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Abstract. This work focused on validating five convolutional neural network
models to detect automatically cardiomegaly, a health complication that causes
heart enlargement, which may lead to cardiac arrest. To do that, we trained the
models with a customized multilayer perceptron. Radiographs from two public
datasets were used in experiments, one of them only for external validation. Im-
ages were pre-processed to contain just the chest cavity. The EfficientNet model
yielded the highest area under the curve (AUC) of 0.91 on the test set. However,
the Inception-based model obtained the best generalization performance with
AUC of 0.88 on the independent multicentric dataset. Therefore, this work ac-
curately validated radiographic models to identify patients with cardiomegaly.

1. Introduction
Cardiomegaly is a medical condition in which a patient has an enlargement of the
heart temporarily or permanently, depending on the condition. This increase in size is
usually a manifestation of another pathologic process, and it may result in heart fail-
ure, cardiac arrest, and in some cases, even sudden death [Amin and Siddiqui 2019].
Some of the causes for a heart enlargement are weakening of the cardiac muscle,
coronary artery disease, high blood pressure, cardiomyopathy, and heart valve dis-
ease. However, the heart may enlarge for unknown reasons, a condition known as id-
iopathic cardiomegaly, which may increase the risks of complications for the patient
[Mayo Foundation for Medical Education and Research 2020]. Moreover, the heart en-
largement in the form of either dilatation or hypertrophic cardiomyopathy leads to a spec-
trum of clinical heart failure syndrome with a very poor prognosis and a five-year survival
rate of only 50% [Amin and Siddiqui 2019, Bui et al. 2011].

An abnormal heart can be evaluated with a medical imaging exam, like a chest
radiograph (Figure 1). The clinical evaluation of cardiomegaly is based on the calculation
of the cardiothoracic ratio (CTR), a widely used radiographic index to assess cardiac
size and provide prognostic information in both congenital and acquired heart diseases
[Li et al. 2019]. The CTR on a chest x-ray (CXR) image is basically the relationship
between cardiac and thoracic diameters. Unfortunately, it is manually measured by the
specialists, which is a very time-consuming task because of the large volume of images
produced nowadays [Koenigkam-Santos et al. 2019]. A better approach is to automate
this measurement to improve medical care.
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Figure 1. Posterior-anterior CXR images from a normal subject (a) and a patient
who presented irregular heartbeat (b). The arrow indicates a markedly se-
vere cardiomegaly.

Computer-based tools can analyze large volumes of medical images and accu-
rately detect disease patterns automatically [Ferreira Junior et al. 2020b]. Recently, the
use of deep learning has been gaining considerable importance in medical image analysis
as it has the potential to improve the efficiency of specialists [LeCun et al. 2015]. This
artificial intelligence branch uses raw data (i.e., image pixels) as input and abstracts layer-
wise the original imaging data into a final feature vector that is used for disease detection
without manual procedures by the specialist [Liang and Zheng 2019].

Some works have detected cardiomegaly on CXR by employing deep learning
and convolutional neural networks (CNNs). Chamveha et al. proposed an algorithm for
calculating the CTR based on the U-Net segmentation of the heart and further detec-
tion of cardiomegaly [Chamveha et al. 2020]. The authors combined the NIH ChestX-
Ray14 [Wang et al. 2017] and Stanford CheXpert datasets [Irvin et al. 2019] for both
training and testing. Que et al. also developed an algorithm based on the U-Net to
measure the CTR from CXRs and used the NIH ChestX-Ray14 dataset for experiments
[Que et al. 2018]. Li et al. proposed a customized U-Net model to segment the cardiac
region on the CXR for the CTR calculation and the heart enlargement [Li et al. 2019].
The authors used images from a local repository for the experiments. Candemir et al.
developed a CNN model to detect the cardiomegaly and associated softmax probabilities
with severity grades of the heart enlargement [Candemir et al. 2018]. The authors used
images from the datasets NIH ChestX-Ray14 for training and from OpenI for both train-
ing and testing [Demner-Fushman et al. 2015]. However, none of those studies have used
an external dataset to test the generalization of the proposed solutions.

Generalization, or external validation, is a significant challenge for machine learn-
ing models, including those based on deep learning [Koenigkam-Santos et al. 2019].
Testing the model generalization is an essential step to validate CNN algo-
rithms, especially to important methodological regulation agencies like FDA (Food
and Drug Administration) and IMDRF (International Medical Device Regulators
Forum). Once a machine-learning-based method has been appropriately vali-
dated on an independent external dataset, it could be used routinely as a Soft-



ware as a Medical Device (SaMD) to potentially support clinical decision-making
[International Medical Device Regulators Forum 2013, Ferreira Junior et al. 2020b].

Therefore, our purpose in this work is to develop deep-learning methods to detect
cardiomegaly on radiographic images and to test the generalization potential of the pro-
posed models on an independent multicenter CXR dataset. To the best of our knowledge,
this is the first work proposing to validate state-of-the-art artificial intelligence methods
for cardiomegaly on CXRs, both independently and externally.

2. Material and Methods
2.1. CXR Datasets
This study used retrospectively posterior-anterior (PA) CXR images from pa-
tients of two public image datasets: PadChest and OpenI [Bustos et al. 2019,
Demner-Fushman et al. 2015]. PadChest is a labeled large-scale Spanish CXR dataset
with image-associated reports. To this date, PadChest included 160,868 images from
67,625 patients that attended the San Juan de Alicante Hospital, University of Ali-
cante, Spain. Manual report labeling (gold standard) provided by the dataset’s special-
ists was used as ground truth in this work, and it was performed on 39,039 images,
from which we selected 10,566 in the PA projection view, without external objects like
prosthesis, catheter, metal objects, pacemaker, among others. We used PadChest to
model the CNNs for image classification, and thus, we randomly split this PA-CXR co-
hort in training, validation, and testing sets (with the proportion of 75:19:6, Table 1)
[Ferreira Junior et al. 2020a].

Table 1. Sampling of the CXR image datasets used in this work.

PadChest OpenI
Training set Validation set Testing set Entire set

Normal 6,728 1,682 297 Normal 1,388
Cardiomegaly 1,249 313 297 Cardiomegaly 321

Furthermore, OpenI is a publicly available American repository and web-service
that enables search and retrieval of images from the National Library of Medicine, Na-
tional Institutes of Health (NIH). OpenI currently has 7,470 frontal and lateral CXR ex-
aminations from various hospitals of the Indiana University School of Medicine, USA,
along with 3,955 anonymized radiology reports [Candemir et al. 2018]. Manual report
labeling (gold standard) was also used as ground truth to images from OpenI. We used the
Medical Subject Heading (MeSH) indexing descriptors included on the image-associated
reports to label the CXRs. OpenI was used only for generalization testing purposes, and
hence, this study comprised all 1,709 PA exams from OpenI (Table 1). It is important to
note that images from patients with cardiomegaly could also present other chest abnor-
malities, like lung opacities and mediastinal complications. Some of the most commons
were consolidation, atelectasis, pneumothorax, pleural effusion, aortic elongation, hilar
enlargement, among others.

2.2. Image Pre-Processing
To improve the training efficiency, we previously developed a model to re-
move structures from the radiographic exams that may not interest the analysis



[Ferreira Junior et al. 2020a]. This model is based on the U-Net CNN that removes
anatomical parts like the head, neck, and arms, along with exam objects from the CXR im-
age. The algorithm first segments the lungs using transfer learning and pre-trained U-Net
weights to create a binary mask of the chest cavity region [Pazhitnykh and Petsiuk 2017,
Ronneberger et al. 2015]. It then creates a bounding box from the extreme points on the
lungs mask to crop the chest cavity and segment only the region of interest (Figure 2).

Figure 2. Automatic cropping procedure used in this work to pre-process the
images to serve as input for the CNNs. Left: original image. Right: cropped
image.

To highlight the importance of image pre-processing and the previously devel-
oped algorithm [Ferreira Junior et al. 2020a], Figure 3 presents a global distribution of
the datasets using a bi-dimensional space, where each point represents a single image.
The t-Distributed Stochastic Neighbor Embedding (tSNE) method was used to allow the
visualization of image representations [Maaten and Hinton 2008]. It can be seen from
Figure 3 that the datasets seem better clustered with cropped images. Moreover, vi-
sualization of clusters in the tSNE can correlate with the performance of CNNs in the
identification of cardiomegaly.

2.3. Convolutional Neural Network Training

In this work, we assessed five CNNs on the automated detection task: Effi-
cientNetB2, DenseNet121, Xception, InceptionV3, and MobileNet [Tan and Le 2019,
Huang et al. 2017, Chollet 2017, Szegedy et al. 2016, Howard et al. 2017]. These CNNs
have been widely used in medical image classification works, including CXR
[Rajpurkar et al. 2017, Wang et al. 2017, Irvin et al. 2019, Candemir et al. 2018]. We
used ImageNet weights to initialize the training [Russakovsky et al. 2015] and the default
architecture topology before classification layers for all CNNs. However, we replaced the
original fully connected layers with a customized 3-layer multilayer perceptron to stan-
dardize classification layers for all CNNs. A Dropout Regularization was used between
each MLP layer with a rate of 30%. The MLP had a ReLU activation function except for
the last layer for which the activation function was sigmoid. All CNN inputs also used a
resolution of 224×224 for standardization purposes.
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Figure 3. Global distribution of the datasets PadChest (n = 10,566) and
OpenI (n = 1,709) with original and cropped CXR images.

Data augmentation techniques (i.e., image rotation, shift, shear, scale, and flip)
were used to reduce the training set imbalance for CNN modeling. Therefore, augmenta-
tion was performed only in images with cardiomegaly. The training was performed with
30 epochs by stochastic gradient descent in batches of 16 images per step using RMSprop.
This optimizer had a learning rate of 0.001 and a callback to reduce it by a factor of 0.5
every five epochs with no improvement in validation loss.

To improve modeling sensitivity, we employed a strategy to increase the weight of
the abnormal class for the training [Ferreira Junior et al. 2020b]. For this purpose, normal
images weighted 0.25, and augmented images from patients with cardiomegaly weighted
0.75 (Table 1). Those weights were defined empirically. To evaluate any performance
improvement from this strategy, we also trained the models without weighted class rele-
vance, i.e., with default 0.5 weights for both classes after the augmentation. We will use



the notation “75-25-weighing” to refer to the first strategy and “50-50-weighing” for the
second strategy in the remainder of the paper.

2.4. Performance Evaluation

The receiver operating characteristic (ROC) curve and the confusion matrix assessed the
experiments. The metrics of the area under the ROC curve (AUC), sensitivity, specificity,
accuracy, precision, and F1 score were calculated to evaluate the analysis. The Keras
framework v2.2.5 with TensorFlow backend v1.14.0 was used for modeling. The De-
Long’s test measured the statistical difference in ROC curves. Tests with p value < 0.05
were considered significant. Statistical analysis was performed using R v3.4.4. All exper-
iments were performed on a Foxconn HPC M100-NHI with an 8-GPU cluster of NVIDIA
Tesla V100 16GB cards.

3. Results

EfficientNetB2 obtained the highest overall performance with AUC of 0.912 on the test
set to detect cardiomegaly, yielding the following metrics: sensitivity of 0.892, speci-
ficity of 0.933, accuracy of 0.912, precision of 0.930, and F1 score of 0.911. Figure 4
presents the AUC of the five CNNs for the test data with two strategies (50-50 and 75-
25). Figure 5 presents the AUC of the same five CNNs for the external dataset with also
both strategies. The default class 50-50-weighing yielded higher performance than the
proposed strategy of class 75-25-weighing on the test set only with the EfficientNetB2
model. On the other hand, the other four CNN models obtained higher performance when
using the 75-25-weighing, although no statistically significant difference was found with
the DenseNet121, Xception, and InceptionV3 models. Furthermore, the largest improve-
ment in sensitivity (the main reason to use the 75-25-weighing strategy) was obtained by
the MobileNet model, with an increase of 0.255 percentage points from 0.569 to 0.824.

Concerning the generalization potential, most of the results obtained on the test
set were confirmed on the independent external dataset used. The default 50-50-weighing
yielded higher performance on the external dataset (Figure 5) when using the Efficient-
NetB2 and Xception architectures, corroborating the EfficientNet invariance to class
weighing. Moreover, the InceptionV3 and MobileNet models also confirmed the sta-
tistically significant performance improvement with a higher weight for the cardiomegaly
class during the training. Furthermore, the most significant improvement in sensitivity
was again obtained by the MobileNet model, with an increase of 0.358 percentage points
from 0.464 to 0.822. Finally, the best generalization performance was obtained by the
InceptionV3 model with AUC of 0.879, achieving the following efficiency: sensitivity of
0.869, specificity of 0.890, accuracy of 0.886, precision of 0.646, and F1 score of 0.741.

Figure 6 presents traditional class activation maps to allow explain visually which
regions of the CXR image were related to each model output and to corroborate the quan-
titative results previously explained. The figure also shows another mapping approach to
locally visualize which pixels from the CXR that are most relevant for image classifica-
tion [Wang et al. 2020, Springenberg et al. 2015]. This so-called guided backpropagation
map learns class-descriptive regions using gradient propagation of the prediction scores.
By using a backward pass after passing through the network forward, it is possible to com-
pute the gradient of the activation of the neuron [Wang et al. 2020]. The method also adds
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Figure 4. Efficiency of the models on the test set. The asterisk at the end of the
bar indicates statistically significant difference.

another signal from higher layers to prevent the backward flow of negative gradients for
enhanced class mapping [Springenberg et al. 2015]. Figure 6 highlights the importance
of class weighing on training to detect cardiomegaly as the heart-located region received
more global and local activation when using the 75-25-weighting strategy. The default
class 50-50-weighing produces both globally and locally scattered activated regions, re-
sulting in lower performance on the detection of cardiomegaly.

4. Discussion
In this work, we developed, tested, and externally validated convolutional neural network
models to detect cardiomegaly automatically on chest radiograph images. Cardiomegaly
is a health complication that has several etiologies and may result in heart failure. De-
spite the development of new therapies, mortality remains high in patients with symp-
tomatic heart failure, and hence, cardiomegaly needs to be cautiously and rapidly assessed
[Amin and Siddiqui 2019]. CXR images are accessible, inexpensive, and dose-effective
compared to other imaging modalities, like computed tomography and magnetic reso-
nance [Candemir et al. 2018]. However, differential diagnosis of cardiomegaly on CXR
includes disorders that can result in an enlarged cardiomediastinal silhouette, hindering,
even more, the clinical decision making [Li et al. 2019, Amin and Siddiqui 2019].

The proposed models developed in this work automatically detect cardiomegaly
patterns, which could bring great benefits to the clinical routine at the beginning of care
as they could prioritize abnormal exams for further reading from a specialist, ultimately
optimizing examination time and reporting. They were validated on an independent mul-
ticentric CXR dataset and presented great potential to be embedded in a SaMD tool. To
the best of our knowledge, this is the first work to validate deep learning models for car-
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Figure 5. Efficiency of the models on independent external dataset. The asterisk
at the end of the bar indicates statistically significant difference.

diomegaly that were trained and externally tested with exams from patients, x-ray scan-
ners, and institutions totally different. Table 2 presents the performance of those validated
models that obtained AUC of at least 0.85 on the independent dataset to be further used
as a SaMD.

Table 2. Performance of the validated CNN models for automated detection of
cardiomegaly on chest radiograph.

CNN AUC Sensitivity Specificity Accuracy Precision F1 Score
InceptionV3 0.879 0.869 0.890 0.886 0.646 0.741
MobileNet 0.871 0.822 0.919 0.901 0.700 0.756
EfficientNetB2 0.853 0.760 0.945 0.910 0.763 0.761

Comparing our work with the literature, most of the approaches used U-Net
segmentation to calculate the CTR and then identified cardiomegaly. Chamveha et
al. [Chamveha et al. 2020] combined the NIH ChestX-Ray14 and Stanford CheXpert
datasets for both training and testing, and they obtained accuracies on a test set of 0.671
using the former and 0.698 using the latter. Que et al. [Que et al. 2018] used the NIH
ChestX-Ray14 dataset yielded an AUC of 0.935 on the classification task. Li et al.
[Li et al. 2019] used images from a local repository for the experiments and obtained
an accuracy on a testing set of 0.953. Other works, like the proposed by Candemir et
al. [Candemir et al. 2018] using a CNN model and combined the NIH ChestX-Ray14 for
training and OpenI for both training and testing, achieved an AUC of 0.95. However, it is
essential to highlight that none of those externally validated the proposed solutions with
independent datasets.
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Figure 6. Discriminative parts from chest-cavity-cropped images mapped from
the last layer of MobileNet models: (a) original CXR image; (b) resulted im-
age after automatic chest cavity cropping; (c-d) class activation maps ob-
tained from 50-50 and 75-25 weighing strategies, respectively; (e-f) guided-
backpropagated maps obtained from 50-50 and 75-25 weighing strategies,
respectively.

It is worth mention the InceptionV3, MobileNet, and EfficientNetB2 models from
this work could play a key role in computer-aided detection of heart anomalies related
to size. All of those models yielded statistically equivalent high efficiency of general-
ization. Moreover, their performances (AUC on independent external testing > 0.85) are
acceptable for method validation by the FDA and IMDRF. Furthermore, for simple ar-
chitectures, like InceptionV3 and MobileNet, the 75-25 weighing strategy was essential
to improve pattern recognition and increase the performance for validation. For robust
architectures, like EfficientNetB2, class weighing was not a significant factor to improve
training efficiency. Therefore, class weighing is an important parameter to take into ac-
count the CNN architecture and, mostly, to image classification and efficient detection of
abnormalities on medical exams.

Our main limitation in this study was the lack of clinical data available from
the public datasets. The institutions only made the bitmap images available, which,
in the first moment, limited the methods as the CXRs are not in the original DICOM
(Digital Imaging and Communications in Medicine) format. Moreover, it did not al-
low the possibility to investigate the causes of the heart enlargement and to associate
radiographic features with clinical outcomes (investigation approach known as radiomics
[Koenigkam-Santos et al. 2019]) from the patients with cardiomegaly. There are other
CXR datasets on the literature, like the previously cited NIH ChestX-Ray14 and Stan-
ford CheXpert. However, neither had patient clinical data publicly available. More-



over, they are known to be inconsistent as natural language processing on radiology
reports performed the image labeling, which could lead to text-mining errors as labels
may not accurately reflect the visual content of the images [Sabottke and Spieler 2020,
Oakden-Rayner 2020, Candemir et al. 2018]. Another limitation of this work is that the
analysis was performed with cardiomegaly (plus other chest diseases) vs. normal cases.
Another experimental approach could be the classification of positive vs. negative cases
for cardiomegaly.

5. Conclusion

In summary, the proposed models disclosed great potential to be used as a SaMD for
cardiomegaly. Moreover, it could promote the development of a teleradiology tool to aid
clinical routine in distant places with limited medical resources, where x-ray scanners are
the only imaging option of health care. Finally, some directions we could take to improve
this research are to first expand the investigation by clinically validating the models and
assessing whether they could aid imaging diagnosis routinely; and to design a robust ra-
diomics model able to associate CXR features with cardiomegaly outcomes to potentially
support clinical decisions and precision imaging of cardiothoracic diseases.
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