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Abstract. Computerized Tomography is very important for lung disease 

diagnostics, including computer assisted methods. Lung segmentation is usually 

a first step in further sophisticated methods of diagnosis. If in one hand, deep 

learning methods have state-of-the-art performance, they aren’t as simple to 

apply compared to classical methods, sometimes requiring extra data and 

training. We designed a method specific for lung segmentation based on 

histogram thresholding. We observed that, in our proposed method, by 

changing from Otsu to the more recently developed GHT we got a significant 

improvement in segmentation, jumping from 77% to 91% average dice (from 

90% to 95% median dice, respectively), approaching deep learning methods 

(UNet) results (94% average and 97% median dice). Even though our proposed 

method runs on CPU, it’s still 2.6 times faster than UNet on GPU. Moreover, 

our proposed method is off-the-shelf, requiring no training or parameter 

calibration, being suitable as pre-processing for more sophisticated methods 

that aim specific diagnoses. 

 

1. Introduction 

Computerized Tomography (CT) scan is a non-invasive method very often used in the 

diagnose of several diseases such as cancer (Rajagopalan & Babu, 2020), nodules 

detection (Chilakala, 2020), diffuse pulmonary and pleural effusion (Zhou et al., 2016) 

and many other lungs diseases. Beyond its historical importance, CT scans will be highly 

relevant in the follow up of COVID-19 cases for sequel monitoring (McCarthy, 2001; Pu 

et al., 2020; Sara Naybandi Atashi, Zeinab Naderpour, & Saeedi, 2021). For a great set 

of computer aided diagnostic (CAD) methods, this includes the localization or 

segmentation of the lungs in CT volumes (Gordaliza et al., 2018; Huidrom, Chanu, & 

Singh, 2018; Liu, Zhao, Xie, & Pang, 2020; Pu et al., 2020). 

 Nowadays, deep neural network methods represent the state of the art in such 

operations (Hofmanninger et al., 2020; Liu & Pang, 2020). However, their application is 

computationally intensive, requiring GPUs, narrowing its deployment viability in real 



 

   

 

 

clinical scenarios. Moreover, some deep learning methods have an unknown quality 

reproducibility, and sometimes drop in performance in generalizations to new datasets. 

These concerns are usually addressed by applying transfer learning or fine tuning. 

However, these procedures require the availability of extra data and specialists to label 

them, which is a sensitive demand for clinical images where labeled data is scarce. 

Moreover, they introduce an extra step, requiring technical computer knowledge to apply 

such methods. Considering that lung segmentation is rarely an end in itself, being often a 

preprocessing step for more sophisticated methods for diagnose (Huidrom et al., 2018), 

it is convenient to have off-the-shelf methods, that don’t require extra data or 

computational steps, while also don’t compromise the quality of the subsequent methods 

employed in diagnostic pipelines. 

1.1 Histogram Thresholding Methods: 

Among the classical segmentation methods, there is a plethora of which apply 

thresholding on voxels or pixels intensity, at least in some step. Even nowadays, many 

approaches rely on the well-established Otsu’s method (Otsu, 1979), or variations of it 

(Akter, Moni, Islam, Quinn, & Kamal, 2020; Im et al., 2018; Kumar, Pant, & Ray, 2012; 

Than, Noor, Rijal, Yunus, & Kassim, 2014; Zhou et al., 2016). Even though there are 

other classical algorithms for threshold determination, such as Minimum Error (Kittler & 

Illingworth, 1986) and percentile based (p-Tile)(Doyle, 1962), they are not as commonly 

used or based on parameters setting, requiring adjustment for different datasets. Otsu’s 

method works by calculating a threshold value for which the sum of the internal variance 

to each of the two classes is minimal. This will also correspond to maximal interclass 

variance. 

 Recently, a more general approach for histogram thresholding (Barron, 2020) has 

been developed, for which Otsu’s, Minimum Error and P-Tile algorithm are special cases. 

In essence, it consists of approaching the histogram threshold calculation as a mixture of 

two gaussians in one dimension, one for each of the binary classes. As it doesn’t rely on 

any other method for fitting the Gaussian mixture, such as Expectation-Maximization, it 

uses priors that have four parameters, set by the algorithm itself. See appendix for a more 

in depth explanation of Otsu’s and GHT. 

2. Objectives 

We aimed to compare lung segmentation performance in CT scans between a classical 

approach using Otsu and the more recent GHT, and a deep learning approach (UNet). To 

meet this objective, we designed an off-the-shelf method for 3D lungs segmentation that 

doesn’t require training or parameter tuning. It includes pre and post-processing steps, 

enabling it to deal with histograms distortions, clutter removal and inclusion of inner 

lungs blood vessels in the final mask. We compared this same approach using Otsu’s and 

GHT to an UNet. We compared the three methods in segmentation performance, both in 

terms of Dice coefficient and processing time. 

 



 

   

 

 

3. Materials and methods 

3. 1 Data 

For the experiments, we used the LCTSC dataset (Yang et al., 2017). This dataset has 60 

CT exams and its respective segmentation masks, with right and left lungs, heart, 

esophagus and spinal cord manually annotated by specialists. Each exam has each of its 

axial slices saved as a Dicom image. The segmentation masks of each exam are all, both 

organ and slices, in one RTSTRUCT Dicom file. 

3.2 Proposed method using GHT and Otsu 

The proposed method, described below, involves steps of pre-processing, histogram 

thresholding and post processing, specifically designed for lung segmentation in CT scans 

(figure 2). For comparing Otsu and GHT all steps were kept the same, changing only the 

threshold calculation method. As the proposed methodology doesn’t require learning or 

parameter adjustments, all the exams were used for evaluation. We analyzed each exam 

individually, and calculated the whole volume Dice coefficient (3D). 

 

 

Figure 1. Log histograms of CT voxels intensities. Left: a standard case, 
background voxels marked as -2000, and the exam data starts at 0. Right: an 
exam whose histogram is distorted, starting before 0 and truncated before 3000. 
The proposed approach works on both cases. 

 Regarding CT histograms, in some cases, exams might have been submitted to 

histograms transformations and other unknown alterations, having elongated or truncated 

tails (figure 1, right). These are not obstacles for the proposed method’s pre-processing. 

Also, exams use either the value –2000 or –1000 for marking voxels outside the CT 

chamber, making a background mask. This mask is used in post-processing step. 

Pre-processing 

1) Hounsfield scale: we subtracted 1000 from the volume intensities so they would be in 

the standard Hounsfield scale (from –1000 to +3000). 

2) Hounsfield window: we applied a window centered in –400, with a total amplitude of 

1000, which corresponds to lung tissue with an ample margin for handling more general 

cases than the dataset at hand (Zhou et al., 2016). Doing this, we kept only the values 

between –900 and +100. 



 

   

 

 

Histogram calculation and thresholding 

3) Histogram: we calculated a 256 bins histogram using only the voxels values selected 

by the window. 

4) Threshold calculation:  according to the GHT or Otsu’s method, depending which one 

was being tested. 

5) Thresholding: The calculated threshold was applied to the volume obtained after step 

1. 

 

Post-processing 

6) Background elimination (i) and 

binarization adjustment (ii): in the 

thresholded volume both the background 

and the lungs are black, and the rest of the 

body is white (figure 3). Given that only 

the lungs must be white, a simple 

inversion doesn’t work. So, first, (i) we 

use a background mask (pixels originally 

marked as external to the chamber) to 

turn the outside values to white. Then, (ii) 

we invert the binarization slice by slice 

(2D). This must be done in 2D because if 

the thresholded values mistakenly 

include the bronchi and aerial pathways, 

it merges lungs to background, and then, 

the whole segmented volume would be 

erased in this step. 

7) Volume selection: we kept only the 

three biggest 3D connected components. 

This step must be processed in 3D 

because the lower axial slices usually 

have fragmented parts of the mask, 

disabling a slicewise approach. It’s only 

viable in 3D, as these fragments are 

axially connected. Keeping only the three biggest volumes is conservative given that it is 

not uncommon that the two lungs masks merge at some point, which also happens in the 

labels.  

8) Mask filling: the remaining volumes masks are filled to include blood vessels that are 

usually not present in the masks. 

 

Figure 2. The proposed method, 
including pre-processing (1 and 2), 
thresholding (3 to 5) and post-
processing (6 to 8) steps. 



 

   

 

 

 

Figure 3. Example of post-processing. Left: thresholded slice, right before step 
6 (left). Center: after step 6 binary adjustment and background exclusion. Right: 
after step 8, when the segmentation mask is filled. Note that in this case, the 
trachea lumen was wrongly included in the segmentation mask (see discussion). 

3.3 UNet 

We used a standard 2D UNet (Ronneberger, Fischer, & Brox, 2015)(python package 

segmentation models (Yakubovskiy, 2019)). We used 5 folds, each run one net instance 

is created, trained in four folds and tested in the remaining, alternating the folds used as 

test among runs. Folds were specified such that a given exam would be entirely in one 

fold or another, separating exams from training and testing. This way, the whole dataset 

was evaluated in test, and the performance in all the exams could be compared to the other 

methods. 

 For the UNet, each axial slice of each exam was resized to 256 by 256 pixels, and 

intensities were individually standardized. The UNet was trained for 40 epochs using 

batches of 64 slices shuffled between exams, using Adam optimizer (learning rate:10-3), 

using binary cross-entropy loss, and the weights corresponding to the best observed loss 

were saved and used for testing. Tests were performed in each exam individually, 

sequentially evaluating all of its slices and calculating the Dice coefficient for the whole 

exam (3D). 

3. 4 Equipment 

We ran the proposed method on an Intel ® Core i7-8700 CPU, 3.20GHz, 16GB RAM. 

The UNet was trained and tested using a NVIDIA Tesla V100 16GB card. 

3. 5 Statistical analyses 

For the statistical analyses we used R (3.6.1). We used mixed model ANOVA on ranked 

data for comparing the Dice coefficient and processing time across the different methods, 

specifying exam as random factor, using the nlme package (Pinheiro, Bates, DebRoy, 

Sarkar, & R Core Team, 2013). This approach was adopted as data wasn’t normally 

distributed and this is the closest nonparametric counterpart to repeated-measures 

ANOVA (Zimmerman & Zumbo, 1993). For multiple comparisons we used the 

Bonferroni correction method, using the lsmeans package(Lenth, 2016). For checking 

data normality, we used Shapiro-Wilk test. 

 



 

   

 

 

4. Results 

Considering that all methods were evaluated in the whole exam volume (3D), the 

proposed method on GHT had a Dice coefficient performance intermediary to the other 

two, the UNet being the top result. It’s valid to point out that the proposed method using 

GHT had both its average and median Dice performance closer to the UNet results than 

to Otsu’s. As it can be observed in figure 4, although all the three methods showed median 

Dice above 90%, its respective average performances were lower than its medians, due 

to the number of cases in which each method had a lower performance. 

 

Table 1. Each method’s Dice coefficient performance 

Method Dice coef. (avg. ± std.) Dice coef. (median) 

Proposed (GHT) 0.9135 ± 0.1061 0.9497 

Proposed (Otsu) 0.7709 ± 0.2286 0.9085 

UNet 0.9445 ± 0.1041 0.9712 

 

 The methods had significantly different Dice coefficient performances (mixed 

model ANOVA on ranked data, F: 68.5815, d. f..: 2, 118, p-value < 10-4). Using the 

Bonferroni approach for multiple comparisons we observed statistically significant 

differences between every pair (GHT – Otsu: t ratio: 4.151, p-value: 0.0002; GHT – UNet: 

t ratio:  -7.409; p-value < 10-4; Otsu – UNet: t ratio:  -11.560; p-value < 10-4; d. f.: 118 for 

each of the tests). We adopted the ranking approach as the normality hypothesis for the 

distribution of Dice difference values was rejected (Shapiro Wilk, value: 0.7839, p-value: 

5.0175 x 10-15). 

 

Figure 4. Dice coefficient performance of each method. 



 

   

 

 

 We also evaluated the processing time taken for whole volume segmentation in 

each one of the methods. In the proposed method, using both Otsu and GHT algorithms, 

the reported time includes the pre and post-processing steps, histogram calculation, 

thresholding and Dice calculation. As for the UNet, the reported time includes image 

resizing and standardization, inference, and Dice calculation. It doesn’t include the extra 

time taken loading the UNet on the GPU, which is done only once for each fold. Even so, 

we measured the loading time, which was on average 1.17s. 

 

Table 2. Each method’s time performance 

Method Time (s) (avg. ± std.) Time (s) (median) 

Proposed (GHT) 1.8778 ± 0.6004 1.7099 

Proposed (Otsu) 0.6607 ± 0.2802 0.5531 

UNet 4.4086 ± 0.8372 4.4489 

 

 The tested methods show significantly different processing times (mixed model 

ANOVA on ranked data, F: 1646.023; d. f.: 2, 118; p-valor < 10-4). The multiple 

comparison using Bonferroni also pointed statistically significant differences between all 

the methods (GHT – Otsu: t ratio: 27.886, p-value: < 10-4; GHT – UNet: t ratio: -29.483, 

p-value: < 10-4; Otsu - UNet t ratio: -57.369, p-valor: < 10-4; d. f.: 118 for each of the 

tests). The time difference between methods also wasn’t normally distributed (Shapiro-

Wilk, value: 0.9718, p-value: 0.0010). 

 

Figure 5. Each method’s time performance distributions. 

 The proposed method is simpler that the UNet; as such, even running on CPU, it 

was 2.6 times faster. In this regard, one of the differences in the proposed method is that 

it doesn’t require reshaping the images, which consumes more time than calculating the 



 

   

 

 

histogram. Also, the UNet inference takes longer than the simple application of the 

threshold. 

 

5. Discussion 

The proposed segmentation method showed a significant improvement just by changing 

from Otsu’s to GHT, performing better than other classical methods in literature (Than et 

al., 2014; Zhou et al., 2016), although tested in different datasets, reaching an average 

and median Dice coefficient closer to the UNet’s and other network (Hofmanninger et 

al., 2020) performance, while being 2.6 times faster. Thus, it seems to be efficient while 

performing well enough, being an adequate choice for a pre-processing step in a more 

sophisticated method, specific to some further diagnose. 

 The dispersions observed in the Dice values points that the methods differ in two 

aspects. Firstly, even though all the medians are above 90%, they differ statistically, 

showing a baseline difference between the methods. Secondly, the dispersions show in 

how many exams each method had a much lower Dice. For example, even though the 

UNet concentrates most results above 90%, it had a much lower quality results in three 

cases. In comparison, the proposed method using GHT had a lower performance in eight 

cases, but none was as low as any of the three lower UNet performances. This might 

indicate some generalization ability difference among the methods, where the proposed 

method using GHT is more general, however less precise more often. Compared to the 

proposed method using Otsu, it shows a significant improvement, given that it has fewer 

intermediate values and no values under 55% of Dice. 

 Usually, segmentation is not an end in itself (Akter et al., 2020; Huidrom et al., 

2018; Liu et al., 2020; Pu et al., 2020). Often, it is a step for obtaining the slices containing 

lung parts, or to calculating lungs bounding box. It is common for deep learning methods 

for lungs clinical diagnostics to work on segmentation results. Sometimes the 

segmentation is also used for exclusion, as is the case when the focus of the method is the 

heart, and exclusion of the lungs volume might favor heart detection or segmentation, 

which might have been harder at start. 

 The proposed method using GHT has a performance close to deep learning 

methods (Hofmanninger et al., 2020), but has some qualities that might be advantageous 

in specific cases, it’s off-the-shelf, fully automatic, non-supervised, is fast as it is a one-

shot method, doesn’t require further fine-tuning or transfer learning steps in order to be 

applied to new data, and thus, doesn’t require extra labeled data for parameter fitting or 

learning. Even though this might easily be incorporated if necessary. Moreover, the 

proposed method is highly reproducible, being simple to apply not requiring specialized 

hardware. Although, an implementation of the proposed method using GHT in GPU is 

possible, using any of the well-known frameworks such as TensorFlow or pyTorch, what 

might make it faster. Given such considerations and its performance, it’s an adequate pre-

processing method that might serve well other, more sophisticated, diagnostic analysis. 

 Some further improvements for the proposed method using GHT regarding lungs 

segmentation quality is possible. Considering that some of the observed current errors are 

the inclusion of bronchia and trachea (as seen in figure 3), a simple improvement could 



 

   

 

 

be the adoption of a smaller Hounsfield windows, as the one currently used is very broad 

and there might be some margin for a cut off without compromising generality. Another 

possibility, as these errors might deform the segmentation mask, might be the inclusion 

of an active shape model (Chen, Udupa, Bagci, Zhuge, & Yao, 2012) or active appearance 

(“Automatic Lung Field Segmentation in X-ray Radiographs Using Statistical Shape and 

Appearance Models,” 2016) in the volume’s post-processing step. However, this would 

also require validation step and extra data. 

 

6. Acknowledgments 

 This work was supported by Foxconn Brazil and Zerbini Foundation as part of the 

research project “Machine Learning in Cardiovascular Medicine”. 

 

7. References 

Akter, O., Moni, M. A., Islam, M. M., Quinn, J. M. W., & Kamal, A. H. M. (2020). Lung 

cancer detection using enhanced segmentation accuracy. Applied Intelligence, 

(October). https://doi.org/10.1007/s10489-020-02046-y 

Automatic Lung Field Segmentation in X-ray Radiographs Using Statistical Shape and 

Appearance Models. (2016). Journal of Medical Imaging and Health Informatics, 

6(2). 

Barron, J. T. (2020). A Generalization of Otsu’s Method and Minimum Error 

Thresholding. Retrieved from http://arxiv.org/abs/2007.07350 

Chen, X., Udupa, J. K., Bagci, U., Zhuge, Y., & Yao, J. (2012). Medical image 

segmentation by combining graph cuts and oriented active appearance models. IEEE 

Transactions on Image Processing, 21(4), 2035–2046. 

https://doi.org/10.1109/TIP.2012.2186306 

Chilakala, L. R. (2020). Optimal deep belief network with opposition-based hybrid 

grasshopper and honeybee optimization algorithm for lung cancer classification : A 

DBNGHHB approach. (April), 1–20. https://doi.org/10.1002/ima.22515 

Doyle, W. (1962). Operations Useful for Similarity-Invariant Pattern Recognition. 

Journal of the ACM, 9(2), 259–267. https://doi.org/10.1145/321119.321123 

Gordaliza, P. M., Muñoz-Barrutia, A., Abella, M., Desco, M., Sharpe, S., & Vaquero, J. 

J. (2018). Unsupervised CT Lung Image Segmentation of a Mycobacterium 

Tuberculosis Infection Model. Scientific Reports, 8(1), 1–10. 

https://doi.org/10.1038/s41598-018-28100-x 

Hofmanninger, J., Prayer, F., Pan, J., Röhrich, S., Prosch, H., & Langs, G. (2020). 

Automatic lung segmentation in routine imaging is primarily a data diversity 

problem, not a methodology problem. European Radiology Experimental, 4(1), 50. 

https://doi.org/10.1186/s41747-020-00173-2 

Huidrom, R., Chanu, Y. J., & Singh, K. M. (2018). Automated lung segmentation on 

computed tomography image for the diagnosis of lung cancer. Computacion y 



 

   

 

 

Sistemas, 22(3), 907–915. https://doi.org/10.13053/CyS-22-3-2526 

Im, H.-J., Solaiyappan, M., Lee, I., Bradshaw, T., Daw, N. C., Navid, F., … Cho, S. Y. 

(2018). Multi-level otsu method to define metabolic tumor volume in positron 

emission tomography. American Journal of Nuclear Medicine and Molecular 

Imaging, 8(6), 373–386. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/30697457%0Ahttp://www.pubmedcentral.ni

h.gov/articlerender.fcgi?artid=PMC6334209 

Kittler, J., & Illingworth, J. (1986). Minimum error thresholding. Pattern Recognition, 

19(1), 41–47. https://doi.org/10.1016/0031-3203(86)90030-0 

Kumar, S., Pant, M., & Ray, A. K. (2012). Segmentation of CT Lung Images Based on 

2D Otsu Optimized by Differential Evolution. In Deep, K and Nagar, A and Pant, M 

and Bansal, JC (Ed.), PROCEEDINGS OF THE INTERNATIONAL CONFERENCE 

ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2011), VOL 2 (pp. 

891–902). HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY: 

SPRINGER-VERLAG BERLIN. 

Lenth, R. V. (2016). Least-Squares Means: The {R} Package {lsmeans}. Journal of 

Statistical Software, 69(1), 1–33. https://doi.org/10.18637/jss.v069.i01 

Liu, C., & Pang, M. (2020). Extracting Lungs from CT Images via Deep Convolutional 

Neural Network Based Segmentation and Two-Pass Contour Refinement. Journal 

of Digital Imaging, 33(6), 1465–1478. https://doi.org/10.1007/s10278-020-00388-0 

Liu, C., Zhao, R., Xie, W., & Pang, M. (2020). Pathological lung segmentation based on 

random forest combined with deep model and multi-scale superpixels. Neural 

Processing Letters, 52(2), 1631–1649. https://doi.org/10.1007/s11063-020-10330-8 

McCarthy, D. (2001). Chest CT in “Post” COVID-19: What the Radiologist Must Know. 

Progress in Transplantation, 11(3), 162–162. 

https://doi.org/10.7182/prtr.11.3.hh66651262116783 

Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE 

Transaction on Systems, Man and Cybernetics, smc-9(1), 62–66. 

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2013). nlme: Linear and 

Nonlinear Mixed Effects Models. 

Pu, J., Leader, J. K., Bandos, A., Ke, S., Wang, J., Shi, J., … Jin, C. (2020). Automated 

quantification of COVID-19 severity and progression using chest CT images. 

European Radiology. https://doi.org/10.1007/s00330-020-07156-2 

Rajagopalan, K., & Babu, S. (2020). The detection of lung cancer using massive artificial 

neural network based on soft tissue technique. BMC Medical Informatics and 

Decision Making, 20(1), 1–13. https://doi.org/10.1186/s12911-020-01220-z 

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for 

biomedical image segmentation. Lecture Notes in Computer Science (Including 

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics), 9351, 234–241. https://doi.org/10.1007/978-3-319-24574-4_28 

Sara Naybandi Atashi, Zeinab Naderpour, & Saeedi, K. G. M. (2021). An Eight-week 



 

   

 

 

Follow-up Study in Patients With COVID-19 Respiratory Failure: Delayed 

Recovery or Lung Sequel. Case Reports in Clinical Practice, 5(Covid-19), 153–157. 

Than, J. C. M., Noor, N. M., Rijal, O. M., Yunus, A., & Kassim, R. M. (2014). Lung 

segmentation for HRCT thorax images using radon transform and accumulating 

pixel width. IEEE TENSYMP 2014 - 2014 IEEE Region 10 Symposium, 157–161. 

https://doi.org/10.1109/tenconspring.2014.6863016 

Yakubovskiy, P. (2019). Segmentation Models. GitHub Repository. GitHub. 

Yang, J., Sharp, G., Veeraraghavan, H., van Elmpt, W., Dekker, A., Lustberg, T., & 

Gooding, M. (2017). Data from lung CT segmentation challenge. The Cancer 

Imaging Archive. 

Zhou, H., Goldgof, D. B., Hawkins, S., Wei, L., Liu, Y., Creighton, D., … Nahavandi, S. 

(2016). A Robust Approach for Automated Lung Segmentation in Thoracic CT. 

Proceedings - 2015 IEEE International Conference on Systems, Man, and 

Cybernetics, SMC 2015, 2267–2272. https://doi.org/10.1109/SMC.2015.396 

Zimmerman, D. W., & Zumbo, B. D. (1993). Relative power of the wilcoxon test, the 

friedman test, and repeated-measures ANOVA on ranks. Journal of Experimental 

Education, 62(1), 75–86. https://doi.org/10.1080/00220973.1993.9943832 

 

8. Appendix 

The formulas were adapted from (Barron, 2020) to use the same notation for both 

methods. 

Otsu’s method 

 In essence, it calculates the threshold value t for which the total intraclass variation 

is minimal, which will correspond to maximal interclass variance. It corresponds to the 

K means solution when k is two. 

 

𝑤0(𝑡) = ∑ 𝑛𝑖

𝑡−1

𝑖=0

 μ0(𝑡) =
∑ 𝑛𝑖𝑥𝑖

𝑡−1
𝑖=0

ω0(𝑡)
 

𝑤1(𝑡) = ∑ 𝑛𝑖

𝐿−1

𝑖=𝑡

 μ1(𝑡) =
∑ 𝑛𝑖𝑥𝑖

𝐿−1
𝑖=𝑡

ω1(𝑡)
 

𝜎𝑏
2(𝑡) = 𝑤0(𝑡)𝑤1(𝑡)[𝜇0(𝑡) − 𝜇1(𝑡)]2 

 

Above, 𝑛𝑖 is the bin’s height, 𝑥𝑖 is the bin’s intensity value, σb
2 is the total inter-class 

variance, given by classes probabilities 𝑤0 and 𝑤1 and respective classes means μ0 and 

μ1, all evaluated at the threshold value 𝑡 which maximizes 𝜎𝑏
2. 𝐿 corresponds to the 

number of bins in the histogram. 



 

   

 

 

Generalized Histogram Thresholding (GHT) 

GHT approaches threshold calculation as a mixture of two gaussians. Each fitted gaussian 

has a mean, a standard deviation and a weight. An inverted rescaled chi-square 

distribution as a prior for the variances (σ𝑘), and a beta distribution as a prior for the 

weights (π𝑘). 

The method sets the extra parameters as ν = sum(n), τ = √1/12, κ = sum(n) and ω = 0.5. 

𝑝(𝐼𝑥,𝑦|𝑧𝑥,𝑦 = 𝑘) = 𝜋𝑘  𝒩(𝐼𝑥,𝑦|𝜇𝑘, 𝜎𝑘)  𝜒𝑆𝐼
2 (𝜎𝑘|𝜋𝑘𝜈, 𝜌2)  𝐵𝑒𝑡𝑎(𝜋𝑘|𝜅, 𝜔) 

π0(𝑡) = 𝑤0(𝑡)/‖𝑛‖1 π1(𝑡) = 𝑤1(𝑡)/‖𝑛‖1 = 1 − π0(𝑡) 

𝑑0(𝑡) = ∑ 𝑛𝑖𝑥𝑖
2

𝑡−1

𝑖=0

− 𝑤0(𝑡)(μ0(𝑡))
2

= σ0
2 𝑑1(𝑡) = ∑ 𝑛𝑖𝑥𝑖

2

𝐿−1

𝑖=𝑡

− 𝑤1(𝑡)(μ1(𝑡))
2

 =  𝜎1
2 

𝑣0(𝑡) =
𝜋0(𝑡) 𝜈 𝜏2 + 𝑑0(𝑡)

π0(𝑡) ν + 𝑤0(𝑡)
 𝑣1(𝑡) =

𝜋1(𝑡) 𝜈 𝜏2 + 𝑑1(𝑡)

π1(𝑡) ν + 𝑤1(𝑡)
 

𝑓0(𝑡) = −
𝑑0(𝑡)

𝑣0(𝑡)
− 𝑤0(𝑡) 𝑙𝑜𝑔 𝑣0(𝑡)  + 2[𝑤0(𝑡) + κω(𝑡)] 𝑙𝑜𝑔 𝑤0(𝑡) 

𝑓1(𝑡) = −
𝑑1(𝑡)

𝑣1(𝑡)
− 𝑤1(𝑡) 𝑙𝑜𝑔 𝑣1(𝑡)  + 2[𝑤1(𝑡) + κ(1 − ω(𝑡))] 𝑙𝑜𝑔 𝑤1(𝑡) 

𝐺𝐻𝑇(𝑥, n, ν, τ, κ, ω) = 𝑥𝑎𝑟𝑔𝑚𝑎𝑥(𝑡)(𝑓0(𝑡) + 𝑓1(𝑡)) 


