVM and RF classifiers were opti-
mized with grid-search. Nevertheless, the authors concluded that better results could be
obtained with a more comprehensive optimization strategy.

Kang et al.[Kang et al. 2017] evaluated distinct multi-scale 3D CNN architectures
for binary (benign and malignant) and ternary (benign, malignant and metastatic malig-
nant) classification of pulmonary nodules. The models were trained on 776 nodules (186
benignant and 590 malignant) from the LIDC-IDRI dataset. The models used were multi-
view CNN, a 3D CNN with chain architecture, and a 3D CNN with a Direct Acyclic
Graph (DAG) architecture. The best models reached error rates of 4.59% in binary clas-
sification and 7.70% in ternary classification. The results were obtained by performing
10-fold cross-validation. Nonetheless, the authors performed data augmentation in the
test sets, which is not a common practice.

Dey et al. [Dey et al. 2018] proposes four multi-view 3D CNN architectures for
nodule classification into benign and malignant. The models were evaluated on a private
dataset of 147 nodules (37% benign and 63% malignant). Since the number of samples is
small, the networks were pre-trained with 686 nodules (46% benign and 54% malignant)
from the LIDC-IDRI dataset. The best model achieved an AUC of 0.86 without transfer
learning and 0.90 after the pre-training. The results were obtained through 5-fold cross-
validation. The size of the dataset and its privacy makes it difficult to compare other
results with this work.

Onishi et al.[Onishi et al. 2019] used Generative Adversarial Networks (GAN) to
create synthetic samples of pulmonary nodules for training a 3D CNN. The GAN was
trained on 60 nodules (27 benign and 33 malignant) from a private dataset. This approach
lead to a classification accuracy of 81.7%, a 20% increase compared to using only the
original data. The small size of the dataset may be detrimental to this work generaliza-
tion.

3. Material and Methods
Figure 1 summarizes the steps of our methodology. We used a subset of nodules from the
LIDC-IDRI dataset (Section 3.1), then we segmented the nodules slice by slice. Data was
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Figure 1. Overview of our methodology.

prepared for our models (Section 3.2) by selecting slices for 2D CNNs and assembling
a volume for the 3D CNNs and then balanced and augmented via successive rotations.
Our models settings are chosen by four HO techniques (grid search, random search, sim-
ulated annealing and Tree-structured Parzen Estimator - Section 3.4) and then, the models
were evaluated according to a set of metrics and validated with 10-fold cross-validation
(Section 3.5).

3.1. Data Acquisition
We used the LIDC-IDRI dataset, a public repository containing 1,018 CT scans from
1,010 patients [Armato et al. 2011]. Four experienced radiologists reviewed each scan,
identifying and evaluating the lesions in regards to a series of pathologic features: cal-
cification, internal structure, lobulation, margins, sphericity, spiculation, subtlety, malig-
nancy, and texture. The malignancy probability is defined on a five-point scale, where
a 1 is a high chance of being benign and a 5 is a high chance of being malignant. The
annotations also include a freehand outline of nodules with a diameter larger than 3mm.

Table 1. Nodules distribution according to its malignancy probability.

Benign Malignant

Malignancy Probability 1 2 4 5
Number of nodules 304 394 171 137
Total by class 698 308

A pulmonary nodule is defined as a focal opacity with a diameter between 3mm
and 30mm, so we considered the lesions within these dimensions [da Silva et al. 2017].
We discarded the nodules with an undefined malignancy (probability value of 3). Lastly,
we selected only the solid nodules, as their contour is drawn with a higher precision by
the radiologists. As a result, a total of 1,006 nodules were extracted from the LIDC-IDRI
database. Table 1 shows how they are distributed according to their malignancy.

We then applied a greyscale lung windowing by setting the window in 1,600 and
level in -600 Hounsfield units to standardize the images contrasts. Then, we used the
outline drawn by the radiologists to segment each nodule slice by slice.



3.2. Preprocessing
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Figure 2. Distribution of slice numbers in our nodules set.

For this work, we used 2D and 3D CNNs for lung nodule classification. It is
important to notice that each model requires an input of distinct dimensions: a 2D CNN
expects an image as input while a 3D CNN expects a volume. So, for the 2D CNN, we
selected the slice with the largest diameter as obtained in Section 3.1 for each nodule.
Then, each slice is cropped to an image measuring 64x64 pixels. On the other hand, for
the 3D CNN, we could not feed the nodules directly into the CNN, as each nodule had a
different number of slices, as shown in Figure 2.

In this particular case, we needed an approach to assemble a volume for the model.
We did so by selecting the first 5 slices of each nodule. In the cases of nodules with less
than 5 slices, we added all-black images to the end of the volume, until completing the
desired number of slices.

As Table 1 shows, benign and malignant classes are unbalanced, with 698 be-
nign nodules and 308 malignant ones. This imbalance may lead to models biased to
the classification of benign cases. Hence we solved this problem by performing con-
secutive rotations in the slices for the 2D CNN and volumes for the 3D CNN, as a
way to both balance and augment the data. This method is commonly used in literature
[Kang et al. 2017, Onishi et al. 2019]. The algorithm was performed as follows:

1. 10% of the nodules were selected for composing the test set, which was kept
unchanged; the 90% remaining nodules were used to compose the training set.

2. We rotated the benign nodules from the training set in intervals of 72◦, making a
total of 3,140 samples;

3. the malignant nodules were rotated in intervals of 30◦, generating 3,324 samples.

For the HO step, data augmentation was performed once, while on the valida-
tion step it was necessary to execute the process for each iteration of the 10-fold cross-
validation.

3.3. Classification
Convolutional Neural Networks (CNN) constitute a class of neural networks able to learn
multi-level hierarchies of features [Goodfellow et al. 2016]. The network extracts fea-
tures of spatial features from the input and classifies patterns from these features. A typ-
ical CNN consists of convolutional, pooling and dense layers that can extract multi-level
learnable representations to solve a particular task.



Table 2. Search Space

Layer Parameter Grid Search
Random Search, TPE
Simulated Annealing

Convolutional Number of filters {32, 64, 96} [32, 96]

Dense 1 Number of units {32, 128, 256} [32, 256]
Dropout {0.3, 0.6} [0, 0.6]

Dense 2 Number of units {16, 32, 48} [16, 48]
Dropout {0.3, 0.6} [0, 0.6]

- Epochs {5, 15, 30} [5, 30]

A conventional CNN operates over 2D inputs, so each channel on the network is
a 2D feature map. With 3D CNNs, unlike the 2D ones, the operations are performed in a
cubic manner, generating 3D feature volumes.

3.4. Hyperparameter Optimization

Neural networks can perform a wide range of applications, but not every network architec-
ture is capable of performing a given task successfully [da Silva et al. 2017]. Therefore,
network architecture needs to be tuned to obtain the best results. The objective of Hy-
perparameter Optimization (HO) is to find a set of hyperparameters for a ML algorithm
that results in a better performance in a validation set [Bergstra et al. 2011]. It can be
formalized by:

x∗ = arg min
x∈X

f(x) (1)

Where f(x) is the objective function to be optimized, x∗ is the optimal set of
hyperparameter values that minimize the objective function f(x) and x can assume any
combination of values in a X domain of hyperparameters values.

A wide variety of techniques for HO are available, however, the cost of train-
ing neural networks makes several authors to focus on other steps on the model design
pipeline [Claesen and De Moor 2015]. In this work, we evaluated four distinct algorithms
for the task: two direct search algorithms (Grid Search and Random Search), as well as
a probabilistic (Simulated Annealing) and a Bayesian Optimizer (Tree-structured Parzen
Estimator).

We defined the search space for each algorithm empirically. On Random Search,
TPE, and Simulated Annealing, the optimization occurred within the limits of the search
space. Using Grid Search, we had to define a discrete set of possibilities for each hyper-
parameter, as a way to keep the search feasible. The search space for each algorithm is
presented in Table 2. For random search, TPE and Simulated Annealing optimization, the
number of trials was limited to 70, while Grid Search was allowed to explore all its 324
possible combinations.

Our network architecture was defined empirically and contains a single convolu-
tional layer, a single max-pooling layer, followed by two fully connected layers and then
a single unit for the output. The activation function is ReLU for the hidden layers and sig-



moid for the output layer. We used the RMSProp optimizer with a learning rate of 10−4.
The loss function utilized was binary cross-entropy.

3.5. Results Evaluation

After training our models, it is necessary to validate its results. Our evaluation method-
ology uses a set of metrics commonly used in CADx systems: accuracy, sensitivity and
specificity, Receiver Operating Characteristic (ROC) curve and area under the ROC curve
(AUC). ROC curve and AUC are well-established metrics in the literature of CADx sys-
tems, so, they will be our choice metric of comparison. This set of metrics is well-known
in classification problems in health and are proper descriptors of the model’s behavior
[Fawcett 2006]. Model validation was performed with 10-fold cross-validation. For ev-
ery network, we utilized the same training and test sets, making our comparisons fairer.

4. Results and Discussion
This section presents and discusses the results obtained from the proposed methodol-
ogy. All experiments were implemented in Python using Keras deep learning library
[Chollet et al. 2015] with Tensorflow as backend [Abadi et al. 2016]. For hyperparame-
ter optimization, we used Hyperas [Pumperla 2019], which encapsulates the algorithms
implementations from Hyperopt [Bergstra et al. 2013]. The hardware consisted of a sys-
tem equipped with a Intel Core i7-5960X, 128 GB of RAM and a 12 GB GeForce GTX
Titan X GPU.

4.1. Hyperparameter Optimization

Our first result consists of the network architectures provided by the HO step. The values
obtained for each hyperparameter are shown in Table 3. There, Filters stands for the
number of filters in the convolutional layer, Dense1 and Dense2 to the number of units in
the dense layers, Dropout1 and Dropout2 are the dropout rate for the Dense1 and Dense2
layers, and Epochs, the number of training epochs.

Table 3. Hyperparameters obtained by each HO algorithm.

Optimization Filters Dense1 Drop1 Dense2 Drop2 Epochs

2D CNN

Grid Search 64 256 0.30 48 0.60 5
Random Search 80 106 0.35 40 0.25 21
Sim. Annealing 47 145 0.58 40 0.05 24
TPE 78 124 0.55 42 0.13 25

3D CNN

Grid Search 64 256 0.30 48 0.60 5
Random Search 69 225 0.36 38 0.50 7
Sim. Annealing 38 153 0.48 41 0.25 24
TPE 41 68 0.55 38 0.14 17

Grid Search optimization resulted in the same architectures for both 2D and 3D
CNNs. The 2D models needed 18.75 epochs on average, slightly more than the 13.25
epochs required by the 3D CNNs. Table 4 summarises the amount of time spent by each
algorithm in optimizing our models.



Grid search took the highest amount of time, but we should remind that this tech-
nique evaluated a higher amount of models than the other algorithms. Random Search
and TPE had an equivalent cost. Simulated Annealing took the least amount of time with
either 2D or 3D CNN.

Table 4. Time spent by each technique in optimizing 2D and 3D CNNs.

2D CNN 3D CNN

Grid Search 3 hours and 34 minutes 12 hours
Random Search 30 minutes 1 hour and 24 minutes
Sim. Annealing 8 minutes 20 minutes
TPE 30 minutes 1 hour and 36 minutes

4.2. Classification Results

The results obtained for each performance metric from our methodology are presented in
Table 5.

Except for the 3D CNN optimized with Simulated Annealing, which presented an
AUC of 0.86, every other model obtained an AUC of 0.88.

The models also presented a similar accuracy; however, this metric is not ideal to
evaluate classification of unbalanced classes. Instead, sensitivity and specificity are better
candidates to assess model performance.

The 2D CNN optimized with Simulated Annealing had the best accuracy of
79.13%, a consequence of its high specificity. This model in particular is well suited
to the classification of benign nodules, to the cost of exhibiting the worst sensitivity of all
models. The 3D CNN optimized with Random Search reached a sensitivity of 87.03%,
but the lowest specificity value. This model is more adequate for classifying malignant
nodules. Figure 3 presents the ROC curves for these models.

From these results, we can draw a few conclusions about the impact of the HO
technique over the models’ performance. Despite making more trials than the other algo-
rithms, grid search results didn’t stand out in any particular way, being a poor choice for
the task.

Table 5. Classification results for the models provided by each HO technique.

Optimization Accuracy Sensitivity Specificity AUC

2D CNN

Grid Search 77.43% 81.84% 75.49% 0.88
Random Search 76.83% 84.12% 73.62% 0.88
Sim. Annealing 79.13% 80.18% 78.66% 0.88
TPE 78.14% 81.15% 76.80% 0.88

3D CNN

Grid Search 77.93% 85.41% 74.64% 0.88
Random Search 77.55% 87.03% 73.36% 0.88
Sim. Annealing 76.35% 81.91% 73.92% 0.86
TPE 78.04% 82.17% 76.22% 0.88
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Figure 3. ROC Curve for 2D CNN and 3D CNN optimized by Simulated Annealing
and Random Search, respectively.

Random search models had higher sensitivity, but some of the lowest specificity
values, with a negative impact on accuracy. This algorithm has one of the most straightfor-
ward implementations, and its results are competitive with its probabilistic and bayesian
competitors.

Simulated annealing took the least amount of time to optimize both models. A
possible explanation is that the temperature mechanism allowed for the model to focus
the search in a region of the search space that contains simpler and faster to train models.
As for the models, this algorithm led to the best accuracy and specificity values with 2D
CNN, but also the lowest AUC with 3D CNN.

TPE models presented good results and with a balance between sensitivity and
specificity and some of the best accuracy values. Despite the extra cost involved in
bayesian optimization, the time spent was the same as with random search.

5. Conclusion

In this paper, we presented a comparison between four Hyperparameter Optimization
algorithms, covering direct search (grid search and random search), a probabilistic search
(simulated annealing) and a bayesian optimizator (TPE) on the task of optimizing a 2D
and 3D CNN for pulmonary nodule classification.

The optimized models presented satisfactory results, with the majority of the mod-
els presenting an AUC of 0.88, a strong indicator of performance on distinguishing the
benign and malignant nodules. The recurrence of this value may suggest a limitation
on our dataset. Furthermore, our models achieved an accuracy of 79.13%, sensitivity of
87.03%, and specificity of 78.66%, allowing the choice for models with different capaci-
ties on classifying benign or malignant lesions.

In regards to HO, grid search has proved to be a poor choice for the task. Despite
leading to models with equivalent performance as the other techniques, it requires an



increasing number of trials as the search space grows and can be impractical for complex
models such as the 3D CNNs.

Simulated Annealing led to the model with higher specificity, but also presented
the model with the worst AUC. Further investigation has to be done concerning this algo-
rithm robustness.

Random Search tended to find models with higher sensitivity, as TPE presented
models with a better balance between the conflicting metrics sensitivity and specificity.
Both algorithms also required equivalent amounts of time.

Both 2D and 3D CNN presented a similar performance in classification, so the 2D
model is preferable, as it requires less training and preprocessing. However, the results
are very dependent on our methodology, so this can not be generalized.

In future work, we plan to evaluate evolutionary algorithms to the task, as well as
allowing the HO techniques to optimize the number of layers and other parameters on the
network, such as activation functions and convolution and pooling kernel size.
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