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Abstract. The detection, diagnosis, and treatment of prostate cancer depends
on the correct determination of the prostate anatomy. In current practice,
the prostate segmentation is performed manually by a radiologist, which
is extremely time-consuming that demands experience and concentration.
Therefore, this paper proposes an automatic method for prostate segmentation
on 3D magnetic resonance imaging scans using a superpixel technique,
phylogenetic indexes, and an optimized XGBoost algorithm. The proposed
method has been evaluated on the Prostate 3T and PROMISE12 databases
presenting a dice similarity coefficient of 84.48% and a volumetric similarity of
95.91%, demonstrating the high-performance potential of the proposed method.

1. Introduction

According to the American Cancer Society, 248,530 new cases of prostate cancer are
estimated for 2021, with a rate of 34,130 deaths in the United States [ACS 2021]. Except
for skin cancer, prostate cancer is the most common cancer among men, being the
second leading cause of cancer deaths [Siegel et al. 2019]. Nonetheless, the death rate has
decreased by approximately 51% from 1993 to 2016 due to increased screening. Based
on recent data, about 12.5% of men develop prostate cancer, with 60% of cases starting
at age 65 [INCA 2021].

The detection, diagnosis, and treatment, such as biopsy and radiotherapy
procedures, depends on the correct determination of the prostate anatomy. Thereby,
several studies [Paiva et al. 2019, Comelli et al. 2021] propose computer-aided methods
for prostate segmentation on various medical imaging modalities. The Magnetic
Resonance Imaging (MRI) scan is the most convenient modality for cancer
detection and staging due to high spatial resolution and excellent soft-tissue contrast
compared to Transrectal Ultrasound (TRUS) and Computed Tomography (CT)
scans [Ghose et al. 2012].



In current practice, the prostate segmentation is performed manually by a
radiologist, based on a slice by slice visual inspection, since the MRI scan provides
a three-dimensional view [Ghose et al. 2012]. This manual segmentation approach is
extremely time-consuming that demands experience, concentration, and is prone to
variability among different radiologists [De Visschere 2018]. Thus, the development
of methods for accurate and automatic segmentation of the prostate on MRI scans is a
significant and beneficial task in clinical applications.

Computer-aided methods for precise and automatic prostate segmentation present
several clinical benefits, such as increased time efficiency, reduced errors, reproducibility,
and invariance among radiologists [Ye et al. 2016]. Nevertheless, automatic prostate
segmentation is a challenging task because of the wide variation in prostate anatomy due
to pathological changes, tissue similar to the adjacent organs, and different acquisition
protocols for MRI scans [De Visschere 2018].

Thereby, this paper proposes an automatic method for prostate segmentation on
3D MRI scans using a content-sensitive superpixels technique, phylogenetic indexes,
YOLO convolutional network, XGBoost, and the particle swarm optimization (PSO)
algorithm. As for contributions to the computer science field, we can mention: 1) detect
the prostate region based on the YOLO convolutional network to decrease the region
of interest, reducing the imbalance of the prostate and non-prostate classes, 2) describe
the local prostate and non-prostate tissues using the phylogenetic indexes based on the
IMSLIC algorithm and 3) build an XGBoost in conjunction with the PSO algorithm to
distinguish prostate and non-prostate tissues.

In addition to Section 1, the paper is organized as follows. Section 2 describes
some related works for prostate segmentation on 3D MRI scans. Section 3 details the
materials and proposed method. Section 4 presents and discusses the results obtained.
Finally, Section 5 presents the concluding observations and future works.

2. Related works

Accurate prostate segmentation in 3D MRI scans is very useful for cancer detection,
biopsy, staging, monitoring, and treatment. In this regard, there is a huge demand
for fast and accurate methods for clinical applications. In the automatic prostate
segmentation task on MRI scans, [Jensen et al. 2019] described a method based on the U-
net architecture obtaining a DSC of 74.3%. [Wang et al. 2019] reported a method using a
fully convolutional network (FCN) with a group dilated convolution presenting a DSC of
88±0.05%. [Chen et al. 2020] proposed a method based on image-level labels resulting
in a DSC of 83.39% and [Comelli et al. 2021] developed a method using the efficient
neural network (ENet) obtaining a DSC of 90.8%. Despite the various methods that
have been proposed and published in recent literature with reasonable results, accurate
and automatic prostate segmentation on MRI scans remains a difficult task. Since the
methods present several challenges that can result in poor segmentation. For example,
deep learning-based methods need a large amount of data, resulting in a slow training
process.



3. Materials and method

This section presents the proposed method for automatic prostate segmentation on 3D
MRI scans. In addition to the material step, the proposed method contains three other
steps: 2) preprocessing, 3) prostate detection, and finally, 4) prostate segmentation.
Figure 1 illustrates the flowchart of the proposed method.

Figura 1. Proposed method for prostate segmentation on 3D MRI scans.

3.1. Materials

In order to validate the proposed method in complex situations, two different
MRI databases are used together in the evaluation of the method. The Prostate
3T [Litjens et al. 2015] and PROMISE12 [Litjens et al. 2014] databases are available
on the internet for challenges purpose. Both databases have a certain complexity
since they have different aspects, such as spatial resolution, voxel spacing, the
intensity of the magnetic field, dynamic range, and anatomic appearance into MRI
scans [Litjens et al. 2014, Litjens et al. 2015].

In total, both databases contain 80 T2-weighted MRI scans along with their ground
truth. Notwithstanding, 24 MRI scans from the PROMISE12 database that were acquired
using an endorectal coil (ERC) were not used in the proposed method for several reasons.
First, the coil deforms the prostate anatomy compressing the peripheral zone. Second, the
gel used in the acquisition creates a regional T2 signal that can obscure the detection of
cancer [De Visschere 2018]. Therefore, 56 MRI scans are used in the method.

3.2. Preprocessing

All 56 MRI scans were submitted to the preprocessing step. The objective of this step is to
correct noises from the acquisition process, preserving the edges of the prostate. For this,
the anisotropic diffusion filter using the modified curvature diffusion equation (MCDE)
was applied [Johnson et al. 2015]. Qualitatively, MCDE compares well with other non-
linear diffusion filters. It is less sensitive to contrast than classic Perona-Malik style
diffusion and preserves finer detailed structures in images, such as the prostate border
in MRI scans.



3.3. Prostate detection
The prostate detection step used the YOLO convolutional neural
network [Redmon and Farhadi 2018]. This step is important, as it limits the scope
of MRI scans to the prostate region, eliminating other unwanted details from the image,
such as the other organs present in the image. The YOLO presents several benefits over
the traditional techniques of object detection: 1) YOLO is extremely fast in detection, 2)
uses information from the entire image to predict each bounding box, and finally, 3) has
high power of generalization [Redmon and Farhadi 2018].

Due to the wide variation in size and shape between the different patients ascribed
to pathological changes and different acquisition protocols, the following steps are applied
slice by slice from the axial view. Figure 2 presents the flowchart of the prostate detection
step. First, all MRI slices are resized to 256 x 256. Then, the prediction of the prostate
regions is performed by YOLO. Third, find out the xmin, ymin, xmax and ymax coordinates
among all bounding boxes of the same MRI scan. Finally, reconstruction of the 3D
bounding box in the MRI scan using the coordinates preserving the z axis.

Figura 2. Flowchart of the prostate detection step.

3.4. Prostate segmentation
The prostate segmentation step combines a content-sensitive superpixels technique,
texture features based on the phylogenetic indexes, an XGBoost in conjunction with the
PSO algorithm, and a morphological operation for extracting the prostate surface. Thus,
this step consists of four substeps: 1) superpixels clustering, 2) features extraction, 3)
superpixels classification, and finally, 4) fine segmentation.

3.4.1. Superpixels clustering

The first substep consists of clustering the pixels into superpixels using the intrinsic
manifold simple linear iterative clustering (IMSLIC) algorithm [Liu et al. 2017]. A
superpixels-based analysis reduces the computational cost while potentially increasing
the detection accuracy, as it is more robust to noise than pixels-based analysis. The
IMSLIC algorithm presents advantages over the traditional superpixels techniques: 1)
IMSLIC computes content-sensitive superpixels, 2) it can effectively capture non-
homogenous features, 3) has a good initialization of cluster centers, and 4) it presents
few parameters [Liu et al. 2017]. Finally, each superpixel is centered on a 64 x 64 patch
image. Figure 3 illustrates the application of the IMSLIC algorithm in an MRI scan.



Figura 3. Application of the IMSLIC algorithm in an MRI scan.

3.4.2. Features extraction

The second substep consists of extracting texture features from superpixels using the
phylogenetic indexes [Silva et al. 2016]. These indexes are based on diversity and the
phylogenetic distance, accounting for the number of edges in a specific tree architecture.
According to [Magurran 2005], diversity describes the variety of species present in a
community or area. In order to use these concepts to describe prostate and non-prostate
tissues, it is necessary to map the biologic concepts to MRI slice, as shown in Table 1.

Tabela 1. Mapping biologic concepts to MRI slice.

Biology Prostate segmentation step
Community MRI slice

Species Intensity values of the MRI slice
Species richness Number of distinct voxels in a superpixel

Individual Number of voxels of a particular species contained in a superpixel

There are several reasons to use the phylogenetic indexes for describing the
local prostate and non-prostate tissues in this work: 1) MRI scans have a dynamic
bit depth [Ghose et al. 2012], 2) both MRI databases were acquired using different
protocols and equipment, presenting a greater diversity with different intensity values,
and 3) these indexes have high potential in texture analysis in various medical
applications [Silva et al. 2016, Costa et al. 2018, Cruz et al. 2020]. In total, 12 indexes
were used, which are described below.

The relationship between two species randomly chosen in a phylogenetic tree of
a community is presented by the taxonomic diversity (∆) and taxonomic distinction (∆∗)
indexes [Clarke and Warwick 1998]. These taxonomic indexes are based on the number
of species, the number of individuals, and the phylogenetic distance, that is, the number
of edges in the phylogenetic tree [Clarke and Warwick 1998].

The taxonomic diversity (∆) index computes the mean taxonomic distance
between two individuals randomly chosen in a community [Clarke and Warwick 1998],
namely:

∆ =

∑∑
i<j wijxixj

[n(n− 1)/2]
. (1)

The taxonomic distinction (∆∗) index calculates the mean taxonomic distance
between two individuals of different species [Clarke and Warwick 1998], and it can be
computed by:

∆∗ =

∑∑
i<j wijxixj∑∑
i<j xixj

, (2)



where xi(i = 0, ..., s) and xj(j = 0, ..., s) are the number of individuals of the i and
j species, s is the species richness, n is the total number of individuals and wij is the
phylogenetic distance between the species i and j in a tree.

The intensive quadratic entropy (J) index computes the mean phylogenetic
distance between two randomly chosen species [Izsák and Papp 2000]:

J =
[∑

wi,j

]
/s2. (3)

The extensive quadratic entropy (F ) index calculates the sum of all pairwise
phylogenetic distance [Izsák and Papp 2000], computed by:

F =
∑

wi,j. (4)

The average taxonomic distinctness (AvTD) index computes the mean path length
connecting species in a community [Clarke and Warwick 1998], and it is defined by:

AvTD =

∑∑
i<j

wij

 / [s(s− 1))/2] . (5)

The total taxonomic distinctness (TTD) index calculates the mean phylogenetic
distinctivenes summed over all species [Clarke and Warwick 1998], namely:

TTD =
∑
i

∑
j 6=i

wij

 /(s− 1)

 , (6)

where wi,j represents the phylogenetic distance between the species i and j in a tree and
s represents the number of species.

The pure diversity (DD) index computes the phylogenetic distance of a particular
species to its nearest neighbor [Weitzman 1992], and is given by:

DD =
∑

di min, (7)

where di min indicates the phylogenetic distance from the nearest neighbour of the species
i to all other species.

The phylogenetic diversity (PDNODE) index calculates the minimum total length
of all phylogenetic branches necessary to measure a taxon in a phylogenetic tree and it
can be calculated by:

PDNODE =
∑

ni. (8)

The (PDROOT ) index computes the number of nodes within the rooted
(maximum) spanning path:

PDROOT =
∑

niROOT . (9)

The average phylogenetic diversity (AvPD) index calculates the mean
phylogenetic diversity in a community:

AvPD = PDNODE/s, (10)



where ni represents the number of i nodes in the minimum path of each species present
in the diversity, niROOT is the number of nodes in the path and s represents the number of
species.

In addition to these indexes, the Q and W indexes proposed
by [Vane-Wright et al. 1991] were used to calculate the sum of the contributions of
each species to diversity and the sum of standardized taxic weights, respectively.

3.4.3. Superpixels classification

The third substep consists of the superpixels classification in prostate and non-prostate
tissues using an XGBoost [Chen and Guestrin 2016] in conjunction with the PSO
algorithm [Rini et al. 2011]. Thus, it is necessary to label each superpixel in the prostate
and non-prostate classes based on the ground truth. A superpixel is considered a prostate
tissue if it has at least 70% of its pixels found in the ground truth. If a superpixel touches
the ground truth in a proportion less than 70%, it is ignored from the XGBoost training.
Finally, all the others are labeled as non-prostate tissues.

The XGBoost algorithm has several advantages over traditional classification
techniques: 1) XGBoost incorporates the concept of regularization to avoid
overfitting, 2) it utilizes the power of parallel processing and cache optimization
to speed up the training process, and 3) it employs the distributed weighted
Quantile Sketch algorithm to effectively find the optimal split points among
weighted databases [Chen and Guestrin 2016]. These advantages are ideal in the
superpixels classification since the prostate and non-prostate tissues present class
imbalance [Ghose et al. 2012].

Table 2 shows the particle coding of the XGBoost algorithm in conjunction with
the PSO algorithm. Each particle has the following coordinates: x1 represents the
maximum depth of the tree with values between 1 and 10, x2 represents the subsample
ratio of columns when constructing each tree with values between 0 and 1, x3 represents
the minimum sum of weights of all observations required in a child with values between 1
and 10, x4 represents the minimum loss reduction necessary to make a further partition on
a leaf node of the tree with values between 0 and 1, and finally, x5 represents the learning
rate with values between 0 and 1.

Tabela 2. Particle definition in the superpixels classification substep.

Particle coordinate XGBoost parameter Range
x1 Maximum depth of a tree 1 up to 10
x2 Subsample ratio of columns 0 up to 1
x3 Minimum sum of weights of all observations 1 up to 10
x4 Minimum loss reduction 0 up to 1
x5 Learning rate 0 up to 1

Every single particle of the initial swarm is randomly initialized based on its range,
as described in Table 2. The fitness of each particle is evaluated through the results
obtained by the XGBoost algorithm on the validation subset using the selected parameters,
as described in Equation 11. Once the stop criterion is satisfied, the particle represented
by Gbest is the set of optimal parameters for the superpixels classification in prostate and
non-prostate tissues.



Fitness = (2 ∗Recall) + Specificity + Accuracy (11)

The metric recall has been given a higher weight because it represents the model
ability to correctly classify prostate tissue.

3.4.4. Fine segmentation

The last substep consists of smoothing the prostate contour using a morphological
operation. The image reconstructed from the superpixels classification substep may
present an irregular boundary when the superpixels do not find the prostate edge
accurately. Therefore, the prostate surface should be refined to overcome this issue. In
this substep, the dilation morphological operation [Gonzales and Woods 2002] with a 5 x
5 circular structuring element is used in each MRI slice. Finally, the final prostate surface
is generated for comparison with the ground truth.

4. Results and discussion

The Prostate 3T and PROMISE12 databases were randomly split into three subsets:
training, validation, and test with the respective proportions 60%, 20%, and 20%. The
training subset has the largest number of MRI scans to make the proposed method more
robust and generic. In addition, the split process ensures a balanced number of MRI scans
from both databases in each subset. Hence, the training subset has 34 MRI scans, the
validation subset has 11 MRI scans, and the test subset has 11 MRI scans.

4.1. Prostate detection results

The prostate detection step was applied slice by slice from the axial view using the YOLO
network. So, the training subset contains 471 slices, the validation subset contains 224
slices and the test subset contains 228 slices. The training of the network was defined for
150 epochs and the weights update was based on the Adam algorithm with a learning rate
of 0.001.

Table 3 presents the results in the prostate detection step on the validation and
test subsets. The results include the mean intersection over union (IoU), recall (REC),
precision (PREC), and the FN rate that represents the total of the prostate MRI slices
that were not detected [Taha and Hanbury 2015]. In both subsets, the YOLO obtained
a satisfactory result in detecting the prostate, presenting a low loss value. The total
execution time of the prostate detection step was approximately 40 minutes.

Tabela 3. Results obtained in the prostate detection step on the validation and
test subsets.

Subset MRI slices IoU (%) REC (%) PREC (%) FN
Validation 224 71.01 99.29 80.81 1

Test 228 71.85 97.63 87.77 4



4.2. Prostate segmentation results

The prostate segmentation step, described in Section 3.4, detailed a conventional approach
based on the IMSLIC algorithm, phylogenetic indexes, and the XGBoost algorithm with
the PSO algorithm. All the texture features were submitted to the XGBoost model in
conjunction with the PSO algorithm to distinguish prostate and non-prostate tissues. The
XGBoost training used as objective function the binary logistic regression with a fixed
number of 1,000 decision trees and the L2 regularization.

Table 4 presents the results obtained in both validation and test subsets for the
Gbest particle at the end of the PSO algorithm. The results include mean recall (REC),
mean specificity (SPE), and mean accuracy (ACC). The Gbest particle consists of the
following coordinates: x1 equals 9, x2 equals 0.852, x3 equals 6, x4 equals 0.480, and
finally, x5 equals 1. The particle coordinates have been seen in Table 2. The metric recall
that represents the correctly classified prostate superpixels showed higher values than the
others, due to the ponderation attributed to the fitness of the particle. The total execution
time of the optimization of the XGBoost algorithm parameters was approximately 8
hours.

Tabela 4. Results obtained by the Gbest particle on the validation and test
subsets.

Subset Superpixels REC (%) SPE (%) ACC (%)
Validation 4,852 99.73 96.72 99.39

Test 15,698 95.81 85.65 93.90

Table 5 presents the results obtained in the prostate segmentation step on the test
subset (11 MRI scans). The results include the dice similarity coefficient (DSC), relative
volume difference (RVD), volumetric similarity (VS), recall (REC), specificity (SPE), and
accuracy (ACC) [Taha and Hanbury 2015].

Tabela 5. Results obtained in the prostate segmentation step on the test subset.

Statistic DSC (%) RVD (%) VS (%) REC (%) SPE (%) ACC (%)
Min 79.86 5.40 97.36 82.02 90.14 87.74
Max 89.70 6.46 96.86 92.60 91.82 92.11

Mean 84.48 8.76 95.91 88.14 91.31 90.40
Std. deviation 3.10 8.68 3.81 3.90 2.21 1.49

Experimental results shown in Table 5 demonstrate the satisfactory performance
of the proposed method for prostate segmentation on 3D MRI scans. The method obtained
a mean DSC of 84.48% with a standard deviation of 3.10%, minimum DSC of 79.86%,
and a maximum DSC of 89.70%. In addition, a low and positive mean RVD of 8.76%
indicates that the final prostate surface is close to the ground truth, being slightly larger
than the region performed manually by the radiologist. Finally, the mean of the metrics
of VS, REC, SPE, and ACC present good precision of the voxels classified correctly.

4.3. Case study

In order to evaluate the qualitative results of the proposed method on the test subset, two
MRI scans were selected based on the smallest and largest DSC presented in Table 5.



Figure 4 (a) presents the result obtained with 89.70% of DSC and Figure 4 (b) presenting
a DSC of 79.86%. In both images, the final segmentation is highlighted in yellow and the
ground truth is outlined in red.

Figura 4. Case study. (a) Success case and (b) fail case.

In summary, most MRI slices had the final segmentation (yellow outline) similar to
the ground truth (red outline). Generally, errors in prostate segmentation occur in the basal
and apical regions, since the regions present different anatomy from the middle region.
Besides, these regions present transitions with other organs, the basal region continues
in the neck of the bladder, and the apical region is located on the superior surface of the
urogenital diaphragm [Lee et al. 2011].

5. Conclusion
This paper proposed an automatic method for segmenting the prostate on 3D MRI scans
based on the IMSLIC superpixel technique, texture analysis using phylogenetic indexes,
and the XGBoost algorithm in conjunction with the PSO algorithm. In addition, the
proposed method included the prostate detection step using the YOLO convolutional
network. The results obtained demonstrate the high-performance potential of the method
in two different MRI databases.

Future works include adding information from the neighborhood in the
superpixels classification substep, thus avoiding flaws in the internal regions of the
prostate. Besides, the use of more powerful techniques as an active contour for the
refinement of the prostate surface, since the texture analysis with the phylogenetic indexes
and the XGBoost algorithm showed satisfactory results in distinguishing between the
prostate and non-prostate tissues. Finally, study image enhancement techniques to include
the MRI scans acquired using an endorectal coil.
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