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Abstract. The COVID-19 pandemics will impact the demand for healthcare
severely.  It  is  essential  to  continually  monitor  and  predict  the  expected
number of new cases for each country. We explored the use of econometrics,
machine learning, and ensemble models to predict the number of new cases
per day for Brazil, China, Italy, and South Korea. These models can be used
to  make predictions  in  the  short  term,  complementing  the  epidemiological
models.  Our main  findings  were:  (i)  there is  no  single  best  model  for  all
countries;  (ii)  ensembles  can,  in  some  instances,  improve  the  results  of
individual models; and (iii) the ML models had worse results due to the lack
of data.  

1. Introduction

Pandemics can be described as diseases that spread on through a large number of people
in a short period. This results in a sudden increase in demand for health services, which
usually are not prepared for these occasions [Ferguson et al., 2020]. The Sars-Cov-2 or
COVID-19 pandemic, which started in 2019 in Wuhan, China, spread worldwide in less
than 2 months, and cases can be found in practically all countries in the world.

COVID-19 seriously affects the lungs and the upper respiratory system, leading
a percentage of the infected people to demand special care in hospitals. This percentage
changes with age: 2.5% for 18-49 years old, 7.4% for 50-64 years old, and more than
12% for people with more than 65 years [Garg, 2020]. These may stay at a hospital bed
using respirators for up to 16 days [Ferguson et al., 2020]. Therefore, for this period, no
other patient can use these resources, resulting in an increase in the possibility of deaths
due to lack of proper care. Allocating patients and resources for pieces of equipment are
essential to reduce the impacts of the disease.

Currently, there are no vaccines available for COVID-19, as it is a new disease.
Several  research  projects  are  being  conducted  to  find  possible  vaccines,  but  this  is
expected  to  take  up  to  18  months.  Therefore,  a  group  of  methods  called  non-
pharmaceutical  interventions  (NPI)  must  be  adopted,  in  an  attempt  to  "flatten  the
curve", or reduce the size of the peak on the demand of hospital beds and specialized
equipment such as respirators [Ferguson et al., 2020].

Several  epidemiological  models,  such  as  the  Susceptible  Infected  Recovered
(SIR) model, are used to estimate the curve that describes the evolution of a disease in a
specific population [Weiss, 2013]. Those models are essential for long term prediction



and resource allocation, but their results in the short term depend on the assumptions
adopted. 

Time-series analysis models are data-driven and suited for trend and seasonality
detection.  For  this  reason,  we believe  that  they  may help  decision-makers  to  make
decisions  in  the  short  term.  These  models  can  complement  the  results  of
epidemiological models, with a focus on the short term. Nevertheless, the small size of
the dataset in the case of COVID-19 limits the implementation of data-hungry methods,
such as convolutional neural networks and long short-term memory networks. 

For this reason, we have implemented and compared econometrics and machine
learning (ML) models that demand fewer data points to identify and extract patterns.
We evaluated four main research questions: (i) What is the model the best predicts the
number of new cases per day of COVID-19 on the following countries: Brazil, China,
Italy, and South Korea?; (ii) Is there a model that best describes the number of new
cases per day for all those countries?; (iii) Do econometrics models provide a better
prediction than ML models?; and (iv) Does the use of ensembles improve the results of
those models?. To the best of our knowledge, this is one of the first attempts to evaluate
several models and ensembles for pandemics evolution in different countries.

Therefore, the main objective of this work is to evaluate the use of econometric
(ARIMA and SARIMA), ML boosting models that can train on few data (AdaBoost and
Gradient Boosting Regressor), and ensemble models for predicting the number of new
cases in four countries: Brazil, China, Italy, and South Korea. The econometric models
are state of the art  models in econometrics,  and the ML models are state of the art
models  in  ML boosting  models.  We have  chosen  the  boosting  models  because,  in
general, these demand less data for pattern identification than deep neural networks.

We considered the period from 01/23/2020 (beginning of the disease in China)
until 03/22/2020 (when quarantine measures were established in many states in Brazil).
We chose to evaluate the prediction of new cases per day, which is one of the most
relevant features for decision making in terms of policy-making.

This work is organized as follows: Section 2 describes important works in the
healthcare domain related to the ARIMA and SARIMA models, and the AdaBoost and
Gradient Boosting Regressor (GBR) models; Section 3 describes the methodology that
was adopted; Section 4 contains the main results for each model and discussions on
these results; and Section 5 contains the final remarks and concludes the paper.

2. Theoretical foundations

This section describes the main concepts and important works related to: the ARIMA
and  SARIMA econometric  models  (Section  2.1),  and  the  AdaBoost  and  GBR ML
models (Section 2.2).

2.1. ARIMA and SARIMA models

The ARIMA and SARIMA models are state of the art models in econometrics, with
applications on several domains that involve time series analysis and prediction. They
were used in several research pieces on the healthcare domain and provided interesting
results, both on their variate and multivariate forms.

According  to  [Soebiyanto,  Adimi,  and  Kiang,  2010],  the  ARIMA  model
identifies  trends  in  time  series  data  using  three  components:  an  autoregressive



component, a differencing component, and a moving average component. It has three
hyperparameters:  p  (autoregressive  order),  d  (differencing  order),  and  q  (moving
average order). Its notation is ARIMA(p,d,q). The SARIMA is a version of the ARIMA
model that contains seasonality components for each of the orders (P, D, and Q), as
well as a seasonal order (S). Its notation is SARIMA(p,d,q,P,D,Q,S).

The ARIMA models have been used for evaluating the Influenza epidemics for
some time, as illustrated by the research by [Domínguez et al.,  1996]. These authors
investigated  the  weekly  number  of  cases and deaths  in  six  towns in  the  Barcelona
province using several univariate ARIMA models configurations. They have concluded
that  the models provided insights for  detecting the epidemic activity  of the disease.
Nevertheless, more information is needed for deciding on control measures.

[Soebiyanto,  Adimi,  and Kiang, 2010] evaluated the impact of climatological
features on the prediction of seasonal transmission of Influenza on warm regions (Hong
Kong,  and Maricopa,  Arizona,  USA).  These  authors  evaluated  the  use of  ARIMA,
ARIMAX, SARIMA, and SARIMAX models for weekly prediction of confirmed cases
in  each region.  The ARIMAX and SARIMAX models  also included environmental
features, besides the confirmed cases time series. 

[Soebiyanto, Adimi, and Kiang, 2010] have concluded on their work that: (i) the
ARIMAX had the best result for Hong Kong; (ii) the SARIMAX had the best result for
Maricopa; (iii) the predictions for 1-step ahead were satisfactory; and (iv) a prediction
of more than one step could provide more value for decision making.

[Proprou,  Jaroensutasinee,  and  Jaroensutasinee,  2006]  used  several
configurations  of  the  univariate  ARIMA  model  to  model  and  predict  the  monthly
dengue hemorrhagic fever cases in southern Thailand in the months between January
and August 2006. The models were trained on data from 1994 to 2005, and their main
results were: (i) ARIMA models had satisfactory results; and (ii) the results have the
potential to provide insights for policy-making.

[Han et al., 2011] analyzed the increase of narcolepsy in China after the 2009
H1N1  winter  Influenza  epidemic,  utilizing  linear  and  ARIMA  models.  They  have
identified that the epidemic led to an increase of 3 times in the number of reported
cases, and discussed how the disease could influence the increase in narcolepsy.

In this section, several research pieces that used ARIMA and SARIMA models
were  presented,  demonstrating  the  usefulness  of  this  technique  for  the  analysis  of
disease time series. The main contributions of our work for this area are to study both
models  for  datasets  that  are  considerably  smaller  than  those  in  the  literature  and
compare them with ML boosting models. In the next section, we describe some of the
important research pieces in the literature using ML models.

2.2. AdaBoost and GBR models

The  AdaBoost  and GBR models  are  state  of  the  art  models  in  regression  tasks  on
several domains. In the following paragraphs, we analyze important works that use ML
for analyzing disease outbreaks, as well as the growing trend of using ML models due
to the abundance of data, powerful hardware, and advanced techniques and models.

The  work  by  [Nilashi  et  al.,  2017]  presented  a  complex  model  for  disease
prediction using an ensemble of classification and regression decision trees (CART),
several preprocessing techniques, and a fuzzy rule-based model.  It was composed of



four components: (i) use of expectation-maximization clustering on the dataset; (ii) use
of  principal  component  analysis  for  reducing dimensionality;  (iii)  use of  CART for
identifying patterns; and (iv) use of a fuzzy rule-based model to make the prediction.
The authors observed improved results on the MAE and R2 on most datasets analyzed.

An ensemble can be defined as a model that gathers several predictors' results
and makes a final prediction [Satillana et al., 2015]. We implemented simple ensembles
that  combine  the  results  of  the  individual  models  with  equal  weight  on  the  final
prediction. The primary rationale behind using ensembles is that, as the models focus
on different patterns on the data, combining multiple models' results could improve the
overall prediction result [Satillana et al., 2015].

AdaBoost and GBR are models that use the boosting technique, which can be
defined as an ensemble that  combines the results  of  several  models  in  a  sequential
manner [Satillana et al., 2015]. The main advantage of those models is the possibility of
reducing the bias of the individual models [Shafaf and Malek, 2019]. 

According to [Satillana et al., 2015], the AdaBoost model has the advantage of
being able to learn local rules in the data. This can also be observed for other decision
trees ensembles, such as GBR. Nevertheless, the models need more data for training
compared to models such as ARIMA and SARIMA and may present fitting problems.

[Satillana et al., 2015] proposed a model that uses AdaBoost to forecast weekly
Influenza  cases in  the  USA based on several  datasets:  searches on Google,  tweets,
hospital  visit  records,  and  a  participatory  surveillance  system.  This  model  was
compared with stacked linear regression and support vector regression. One important
finding was that the proposed ensemble model outperformed all the individual models.
The authors observed that the AdaBoost model showed the lowest RMSE and MAPE
and presented reasonable predictions for up to three-week forecasts.

We refer the reader to the work by [Shafaf and Malek, 2019] for an in-depth
analysis of ML applications for emergency medicine. According to these authors, ML
can improve the  prediction  and early  detection  of  diseases.  These  models  can  help
decision-makers  to  obtain  insights  related  to  disease  progression.  Three  out  of  the
twenty works reviewed by these authors used ensembles of decision trees. Two of them
used Gradient Boosting for classification, with satisfactory results.

[Zhang et al.,  2019] compared several models to predict  blood pressure rates
based on several physiological data. They have compared ridge and lasso regressions,
elasticnet, support vector regression, k-nearest neighbor, and the GBR models. Their
results  show that  the  GBR had better  accuracy  for  calculating  diastolic  (64%)  and
systolic (70%) pressures, while also being considerably fast (0.1s). 

3. Methodology

The methodology used in this paper was composed of seven steps:

1.  Data gathering from official  databases,  for  the period  from 01/23/2020
until 03/22/2020. We gathered data for the following countries: Brazil1, South Korea2,
China3, and Italy4. The data gathered contained the following features: total number of

1  https://www.kaggle.com/unanimad/corona-virus-brazil
2  https://www.kaggle.com/kimjihoo/coronavirusdataset#Case.csv
3  https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset
4  https://www.kaggle.com/sudalairajkumar/covid19-in-italy#covid19_italy_region.csv



cases,  the total  number of deaths,  new cases,  new deaths in the day,  and recovered
patients. For Brazil,  we gathered data for the number of recovered patients from the
Johns Hopkins University  CSSE [Dong,  Du,  and Gardner,  2019]5.  Additionally,  we
used the total population per country from the World Bank database6 to calculate the
health indicators;

2. Data preprocessing. We preprocessed the datasets (one for each country) to
remove  missing  data  and  identify  possible  outliers.  After  several  experiments
considering different treatments for outliers, we chose to consider the whole datasets
without removing any data points. The removal of data points resulted in worse results,
mainly because the dataset is considerably small, and removing data points would make
it  harder  for  the  models  to  identify  patterns  and  trends.  We  then  calculated  the
following health indicators for all datasets: prevalence, incidence, and death rate. We
separated the datasets into three subsets: train (81% of the full dataset), validation (9%
of the full dataset), and test (10% of the full dataset);

3. Exploratory data analysis. We conducted an exploratory data analysis to
evaluate: (i) the autocorrelation in the data, using the PACF and ACF plots, as well as
the  Dickey-Fuller  test;  and  (ii)  the  behavior  of  each  feature  in  the  time  series,
considering statistical  measures (mean,  mode, standard deviation) and visualizations,
such as box plots and line plots;

4.  Implementation  of  the  econometrics  models  and  hyperparameters
analysis. We have implemented  two econometrics  models:  ARIMA and  SARIMA,
using the SARIMAX class from the statsmodels library. For both models, only one time
series can be considered. Therefore, both the inputs and outputs were the absolute new
cases feature. We used the train and validation subsets for hyperparameters analysis and
final model training, and the third subset for model evaluation. We then implemented
the models for each dataset. The hyperparameters evaluated for the ARIMA were the
autoregressive (p),  differentiation (d),  and the moving average (q)  components.  The
hyperparameters evaluated for the SARIMA were the same as for the ARIMA plus the
seasonal components (P, D, Q, and S). We used a grid search to find the best models,
with values for each component from 0 to 3, which were defined experimentally. The
metric used for evaluation was the mean absolute error (MAE);

5.  Implementation of the ML models and hyperparameters analysis. We
have implemented two ML boosting models: AdaBoost and GBR, using the scikit-learn
library. Unlike the models implemented in Step 4, these models consider all the features
in  the  dataset  as  inputs.  Therefore,  we  expected  that  they  would  capture  more
information and, therefore, provide a better prediction. As in Step 4, we used the train
and validation subsets for hyperparameters analysis and final model training, and the
third subset for model evaluation. We implemented the models for each dataset. The
hyperparameters chosen for the analysis, based on several experiments, were: (i) for the
AdaBoost,  the  learning  rate  (2,  5,  and  10),  loss  function  (linear,  square,  and
exponential),  and number  of  estimators  (5,  10,  and 15);  and (ii)  for  the  GBR,  the
learning rate (0.02, 0.05, and 0.1), max_depth (2 and 5), number of estimators (10, 20,
and 30). We used a grid search to find the best models. The MAE of the prediction was
used for evaluation;

6.  Implementation  of  ensemble  models. Three  ensemble  models  were

5  https://github.com/CSSEGISandData/COVID-19
6  http://wdi.worldbank.org/table/2.1#



implemented: (i) econometrics models ensemble; (ii) ML models ensemble; and (iii) an
ensemble of all models. The first one considered an average of the predictions of the
ARIMA and SARIMA models as its prediction for each data point.  The second one
considered  the  average  of  the  predictions  of  the  AdaBoost  and GBR models  as its
prediction. The third one considered an average of the predictions of all models as its
prediction;

7. Models comparison. The final models from Steps 4, 5, and 6 were evaluated
for each dataset to find the most suitable model for each country, based on the MAE on
the test subsets;

We  used  the  following  Python  libraries:  Pandas,  Statsmodels,  Scikit-Learn,
Matplotlib, NumPy, and Seaborn. The implementation was done using a Google Colab
TPU. The datasets and the code are available on an open Github repository7. 

4. Results and discussion

This  section  describes  the  main  results  of  the  research  and  is  divided  into  four
subsections: 4.1 contains the exploratory data analysis; 4.2 contains the results of the
econometrics models and their ensemble; 4.3 contains the results of the ML models and
their ensembles; 4.4 contains the results of the comparison of all models implemented.

4.1. Exploratory data analysis

After preprocessing the data, we have conducted three analyses: (i) an analysis of each
feature  of  the  dataset,  focusing  on  their  behavior  on  the  different  datasets;  (ii)  an
analysis of the autocorrelation of the new cases feature for each dataset; and (iii) an
analysis of stationarity of the new cases feature for each dataset, using the Augmented
Dickey-Fuller (ADF) test.

Figure 1 illustrates the charts of the total cases and new cases per country (on
the left side) and the ACF plots for each country (on the right side). We decided to
analyze the number of new cases per day for two reasons: (i) it is the recommendation
for time series analysis that are not stationary, that they should be differentiated; and
(ii)  a  prediction  of  potential  new cases  for  the  next  period  could  provide  valuable
information for decision-makers. The first point is vital as most of the econometrics
models (such as ARIMA and SARIMA) are designed for stationary data, as these time
series can, in theory, be predicted.

All datasets analyzed present difficulties for time series analysis models: (i) the
datasets for Brazil and Italy are very small, containing 27 data points each; (ii) the new
cases for Italy is growing fast and changing its shape; (iii) the dataset for China has an
outlier that is more than 10x higher than the mean value (it is not a wrong value); and
(iv) the methods used by the countries to measure the number of infected people vary. 

As the healthcare indicators (incidence, prevalence, and death rate) all depend
on the raw data to be calculated, they correlate with these raw features. Nevertheless, in
this work, we decided to use all indicators for training the ML models, as they might
provide additional information for identifying patterns on the data. We also observed
that, in general, these models had good results on predicting death rate, as it does not
change drastically from day to day, as is the case of new cases per day.

7  Link for the GitHub open repository



Figure 1. On the left side: (i) top: total cases of COVID-19; (ii) bottom: number
of new cases per day. On the right side (using new cases feature): (i) top left:
ACF for Brazil; (ii) top right: ACF for China; (iii) bottom left: ACF for Italy; (iv)
bottom right: ACF for South Korea.

The second analysis that was conducted was related to the autocorrelation of the
new cases feature for each dataset. The ACF plots for all countries is illustrated on the
right side of Figure 1. All plots show a degree of autocorrelation. This was expected
according to the case of a disease spreading on a population. 

Lastly, the ADF test also indicated that all of the countries had a non-stationary
series for new cases per day. For this reason, especially for the econometrics models,
the  series  must  be  differentiated  until  they  present  a  stationary  behavior.  The  next
Section contains the results of the implementation of these models.

4.2. Econometrics models

It  is  important  to  note that  the main difference between the ARIMA and SARIMA
models is the estimation, by the second one, of the effect of seasonality on the data.
Even though the analysis  conducted on Section  4.1  did not  show direct  seasonality
effects, we believe it is essential to test both types of models, as some seasonal effects
may be identified on the larger datasets (China and South Korea).

Table 1 contains the values of hyperparameters that originated the best models
for  the  ARIMA and SARIMA techniques,  as  well  as  their  ensemble.  The  ARIMA
model provided the best results for Italy (MAE: 682.37), while the SARIMA provided
the best results for Brazil (MAE: 163.53). Nevertheless, it is interesting to note that, for
both China and South Korea, the ensemble resulted in a lower MAE.

As for the values of the hyperparameters for the ARIMA model, the results were
diverse. Nevertheless, none of the best models used zero for its p or q values. As for the
best  SARIMA  models,  all  identified  a  seasonal  component.  Except  for  Italy,  the
seasonal component identified by the model improved the MAE of the final ensemble.
Therefore, we conclude that: (i) seasonal models should be tested in similar problems
with a small dataset, even when they do not present a seasonality that can be detected



by the traditional  seasonal decomposition methods; and (ii)  model  tuning should be
conducted for each dataset.

Table 1. Variables to be considered on the evaluation of interaction
techniques. The best values are in bold.

Country

ARIMA SARIMA Ensemble 
ARIMA + 
SARIMA

Hyperp. values 
(p,d,q)

MAE
Hyperp. values 
(p,d,q,P,D,Q,S)

MAE

Brazil 2,0,2 280.03 2,2,2,1,2,1,2 163.53 169.24

China 1,2,1 45.70 2,2,1,2,2,1,1 54.44 21.50

Italy 1,1,2 682.37 1,2,1,1,1,2,2 744.92 1285.47

South Korea 2,0,1 53.34 2,0,2,2,0,1,1 34.71 26.43

 We believe that the main factor impacting the high MAE for Italy was its fast
increase in the number of confirmed cases.  This increases the difficulty of the models
in identifying trends and can be explained by two main factors: (i) the phenomenon of
sub notification of cases and wrong diagnoses at the beginning of the disease spread;
and (ii) the lack of testing to estimate the real number of infected people. In the next
Section, we analyzed the results for the ML models.

4.3. ML models

As was described  in  Section  3,  we used  all  features  as inputs  for  the  ML models
implemented  in  this  work.  The  primary  rationale  behind  this  choice  was  to  try  to
improve  the  amount  of  information  captured  by  the  model,  resulting  in  better
predictions.

Table  2  contains  values  of  hyperparameters  for  the  best  models  for  the
AdaBoost and GBR techniques, as well as their ensemble. For the AdaBoost models,
the linear loss and a learning rate of 2 resulted in the best models. As for the number of
estimators,  these varied by country.  In the case of  the GBR, all  of  the best  models
presented max features of 1. Two of them used a learning rate of 0.1, and two of them
used  10  estimators.  Therefore,  we  can  conclude  that  the  model  tuning  should  be
conducted for every dataset, as was observed for the models in Section 4.2.

The AdaBoost model resulted in the lowest MAE for Brazil (MAE: 51.66) and
Italy (MAE: 1748),  and the use of GBR provided the best results for China (MAE:
186.19) and South Korea (MAE: 41.98). An essential difference with Section 4.2 is that
none of the ensembles resulted in a lower MAE than the best individual model. Further
research is being conducted to understand the causes of these results better, as they may
provide helpful insights for other time series analysis problems with small datasets.

We  believe  that  one  of  the  following  two  reasons  may  be  the  primary
explanation for these results: (i) the patterns identified by both models may be more
similar than the ones identified by the ARIMA and SARIMA models; or (ii) the GBR
may be identifying patterns that are not relevant, due to the small dataset. Nevertheless,
the use of ensembles may still provide interesting insights on the predictions (and even
improve them), as was observed in Section 4.2. The use of a larger dataset could lead to



this improvement, as these models are data-hungry.

Table 2. Results on the test subset of the AdaBoost, GBR, and ensemble of
AdaBoost and GBR models for each country. The best values are in bold.

Country

AdaBoost GBR
Ensemble AdaBoost 
+GBRHyperp. values 

(lr, loss, n_e)
MAE

Hyperp. values
(lr, max_f, n_e)

MAE

Brazil 2, linear, 5 51.66 0.01, 1, 10 197.48 63.52

China 2, linear, 15 344.33 0.1, 1, 30 186.19 274.60

Italy 10, square, 5 1748.00 0.05, 1, 10 4101.95 3315.33

South Korea 2, exp., 10 55.14 0.1, 1, 20 41.98 57.90

As was observed in Section 4.2, the high MAE for Italy may be due to the fast
increase in the number of  confirmed cases. This impacted more heavily on the ML
models analyzed, as these need more data than the econometrics models analyzed to
identify patterns.  In the next Section,  we conducted a comparison of all  the models
implemented.

4.4. Models comparison

In this section, we address the four research questions. Table 3 contains the results of all
models on the test subset for each country. To answer the first question, we can infer
that the best models for predicting the number of new cases per day, among the ones
analyzed,  are:  for  Brazil,  the  AdaBoost  (MAE:  51.66);  for  China,  the  ensemble of
econometrics models (MAE: 21.50);  for  Italy,  the ARIMA (MAE: 682.37);  and for
South Korea, the SARIMA (MAE: 34.71).

Table 3. Results of all models on the test subset for each country. The best
values are in bold.

Country

Econometrics models ML models Ensemble

of all 

modelsARIMA SARIMA Ensemble AdaBoost GBR Ensemble

Brazil 280.03 163.53 169.24 51.66 197.48 63.52 65.67

China 45.70 54.44 21.50 344.33 186.19 274.60 146.40

Italy 682.37 744.92 1285.47 1748.00 4101.95 3315.33 1897.51

South 

Korea
53.34 34.71 26.43 55.14 41.98 57.90 41.24

Average 265.36 249.40 375.66 549.79 1131.90 927.84 537.71

Answering the second question, there was no single model that obtained the best



results across the four datasets. This may be due to several reasons: (i) the dynamics of
the  disease  spread  in  each  country,  impacted  by  different  behaviors,  Government
measures, population density, population age structure, and HDI, among others; (ii) the
strategy for  testing  adopted by the  country,  which differed  considerably  among the
analyzed countries;  (iii)  the stage of  disease spread in  each country,  which directly
affects the rate of increase of infected people; (iv) sub notification or wrong diagnosis,
which may differ between the countries; among others.

To answer the third question, econometrics models were able to better capture
the trends and predict  the number of new cases per day for China,  Italy,  and South
Korea. It is interesting to observe that the econometrics models ensemble better suited
the data for China (MAE: 21.50) and South Korea (MAE: 26.43), while the ARIMA
model  better  suited  the  data  for  Italy  (MAE:  682.37).  Nevertheless,  as  Italy's  data
increased considerably in the period considered, all models had higher MAEs than for
the other countries. 

Based  on  these  results,  we  can  infer  that  for  small  datasets  with  higher
variability  (such  as  in  the  case  of  China  and  Italy,  as  described  in  Section  4.1),
econometrics models should obtain better results. Considering the simple average of the
models'  MAEs  across  all  countries,  the  SARIMA  model  provided  the  best  results
(MAE: 249.40). On average, all three econometrics models (ARIMA, SARIMA, and
their ensemble) had better results than the ML models and the ensemble of all models.
The  model  that  performed  the  worst  was  the  GBR  (MAE:  1131.90),  while  the
AdaBoost was the best model only for Brazil (MAE: 51.66).

This observation can be mainly explained by the following factors: (i) the ML
models,  as described in Section 2.3,  demand more data for identifying patterns;  (ii)
these methods were not designed to deal specifically with time-series data; and (iii) the
features used (besides the new cases per day time series) may have introduced noise on
the pattern detection. 

To answer the fourth research question of this paper, we can infer that the use of
ensembles may improve the results compared to using the models independently, as was
observed for China and South Korea. The main factor that explains this observation is
that,  as  the  models  identify  different  patterns,  an  average  of  their  predictions  may
improve the overall results. This is the basis of several implementations of ensemble
models. Therefore,  we recommend, for similar prediction problems, to evaluate both
the models independently and ensembles of these models. 

Although many more  experiments  are  needed to  be  able  to  conclude  which
model is the best for the different scenarios,  we can infer that the more the models
differ among themselves on the method they use for identifying patterns and making
predictions,  the  more  significant  is  the  potential  for  ensembles  to  provide  better
predictions than the individual models. An exception would be the case in which some
models have significantly worse results than others, as was observed for the ML models
for China and Italy.

It is also important to note that, to further improve the quality of the models’
predictions, research is being conducted to consider other variables such as: the number
of tests per country (and how these may influence on the results), the number of doctors
in relation to the population of the countries, the number of intensive care unit beds
available  over  time,  and  several  other  important  socio-economic  variables,  such  as
access to health services and access to basic sanitation.



The main contributions of this work are: (i) to evaluate the different state of the
art models for time series analysis in small datasets; (ii) to compare econometrics and
ML models for predictions pandemics spread; and (iii) to evaluate the use of ensembles
on small  datasets.  We believe that  our results  can be useful for  both researchers to
identify  new  exciting  areas  to  improve  predictions  of  disease  spread  and  for
practitioners, to consider additional models to aid in their decision-making processes.

The main limitations of this work were: (i) the lack of available data, as it was
conducted at the beginning of the pandemics spread; (ii) difficulty on comparing the
data from different countries, as the methods used to estimate the number of infected
people vary by country (for example, South Korea uses extensive testing, while Brazil
only tests people that enter the hospitals with the disease's symptoms); and (iii) the lack
of  knowledge of  the dynamics  of  the disease spread on different  environments  and
countries (such as Brazilian slums, which may have a much larger spread than other
environments). 

We believe that  these limitations are  in  place whenever  a new disease starts
spreading, so we encourage other researchers to continue exploring econometrics and
ML models, intending to provide additional useful information for decision-makers in
the short term.

5. Conclusions

In  this  paper,  we  analyzed  different  econometrics  and  ML  boosting  models  for
predicting the number of new cases of COVID-19 per day for four different countries.
We also evaluated: (i) the potential for using econometrics and ML models on this task;
(ii) the potential of using ensembles of econometrics and ML models, as well as of all
models  implemented;  and  (iii)  which  model  resulted  in  the  lowest  MAE for  each
country.

Our main findings were:  (i)  there is  no single model  that  better  predicts  the
number  of  new  cases  per  day  for  all  countries;  (ii)  there  is  potential  for  using
ensembles, especially of econometrics models; (iii) as ML models are more data-hungry
than the econometrics models, they had worse results, probably due to the small size of
the datasets; and (iv) that the implemented models could be used to provide additional
information for decision-makers. 

The same methodology can be applied for other diseases, especially if they are
in their initial spreading period, in which the dynamics of the disease are only partially
known. We believe that the use of time series analysis models could provide valuable
information on the possible behavior of the features in the short term, complementing
more long term epidemiological prediction models.

Future works are related to: (i)  re-evaluating the models with larger datasets,
which will  improve the quality  of the predictions; (ii)  implementing supervised ML
models that are state of the art for time series analysis, such as convolutional neural
networks and long short-term memory networks, with a larger dataset; (iii) analyzing
the  use  of  unsupervised  ML  models  for  clustering  the  countries  with  similar
characteristics,  considering  both  healthcare  indicators,  data  from the disease spread,
population  density,  and HDI;  and  (iv)  evaluating  the  use  of  the  predictions  of  the
analyzed models with the epidemiological models for improving decision-making.
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