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1Instituto Federal de Educação, Ciência e Tecnologia de São Paulo – IFSP São Carlos
São Carlos – SP – Brasil
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Abstract. With the advancements of next-generation sequencing (NGS) tech-
nologies, a massive volume of genetic data has been generated. It makes possi-
ble the study of complex disease by computational approaches. In the context of
cancer, there is a huge variety of mutation data in public databases. However, it
is not feasible to use all available data in every analysis; thus, a data subset must
be selected. This work is aiming to investigate and understand the mutational
characteristics presented in different cancer mutation data sets of the same type
of cancer. To achieve this goal, exploration and visualization of cancer muta-
tion data were performed. Several analyses are presented for three common
types of cancer: 1) Breast Invasive Carcinoma (BRCA); 2) Lung Adenocarci-
noma (LUAD); and Prostate Adenocarcinoma (PRAD). For each cancer type,
three distinct data sets were analyzed in order to understand if there are signifi-
cant differences or similarities among them. The analyses show that BRCA and
LUAD have evidence of similarity among their data sets, while PRAD is likely
heterogeneous.

1. Introduction
Cancer is a complex disease characterized by genetic mutations that happen in a cell and
lead to uncontrolled growth and division. The study of such mutations may contribute to
understand the disease’s early phase and evolution, which enables personalized therapies.
With the advent of next-generation sequencing (NGS) technologies, a large number of
DNA sequencing has been generated [Demkow and Ploski 2015]. Several databases were
created as a result of NGS, such as “The Cancer Genome Atlas” (TCGA) and “Interna-
tional Cancer Genome Consortium” (ICGC). Based on these databases, cancer mutation
data sets have been widely used by researchers to study mutations in cancer, genomic
instability, and tumor evolution. Such studies are performed by computational methods
that load and analyze NGS data.

With the massive volume of data, the use of all available mutation data for each
type of cancer in analyses is not practicable. In this context, it is desirable to select a



reduced number of cancer studies of the same type, that could significantly represent the
whole set of available mutation data of its type. Furthermore, using smaller data sets may
reduce the computational time of the analysis.

The goal of this work is to perform data exploration and visualization among dif-
ferent cancer mutation data sets from the same type of cancer. It is expected with this
study to contribute with analyses that enable a better understanding of mutational char-
acteristics and specificities of different types of cancer. One of the main motivations for
carrying out this study is to investigate whether a single data set is enough for making
consistent conclusions about the mutational characteristic of the analyzed cancer type.
In this sense, we selected three of the most common types of cancer: 1) Breast Inva-
sive Carcinoma (BRCA); 2) Lung Adenocarcinoma (LUAD); and Prostate Adenocarci-
noma (PRAD). For each type of cancer, we chose three data sets. For each data set, we
performed some analyses aiming to explore and compare the data sets. A set of visual
analyses were used to understand the similarity among the data sets, including a visual-
ization of the breast data sets following an approach of topological data analysis (TDA)
[Chazal and Michel 2017]. The analyses show that BRCA and LUAD present similarity
among their three data sets, while the data sets of PRAD were understood as heteroge-
neous.

The remaining of this paper is organized as follows. The process we used to work
with the data, the data sets, and the preprocessing routine are presented in Section 2.
The data analyses exploration and visualization are presented in Section 3, accompanied
by discussions about the exploratory studies. Next, in Section 4 is presented the final
considerations of this work, conclusions, limitations and possible future works.

2. Cancer mutation data
To develop this work, we defined a simple process to perform the analysis. In Figure 1 is
presented the process conducted in this work. We choose different types of cancer, then
three data sets for each type were selected. Second, we apply a preprocessing routine to
all data sets. Finally, several analyses were performed in the preprocessed data sets.

Figure 1. Process followed in this work.

2.1. Data sets
Cancer is the result of several mutations that occurs during a person’s life, such as errors
in DNA replication and environmental exposures. Such mutations in cancer occur in
different scales: from a simple variation of a single nucleotide to a huge alteration in a
significant part of the chromosome or even in the whole chromosome.



Public repositories of cancer mutation data have been created and continuously
updated. Thus, the scientific community has fast and easy access to a large variety of
cancer data. These repositories have as their primary goal to provide real data to support
researches involving cancer and its characteristics and behaviors. Among the existing
repositories, it can be cited “The Cancer Genome Atlas” (TCGA), which is a project
created by the efforts of research entities to provide information on genetic mutations for
various types of cancer. So far, this project has already generated and stored genomic
mutations of 33 cancer types in 11,000 patients, holding approximately 2.5 petabytes of
data [TCGA 2020]. Other platforms also have cancer data sets and provide essential tools
for analyzing and visualizing mutation data. For example, the cBioPortal is an interactive
platform for the exploration of cancer data [Cerami et al. 2012, Gao et al. 2013].

For this study, we worked with cancer mutation data of three types of cancer:
1) Breast Invasive Carcinoma (BRCA); 2) Lung Adenocarcinoma (LUAD); and Prostate
Adenocarcinoma (PRAD). These types are among the most common cancers, according
to the World Health Organization [WHO 2018]. We selected data sets with two types of
mutations: 1) Single Nucleotide Variants (SNVs); and 2) Insertions and Deletions (In-
Dels). For each type of cancer, we selected three distinct data sets, which were extracted
from CBioPortal. The selected data sets and their references are presented in Table 1.

Table 1. Selected data sets and their references
Data set A Data set B Data set C

TCGA, Nature 2012 TCGA, Cell 2015 TCGA, Cell 2018
BRCA [Koboldt et al. 2012] [Ciriello et al. 2015] [TCGA 2018]

id: BRCA1 id: BRCA2 id: BRCA3
Imielinksi et al. Cell 2012 TCGA, Nature 2014 TCGA, Cell 2018

LUAD [Imielinski et al. 2012] [Collisson et al. 2014] [TCGA 2018]
id: LUAD1 id: LUAD2 id: LUAD3

Barbieri et al. Nat Genet 2012 TCGA, Cell 2015 Kumar et al. Nat Med 2016
PRAD [Barbieri et al. 2012] [Abeshouse et al. 2015] [Kumar et al. 2016]

id: PRAD1 id: PRAD2 id: PRAD3

For each data set, SNVs and InDels mutation data were extracted, in which the
data are contained in one mutation file in a format called MAF file (Mutation Annotation
Format)1. We assign an ID for each file in order to make the identification easier. In
Table 1 is also presented the ID of each data set.

2.2. Preprocessing
The selected data sets were submitted for a simple preprocessing routine. We remove
hypermutated samples from the datasets because they are usually outliers and may biasing
the analysis.

Several strategies can be used to remove the hypermutated samples. For this work,
we used a strategy proposed by [Tamborero et al. 2013], in which the authors considered
a hypermutated sample when it contains more than (Q3+4.5× IQR) somatic mutations,
where Q3 is the third quartile, and IQR is the interquartile range of the distribution of
mutations across all samples of the data. In Figure 2 is presented the distribution of the
mutations before and after such a preprocessing task. The number of samples, before and
after removal, is also presented on the Y-axis of each chart.

1https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/



Figure 2. Preprocessing routine: Removing hypermutated samples.

For example, considering the data set PRAD1, before the data preprocessing, the
most mutated patient had nearly 1000 mutations. In contrast, after removing hypermu-
tated samples, the most mutated patient is represented by approximately 100 mutations.
It can be noticed that after the preprocessing routine, the number of mutations is better
distributed among the patients of each data set. In Table 2 is presented some metrics about
the data sets, before and after the preprocessing routine.

Table 2. Data set characteristics
Original data sets Preprocessed data sets

id #mutations #mutated genes #samples #mutations #mutated genes #samples
BRCA1 33990 13415 507 32627 13169 503
BRCA2 69968 16178 817 48085 14616 795
BRCA3 130495 18794 1009 83258 17588 978
LUAD1 65767 14770 183 55316 14012 179
LUAD2 72566 15132 230 69176 14977 228
LUAD3 243229 18905 562 237387 18868 560
PRAD1 5764 4298 112 4767 3682 111
PRAD2 14045 8176 333 10546 6679 322
PRAD3 32764 10412 141 13069 5484 129

It is important to mention that no genes were removed from the data set. Genes
FLAGS [Shyr et al. 2014] were kept in the analyses, once we intended to show original
characteristics of the data, thus minimizing significant modifications.

3. Mutation data analyses: exploration and visualization

A set of analyses were performed using the preprocessed data. Aiming to explore and
compare each data set, a series of visual analyses were used to understand the similarity
among the data sets, including a visualization of the breast data sets following an approach
of topological data analysis (TDA).



3.1. Distribution of the classification of mutation
Each mutation may belong to several classes. In this analysis, we studied how is the
distribution of each mutation class in the data sets, in which is presented in Figure 3. It
can be noticed that missense is the most common mutation class in all data sets, presenting
around 60% in total, thus being more than double the second position.

The distribution of the mutation class is similar, considering BRCA and LUAD.
Such similarity can be seen in the data sets of the same type of cancer and across all six
data sets. On the other hand, the data set PRAD3 does not present an obvious similarity;
for example, the second most frequent mutation class is intron, while in the other data
sets, the second most common is silent.

Figure 3. Distribution of mutation class in each data set.

3.2. Distribution of SNV classes
There are six SNVs classes, which represent a single change in a nucleotide. Such classes
are C>A, C>G, C>T, T>A, T>C, T>G. In Figure 4 is presented the number of SNVs



classes in each data set. It can be noticed that data sets from the same type of cancer
have a high similarity in the distribution of SNVs classes. Such observation has a strong
relation with mutational signatures, which are combinations of mutations generated by
different mutational processes [COSMIC 2019]. For example, classes C>T and C>A are
associated with ultraviolet light exposure and tobacco smoking, respectively.

Figure 4. Number of mutations considering only SNVs.

3.3. Exploration of mutated genes

To understand the mutational characteristics of each data set, we performed some analyses
on mutated genes.

First, a coefficient of similarity is calculated to understand how similar are two sets
of mutated genes, considering different data sets. For this study, the Jaccard coefficient
was chosen to determine how similar are two sets of genes. The Jaccard coefficient is
defined as follows: j(si, sj) =

|si∩sj |
|si∪sj | , where si and sj are two sets of genes from

different data sets. In Table 3 is presented the Jaccard coefficient for all pair of data sets,
in which yellow cell represents coefficients in the same type of cancer.

It can be noticed that LUAD3 and BRCA3 present a high similarity coefficient.
It occurs because both data sets have almost all known genes in their mutated genes set.
Considering the PRAD data sets, there are few mutated genes, but the similarity among
them is lower in comparison on BRCA and LUAD. It can show the heterogeneity of
PRAD.

Table 3. Jaccard coefficient for each pair of data sets.
BRCA1 BRCA2 BRCA3 LUAD1 LUAD2 LUAD3 PRAD1 PRAD2 PRAD3

BRCA1 0.69 0.66 0.53 0.60 0.61 0.21 0.34 0.26
BRCA2 0.77 0.60 0.68 0.72 0.21 0.36 0.27
BRCA3 0.63 0.73 0.84 0.20 0.34 0.26
LUAD1 0.65 0.65 0.21 0.34 0.26
LUAD2 0.78 0.22 0.36 0.27
LUAD3 0.19 0.34 0.25
PRAD1 0.21 0.18
PRAD2 0.22
PRAD3



Second, the top 10 mutated genes were analyzed in each data set. In the charts
of Figure 5 we presented the top 10 analyses, which is also presented the distribution
of mutation type. Genes within top 10 of all data sets are marked as bold. It can be
noticed that BRCA data sets have seven common genes in the top 10, while in LUAD,
such number is eight. On the other hand, in PRAD, only one gene is common in data
sets. It can be seen as a heterogeneity among the PRAD data sets, as shown previously in
Table 3.

Figure 5. Top 10 analysis.

3.4. Identification of driver mutations
Somatic mutations in cancer can be classified into two types: 1) Driver Mutations: signif-
icant mutations for cancer, i.e., they confer cells the advantage of growing uncontrollably,
thus promoting the cancer development; and 2) Passenger Mutations: they do not alter
the natural behavior of cells, i.e., they are not significant for cancer. The identification
of driver mutations in cancer is a challenge in cancer genomics since a single cancer cell
usually undergoes a large number of mutations, which comprehend few drivers and many
passenger mutations.

In this context, many computational methods have been developed for the prioriti-
zation of driver mutations in cancer. Such methods usually output a gene ranking, where
the top genes in the ranking are most likely to be a driver mutation. In this experiment,
three methods for the identification of driver mutations were selected, as follows:

1. MutSigCV [Lawrence et al. 2013]: executed using only the MAF file from the
data sets.

2. MUFFINN [Cho et al. 2016]: it was considered results from the DNmax approach
using the String gene network. As gene score was considered the number of mu-
tations in each gene.

3. nCOP [Hristov and Singh 2017]: it was considered the results using the HPRD
gene network.



Such methods were executed considering all mutation data sets. From the result
gene ranking of each method, we selected the top 50 genes. Then, we compare the result
among data sets of the same type of cancer considering the overlap of genes, thus creating
a Venn diagram for each method. In Figure 6 is presented the result of the experiment.

Figure 6. Venn diagram for prioritized genes in three computational methods.

It can be noticed that PRAD data sets presented a high difference considering all
the computational methods, thus reinforcing that data from PRAD data sets are heteroge-
neous. Considering BRCA and LUAD, the previous analyses showed there are similarities
in their data sets, but on the identification of driver mutation, the results do not have high
similarity. It occurs because the computational methods present different approaches and
take into consideration external information for prioritizing genes, such as gene networks.

3.5. Network visualization
The data sets studied were converted into a point cloud in a high-dimensional space in
which each point represents a gene. Clinical information from patients was considered
for this purpose. Considering the nature of the problem, we normalized the data in a
scale from 0 to 100, then we performed this analysis only for breast cancer data. In this
sense, we considered each mutated gene as a point in R6 with coordinates: the number
of patients with mutation in this gene, the average age of diagnosis, the percentage of
survival, sex, chromosome and the average position of the mutation in the genome of all
samples that present such mutated gene. The chromosome and the average position of the
mutation in the genome were included as coordinates to prevent two or more genes being
represented by the same point. Those coordinates, therefore, work as a unique geometric
attribute for each gene.



Visualizing data on a large scale presents several difficulties and challenges. In
particular, it is very difficult to deal with noise or with the vast size of the data set.
Most dimension reduction maps, such as the Principal Component Analysis (PCA), end
up generating a loss of information. In this context, we chose the Mapper algorithm
[Singh et al. 2007] to obtain a visualization that describes the topological characteristics
of the data.

The Mapper algorithm has been developed to identify topological features and
provides a simple and convenient way to view a summary of data sets based on the dis-
tance between data points after applying a filter function. The main idea of the algorithm
is, given a data set X ∈ Rn, and a function f : X → Rd, to summarize X through a
network constructed from f−1(Ui) in which Ui define a coverage of f(X). Originally, it
was applied to extract descriptors for the recognition of 3D objects [Singh et al. 2007].
In Biology, the Mapper algorithm was applied to study the structure of the space of ex-
pression of breast tumors [Nicolau et al. 2011] and to explore the relationships between
genetic pathways and their association with brain function [Patania et al. 2019].

To perform the visualizations of this study, we used the Kepler-Mapper package
[Veen and Saul 2017] developed in Python. The Mapper algorithm involves the choice of
several parameters in the construction of the network that best describes the topology of
the data. For this study, we considered as filter function the projection of data in the two
principal components. We divided each principal component by 20, getting 400 windows
and considered the percentage of overlap of these windows to be 50%. The K-Means
algorithm was chosen to separate 5 clusters of the inverse image from the filter function
of each window.

The networks obtained with the data sets related to breast cancer, considering the
parameters described above, are presented in Figure 7. They have a similar degree of
distribution, as we can see in Figure 8. Also, we can see in Table 4 that the networks
obtained have very similar topological measures. For example, the average coefficient
clustering (cc), a measure relative to how complete the neighborhood of a node is, refers
to the count of triangles in this neighborhood. A triangle means that a set of three nodes
are connected. In the three networks, this measure is around 0.5. Other measures, such as
the number of connected components (CoC), diameter (d), shortest path length (sp), the
average number of neighbors (ng), number of nodes (N ) and number of nodes of the two
largest connected components (Nc1, Nc2) are quite similar.

Finally, we would like to highlight the intersection between the three networks,
considering the largest connected component in relation to the total number of genes in
each study. The BRCA1, BRCA2 and BRCA3 networks have, respectively, 12140, 13737
and 16981 genes grouped in all nodes (clusters) in their related components. There are
11032 genes common to the three networks. This means that around 90% of the BRCA1
network genes are also represented in the largest connected component of the BRCA2
and BRCA3 networks. This suggests that the networks obtained by the Mapper algorithm
applied to the set of genes common to the three studies would have even more similar
topological measures.



Figure 7. Networks obtained from BRCA studies. The size of the nodes in each
network is proportional to the number of its connections (degree). The color
scale represents the betweenness centrality of each node, from green (least) to
red (greatest).

Figure 8. Degree distribution of BRCA data sets.

Table 4. Topological measures of BRCA networks
cc CoC d sp ng N Nc1/Nc2

BRCA1 0.513 59 35 10.041 6.149 1265 875/91
BRCA2 0.494 42 31 9.589 7.599 1435 1105/158
BRCA3 0.512 37 19 7.734 8.933 1290 1019/130

4. Conclusion
This work aimed to make an exploratory and visual analysis of three data sets of three dif-
ferent types of cancer: 1) Breast Invasive Carcinoma (BRCA); 2) Lung Adenocarcinoma
(LUAD); and 3) Prostate Adenocarcinoma (PRAD). Our main objective was to under-
stand and explore the mutational characteristics of different studies concerning the same
type of cancer. For this purpose, we used visual analyses, with several charts compar-
ing the number of mutations, methods of identification of drivers, and classification of
mutations.

Considering the selected data sets, we could observe that there is a similarity be-
tween the BRCA and LUAD data sets. However, in the case of PRAD, the similarity is
not evident. For example, when we look at the top 10 most mutated genes and the types
of mutations involved, only one gene appears in the three PRAD data sets, while there is a



intersection of seven genes in BRCA and eight genes in LUAD. Also, we were able to ob-
serve that the application of three computational methods in the identification of drivers
showed a more homogeneous and more consensual behavior when we selected the top
50 genes for the BRCA and LUAD cancers. When we consider the distribution of SNV
classes, we observed that for the three types of cancer, the same pattern was produced on
three data sets.

We also applied a visual topological analysis of BRCA, which can be used as a
criterion for choosing the most convenient mutation data set according to the study to be
developed. Such analysis revealed topological similarities between the networks obtained
from each of the three studies.

This study could not be generalized because several factors interfere in the pro-
duction of mutation data, such as the date of collection of the study, the quality of the
sequencing performed, and also the specificities of each type of cancer. Nonetheless, the
analyses we performed in this work have the possibility to be replicated to other cancer
mutation data sets. Expanding these analyses to more types of cancer, considering more
data sets and exploring more deeply the topological analysis of cancer data are natural
continuations of this work. These will contribute further to the understanding of mutation
data, helping researchers to make choices according to their study objectives.

All routines and codes used to perform this work are available online2.
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