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Resumo. O câncer de pulmão é o câncer que mais mata no mundo. No en-
tanto, se o diagnóstico for feito no inı́cio da doença, as taxas de sobrevida em 1
ano são de aproximadamente 81-85%. Ferramentas de Auxı́lio ao Diagnóstico
por Computador têm um grande potencial para auxiliar os especialistas na
determinação da malignidade de um nódulo pulmonar. Neste trabalho, foram
utilizados 4 grupos de atributos: Textura 3D, Nitidez da margem 3D, Forma 3D
e Intensidade 3D; dois algoritmos de aprendizado de máquina: Support Vec-
tor Machine (SVM) e Multilayer Perceptron; e duas técnicas para selecionar os
recursos mais relevantes: Relief e Algoritmo Genético Evolucionário (AGE). A
classificação com SVM, Relief e AGE alcançou a melhor AUC de 0,856.

Abstract. Lung cancer the cancer that kills most in the world. However, if the
diagnosis is made at the beginning of the disease, the 1-year survival rates are
approximately 81-85%. Computer-Aided Diagnosis tools have a great potential
to auxiliary the experts in determining the malignancy of a lung nodule. In
this work, we used 4 groups of features: 3D Texture, 3D Margin Sharpness,
3D Shape, and 3D Intensity; two machine learning algorithms: Support Vector
Machine (SVM) and Multilayer Perceptron; and two techniques to select the
most relevant features: Relief and Evolutionary Genetic Algorithm (EGA). The
classification with SVM, Relief, and EGA achieved the best AUC of 0.856.

1. Introdução
Among all cancer-related deaths in the world, lung cancer is the leading cause,

accounting for approximately 20% [Tammemagi and Lam 2014]. For the current year,
2020, INCA estimates 30,200 new cases of lung cancer in Brazil, with 17,760 men and
12,440 women [INCA 2020]. In the United States, lung cancer is among the most lethal
cancers in both men and women [Siegel et al. 2017].

From the moment the diagnosis of lung cancer is confirmed, over half of
the patients die within one year, and the 5-year survival rate is around 17.8%
[Zappa and Mousa 2016]. The survival rate is related to the lung cancer stage at di-
agnosis; for example, a patient diagnosed with one-year in advanced disease (stage-IV



with metastasis) has a survival rate of approximately 15-19%. However, 1-year survival
rates could increase to the 81-85% range when the disease is diagnosed at an early stage
(stage-I) [Neal et al. 2019, Knight and et 2017]. Thus, considering that a nodule may be
a manifestation of cancer, the early detection, and measurement of pulmonary nodules
are crucial to increase the chances of survival of cancer patients, in part due to the larger
range of feasible treatments [Wu and et. al. 2013, Revees and et al 2006].

The main manifestation of lung cancer is through the pulmonary nodule. Com-
puted tomography (CT) exams have been widely used by radiologists to diagnose lung
cancer because it provides high-resolution 3D images with high contrast able to show
differences in tumors’ size, shape (e.g., rounded or spiculated), and texture (e.g., calci-
fication). However, the interpretations of a medical image by professionals have shown
significant variation in numerous studies due to several aspects, for example: rush for
the results, recognition of variations between readers based on perceptual errors, lack of
training, or fatigue [Akgul and et. al. 2011]. Other factors that make the diagnosis a chal-
lenging task for the radiologists are the low contrast, especially in early stages (with up to
10mm in diameter size), where the nodules may be attached to complex structures of the
lung (Figure 1).

Figure 1. Examples of pulmonary nodules (highlighted in red). (A) 23.1mm con-
nected to pleura; (B) 8.3mm connected to pleura; (C) 6.2mm isolated; (D)
5.7mm isolated [Alilou and et al 2014].

A way to aid radiologists in the process to diagnose small pulmonary nodules is
to integrate the Computer-Aided Diagnosis (CADx) to imaging interpretation. CADx
systems aim to help specialists improve diagnostic accuracy by acting as a second opin-
ion for them through a computer-supplied suggestion without making the final diagno-
sis [Gillies et al. 2016]. Therefore, the adoption of CADx systems is appropriate and
desirable to the process of diagnosis and interpretation of lung nodules on CT images
[Chuquicusma and et al 2017, Ferreira-Junior et al. 2016].

When nodules are already segmented from computer tomography images of
the lung, the first step in the CAD’s systems is to extract features from the nodules.
Some kinds of features to represent the nodules are: geometric, use of histograms, tex-
tures, shapes, margins, and densities [Shewaye and Mekonnen 2016, Choi and T. 2014,
junior et al. 2016]. The next step is to classify the nodule into benign or malig-
nant using classifiers such as Artificial Neural Networks, Logistic Regression, Sup-
port Vector Machines and, Deep Learning [Ciompi and et al 2017, Revees and et al 2006,
Felix et al. 2016].

Some works faced the problem of classifying small lung nodules, but the AUC-
ROC was not satisfactory [Felix et al. 2016, Reeves et al. 2015, Yan and et 2018]. So this
problem, which is a few explored, is opened in the literature and needs to be further



investigated.

The objective of this work was to evaluate the accuracy of the classification of
early pulmonary nodules, whose diameters are between 3-10 mm, in benign or malig-
nant using 4 categories of attributes extracted from the nodules, which are: 3D Texture
Features (TF), 3D Margin Sharpness Features (MSF), 3D Shape and 3D Intensity.

The remainder of this paper is organized as follows. First, we describe how was
done the preparation of the database used and the methodology applied (Section 2). Next,
we show and discuss the results of this work related to the state of art (Section 3. To
finish, section 4 finishes this work.

2. Methodology
An overview of our method is shown in figure 2. First (A), is presented the prepa-

ration of the database of images from the Lung Image Database Consortium and Image
Database Resource Initiative (LIDC) (Section 2.1). In the pre-processing step (B), we
measured the nodule size (Section 2.2), selected small nodules (Section 2.3), later the
features were extracted from the filtered nodules (Section 2.4), and the most important
features were selected (Section 2.5). Finally, the nodules were classified as benign or
malignant in the last step (Section 2.6).
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Classification

Classification Algorithm
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C
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Nodule’s Size Measuring
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Figure 2. General schema of this work.

The steps of features selection and classification of the nodules were executed
using the tool Rapidminer Studio [Lee and et al ]. The tests were performed on a PC Intel
Core i5, 3.10Hz CPU and 8GB RAM running GNU/Linux Ubuntu 16.04 LTS.

2.1. Lung Nodule’s Database
We used the nodule images from the LIDC, which is a public database. It consists

of CT scans for lung cancer with masked-up annotated lesions and classified by four
experienced radiologists, including nodule outlines and subjective nodule characteristic
ratings, in a procedure of image interpretation which required the specialists to read the
CT scans and marking the lesions using a graphical interface [Armato and et al 2011]. To
our knowledge, this database is the most important and used lung cancer image collection
for CAD developers and researchers [junior et al. 2016].



The nodules identified by the radiologists were ranked according to subjective
characteristics, and one of such characteristics was the malignancy on a 1-5 scale fol-
lowing the conditions: Malignancy 1: high probability of being benign; Malignancy 2: a
moderate probability of being benign; Malignancy 3: indeterminate probability; Malig-
nancy 4: a moderate probability of being malignant; Malignancy 5: high probability of
being malignant.

In the LIDC there were four radiologist’s marks, and we chose only one mark to
avoid redundancies, using as the criterion the mark from the radiologist who identified
the highest number of lesions in each exam. The pulmonary nodules with suspicious
of malignancy 1 and 2 were considered to be benign, and pulmonary nodules with the
probability of malignancy 4 and 5 were considered to be malignant.

2.2. Nodule Size Measuring

To perform the selection of the nodules according to their diameters, we initially
estimate their sizes which were then attached to our database, as they were not given in
the LIDC original database. The size of a nodule was estimated as a simple 2D measure
of the greatest diameter, which can be performed along the x-axis and y-axis planes of
the biggest diameter [Bartholmai and et al 2015]. These approximations consisted of cal-
culating the Euclidean distance between the minimum and maximum coordinates in the
respective x and y axes of all slices of a nodule. The biggest distance found was selected
to be the diameter of the respective nodule.

2.3. Early Nodule Selection

After estimating the nodules diameters, we set thresholds to select early nodules
by size. According to Bartholmai et. al. [Bartholmai and et al 2015], nodules smaller than
10mm still have chances to be malignant, and nodules bigger than 10mm have much more
probability to be malignant. Note that the smallest nodule in our database has 3.27mm
in diameter and that we are not interested in large nodules. Thus, we empirically set the
thresholds to only select nodules whose diameters are between 3 mm to 10 mm.

To achieve fair classification, we balanced the number of benign and malig-
nant nodules in 158 samples for each, a total of 316 samples. This was required be-
cause our database was composed of much more benign nodules compared to malignant
nodules. This was expected due to the higher chances of early nodules to be benign
[Bartholmai and et al 2015].

2.4. Nodule’s Features Extraction

In this step, 71 features were extracted from the nodules selected. Such descriptors
provided information represented by numeric values that are later concatenated in feature
vectors. Four kinds of attributes were used: 3D Texture Features, 3D Margin Sharpness
Features, 3D Intensity Features, and 3D Shape Features.

The 3D Texture Features (3DTF) extracted followed the proposal of Haralick et
al. [Haralick et al. 1973], which are:

Energy =
∑
i,j

C2(i, j), (1)



Entropy = −
∑
i,j

C(i, j)logC(i, j), (2)

Inverse difference moment =
∑
i,j

C(i, j)

1 + (i− j)2
, (3)

Shade =
∑
i,j

(i+ j − µx − µy)3C(i, j), (4)

Inertia =
∑
i,j

(i− j)2C(i, j), (5)

Variance =
∑
i,j

(i− µ)2C(i, j), (6)

Promenance =
∑
i,j

(i+ j − µx − µy)4C(i, j), (7)

Correlation = −
∑
i,j

(i− µx)(j − µy)
√
σxσy

C(i, j), (8)

Homogeneity =
∑
i,j

C(i, j)

1 + |i− j|
, (9)

where, C(i, j) are elements [i, j] of the co-occurrence matrix, µx and µy are aver-
ages, and σx and σy are standard deviations obtained from the equations below:

µx =
∑
i

iCx(i), (10)

µy =
∑
j

jCy(j), (11)

σx =
∑
i

(i− µx)2 ·
∑
j

C(i, j), (12)

σy =
∑
j

(j − µy)2 ·
∑
i

C(i, j), (13)

Cx(i) =
∑
j

C(i, j), (14)

Cy(j) =
∑
i

C(i, j). (15)

For each image, there will always be four co-occurrence matrices, each one corre-
sponding to each direction (0◦, 45◦, 90◦ and 135◦, counterclockwise). Thus, the calculus
of the attributes applied to the co-occurrence matrices in the 4 orientations composes a
TF vector with a 36-dimensional.

The 3D Margin Sharpness Features (3DMSF) extracted in this work were based
on a statistical analysis, following a model proposed by Xu et al. [Xu and et al 2012].
The 12 attributes extracted were:

Difference of two ends = xn − x1, (16)

Sum of values =

n∑
i=1

xi, (17)



Sum of squares =

n∑
i=1

x2i , (18)

Sum of logs =

n∑
i=1

log xi, (19)

Arithmetic mean (µ) =
1

n

n∑
i=1

xi, (20)

Geometric mean = n

√√√√ n∏
i=1

xi, (21)

Population variance =
1

n

n∑
i=1

(xi − µ)2, (22)

Sample variance (υ) =
1

n− 1

n∑
i=1

(xi − µ)2, (23)

Standard deviation (s) =
√
υ, (24)

Kurtosis measure =

1

n

n∑
i=1

(xi − µ)4

s4
, (25)

Skewness measure =

1

n

n∑
i=1

(xi − µ)3

s3
, (26)

Second central measure =

1

n

n∑
i=1

(xi − µ)2

s2
, (27)

where, x is the intensity value of the pixel array of size n, x1 is the intensity value
of the pixel outside the nodule region, and xn is the pixel intensity value in the region
inside of the nodule. Thus, each nodule is associated with a 12-dimensional MSF vector.

The 3D Intensity Features (3DIF) were suggested by Dilger
[Dilger and et al 2015]. The features are:

Energy =

n∑
i

x2i , (28)

Average intensity (x̄) =
1

n

n∑
i=1

xi, (29)

Median intensity, (30)
Minimum intensity (Im), (31)
Maximum intensity (IM ), (32)

Entropy = −
N∑

k=1

p(xk) log2(p(xk)), (33)

Kurtosis =

∑n
i=1(xi − x̄)4

(n− 1)s4
, (34)

Skewness =

∑n
i=1(xi − x̄)3

(n− 1)s3
, (35)



Absolute mean deviation =
1

n

n∑
i=1

|xi − x̄|, (36)

Range = |IM − Im|, (37)

Square root mean =

√∑n
i=1 x

2
i

n
, (38)

Standard deviation =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2, (39)

Uniformity =

N∑
k=1

p(xk)2, (40)

Variance =
1

n− 1

n∑
i=1

(xi − x̄)2, (41)

where, x is the i-th intensity value of the image, s is the standard deviation of the
intensity, N is the number of pixels in the region, and p(xk) is the probability of occurrence
of the kth value of intensity in a set of N intensities. So, each nodule was associated with
an IF vector with dimension 14.

The 3D Shape Features (3DSF) proposed by Aerts [Aerts and et al 2014] were
adapted and implemented in this work:

Compactness 1 =
V

√
πA

2
3

, (42)

Compactness 2 = 36π
V 2

A3
, (43)

Spherical disproportion =
A

4πR2
, (44)

Sphericity =
π

1
3 (6V )

2
3

A
, (45)

Area (A1) =

i∈f∑
pi, (46)

Surface area (A2) = 4πR2, (47)

Surface-volume ratio =
A

V
, (48)

Volume (V ) = (

f∈F∑ i∈f∑
pi) · thicknessofF, (49)

where, pi represents the i-th pixel of the segmentation slice; f represents the set
of pixels (p); F represents the total set of slices (f ) in the nodule; Fthickness is the size
of the voxel; R represents the radius of the sphere with the same volume as the tumor,



defined as:

Radius (R) = 3

√
3V

4π
(50)

Thus, each nodule was associated with a 9-dimensional F vector.

2.5. Nodule’s Features Selection
To select the most relevant features for classification of small pulmonary nodules.

The techniques we tried were the Evolutionary Genetic Algorithm (EGA) and Relief. We
applied them on each group of attributes, and the integration of the four kinds of attributes
extracted from the nodules.

EGA is based on genetic and evolutionary theory, wherein the chromosome bits
represent if the feature is included or not [Chandrashekar and Sahin 2014]. The advantage
of this method is the tendency to always select the fittest individuals. Relief has the
objective to estimate the quality of features according to how well their values distinguish
between the instances of the same and different classes, applying weights to each feature.
Selecting the normalization in the relief’s results, the features coming in rank between 0
and 1.

In our work, the population is formed by the features extracted from the nodules,
so the EGA works on it generating a subset of the most relevant features in a binary way,
where 1 indicates relevant features and 0 indicates irrelevant features. Individuals selected
reproduction were chosen using tournament criteria. In the reproductive phase, chosen
operators were: crossover and mutation, with probabilities of 50% and 5%, respectively.
The crossover type applied was one-point. The population size was 40 and the maximum
number of generations was 50.

2.6. Classification
The classifiers tried in this work were Support Vector Machines (SVM) with

the Gaussian kernel and the Artificial Neural Network (ANN) technique called Multi-
layer Perceptron (MLP). The SVM is a supervised technique used for classification and
regression analysis. The objective of the SVM is to find a hyperplane between data
from two distinct classes possibly nonlinearly mapped to space where they are separa-
ble [Scholkopf and Smola 2001]. Some previous works have used SVM to detect and
classify pulmonary nodules [Choi and Choi 2013, Madero Orozco and et al 2015].

Five sets of features were evaluated utilizing the SVM classifier: 1) 3DTF; 2)
3DMSF; 3) 3DSF; 4) 3DIF; 5) The integration of the four kinds of features (3DTF,
3DMSF, 3DSF and 3DIF). The total number of features used is this work was of 71
features (36 3DTF + 12 3DMSF + 14 3DSF + 9 3DIF). We performed an 10-fold cross
validation to calibrate the SVM’s hyperparameters.

We evaluated variations of the proposed method. We used the Area Under the
ROC Curve (AUC) to evaluate the performance of: (1) Support Vector Machine (SVM)
using Relief combined with EAG; (2) SVM using Relief only; (3) SVM using EAG
only; and (4) Multilayer Perceptron (MLP) combined with EAG. The objective of the
last combination (4) was to compare SVM with the best result obtained by Felix et al.
[Felix et al. 2016], where they best result was using MLP. We also tried to evaluate the
use of partial combinations of the features and all features together.



3. Results and Discussion

Table 1 shows results using SVM with and without EAG. Table 2 shows results
using Relief with and without EAG. Table 3 shows results using MLP with EAG, which
is similar to the approach of Felix et al. [Felix et al. 2016], but applied to the novel
feature sets proposed in this work. The tables show classification results (mean± standard
deviation) over a 10-fold cross validation of the classifiers.

Table 1. Early pulmonary nodule classification using SVM with and without EAG.

Classifier Group AUC Use of EAG
SVM 3DTF 0.816 +/- 0.082 Yes

0.792 +/- 0.067 No
3DMSF 0.749 +/- 0.092 Yes

0.750 +/- 0.044 No
3DSF 0.807 +/- 0.058 Yes

0.783 +/- 0.099 No
3DIF 0.817 +/- 0.072 Yes

0.783 +/- 0.076 No
All Features 0.848 +/- 0.079 Yes

0.701 +/- 0.070 No

Table 2. Early pulmonary nodule classification using SVM with Relif and EAG.

Classifier Group AUC
Relief Relief with AG

SVM 3DTF 0.751 ./- 0.065 0.780 +/- 0.081

3DMSF 0.746 +/- 0.074 0.779 +/- 0.064

3DSF 0.807 +/- 0.070 0.817 +/- 0.061

3DIF 0.772 +/- 0.082 0.800 +/- 0.081

All Features 0.777 +/- 0.069 0.856 +/- 0.027

In Table 1, the best result was achieved using all features together with the EAG,
showing AUC of 0.848 (σ = 0.079), and the best result without EAG was achieved by
the Texture Features, showing AUC of 0.792. We can conclude that using EAG is indeed
relevant to select features that improve SVM classification. It is also worth mentioning
that by using all features without feature selection, an AUC of only 0.701 is achieved.
Another observation is that only for Margin Sharpness Features (MSF) the use of EAG is
irrelevant. The number of features chosen by EAG in our best result (all features) was 26,
showing a considerable reduction from the initial 71 features.

In Table 2, which shows results using Relief, the best AUC was achieved using all
features with Relief and EAG, with an AUC of 0.856, the best result using only Relief was
achieved using the Shape Features (SF) with AUC of 0.807 (σ = +/- 0.070). By comparing
with the best result of Table 1, we conclude that the use of Relief only slightly improves
the classification, and thus it is not considered relevant when used together with EAG.

Table 3. Early pulmonary nodule classification using MLP with EAG.

Classifier Group AUC
MLP with EAG ALL Features 0.836 +/- 0.071



As shown in Table 3, the AUC of 0.836 (σ = 0.071) indicates that the SVM classi-
fier using the Gaussian Kernel performed better than MLP and EAG in all features, when
comparing to the results presented in Table 1. Finally, from our experiments we con-
clude that SVM with relief and EAG is the best combination to classify early pulmonary
nodules.

We also compared in table 4 our best result with the best results of
[Revees and et al 2006], [Felix et al. 2016] and [Dhara and et al 2016]. Felix et al.
[Felix et al. 2016] obtained the best result (AUC of 0.820) using the MLP classifier with
EAG, using 48 features (Texture Features with Margin Sharpness Features) and they
used small pulmonary nodules exclusively, with diameter between 3-10mm. Reeves et
al. [Revees and et al 2006] used 46 3D features such as geometry features, features of
density distribution, surface curvature features and margin features, in a total of 326 nod-
ules balanced between benign and malignant, with a diameter size between 5-14mm, and
achieved an average of AUC of 0.708. Dhara et al. [Dhara and et al 2016] used 49 2D
and 3D features, obtaining the best AUC of 0.950. Among the related works, the work
of Felix et al. [Felix et al. 2016] is closest to ours in diameter size and to the approach
to use only the nodules marked by the radiologist, which identified the highest number
of lesions in each exam, so from this work we achieved a superior result in comparison
(AUC of 0.856 vs 0.820). Reeves et al. [Revees and et al 2006] used nodules a little big-
ger than ours and from different datasets, while Dhara et al. [Dhara and et al 2016] did
not mention the diameter size of the nodules used from LIDC.

Table 4. Comparison with other studies in the classification of small lung nodules
as benign or malignant.

Reference Authors AUC Classifier
Presented Work 0.856 SVM with Relief and EGA

Felix et. al. [Felix et al. 2016] 0.820 MLP with EGA
Reeves et. al. [Revees and et al 2006] 0.772 SVM with Radial Basis Funtion
Dhara et. al. [Dhara and et al 2016] 0.950 SVM

4. Conclusion
In this work we used 4 groups of features: 3D Texture Features, 3D Margin Sharp-

ness Features, 3D Shape Features and 3D Intensity Features, leading to a total of 71 at-
tributes. The classifiers we analysed were Support Vector Machine (SVM) and Multilayer
Perceptron (MLP).

Working with SVM classifier together with Relief and Evolutionary Genetic Algo-
rithm (EAG) showed to be the best choice to classify early pulmonary nodules. The use of
EAG also showed the importance to improve the AUC and still reduce the dimensionality
of the features helping in the cost and time of processing. The groups of attributes sepa-
rately showed interesting results, but combining them improves the results when feature
selection is performed with EAG and Relief. We also showed that, in a fair comparison
between SVM and MLP using all features and EGA, SVM performs better.
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