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Abstract. Refractory epilepsy is a condition characterized by epileptic seizure
occurrence which cannot be controlled with antiepileptic drugs. This condi-
tion is associated with an excessive neuronal discharge produced by a group
of neurons in a certain epileptogenic zone. Focal Cortical Dysplasia (FCD),
usually found in these zones, was detected as one of the main causes of refrac-
tory epilepsy. In these cases, surgical intervention is necessary to minimize or
eliminate the seizure occurrences. However, surgical treatment is only indicated
in cases where there is complete certainty of the FCD. In order to assist neu-
rosurgeons to detect precisely these regions, this paper aims to develop a clas-
sification method to detect FCD on MRI based on morphological and textural
features from a voxel-level perspective. Multiple classifiers were tested through-
out the extracted features, the best results achieved an accuracy of 91.76% using
a Deep Neural Network classifier and 96.15% with J48 Decision Tree. The set
of evaluating metrics showed that the results are promising.

Resumo. A epilepsia refratária é uma condição caracterizada pela ocorrência
de crise epiléptica que não pode ser controlada com medicamentos
antiepilépticos. Essa condição está associada a uma descarga neuronal exces-
siva produzida por um grupo de neurônios em uma determinada zona epilep-
togênica. A Displasia Cortical Focal (DCF), comumente encontrada nessas
zonas, foi detectada como uma das principais causas de epilepsia refratária.
Nestes casos, a intervenção cirúrgica é necessária para minimizar ou elimi-
nar as ocorrências de convulsões. Porém, o tratamento cirúrgico só é indicado
nos casos em que haja certeza absoluta da DCF. A fim de auxiliar os neuro-
cirurgiões a detectar precisamente essas regiões, este artigo tem como obje-
tivo desenvolver um método de classificação para detectar DCF em imagens de
Ressonância Magnética com base em caracterı́sticas morfológicas e texturais
extraı́das a partir da perspectiva de cada voxel. Para realizar tal tarefa, diver-
sos métodos de aprendizado supervisionado foram testados utilizando a base de
caracterı́sticas extraı́das. Os melhores resultados alcançaram uma acurácia de
91,76 % usando um classificador baseado em Rede Neural Profunda e 96,15%
utilizando uma árvore de decisão J48. O conjunto de métricas de avaliação
mostra que os resultados são promissores na solução do problema levantado.



1. Introduction

Epilepsy is a neuronal disorder that causes epileptic seizures. Excessive discharges pro-
duced by a group of neurons causes this condition on patients with a wide range of ages
[Fisher et al. 2014]. Epilepsy can be a transient disorder in which 70% to 80% of patients
can control seizures with antiepileptic drugs (AEDs) [Kwan and Brodie 2000].

Epilepsy is a disease that affects people of all races, genders, socioeconomic con-
ditions, and regions. It is estimated that 50 million people have epilepsy worldwide. Of
these, 40 million live in developing countries [Gallucci Neto and Marchetti 2005]. Ac-
cording to the World Health Organization (WHO), two-thirds of patients affected by this
disease do not receive the treatments indicated for disease control [WHO 2019].

Refractory Epilepsy, also known as pharmacoresistant epilepsy, is the occurrence
of epileptic seizures that do not have AED-type drugs to control seizures. Patients with
this type of disease suffer from frequent seizures which threaten their quality of life and
can cause irreversible damage [Sheppard and Lippé 2012, Roy et al. 2011].

Recent studies show that the incidence of Refractory Epilepsy is high. One in
every three patients diagnosed with epilepsy will develop pharmacoresistant epilepsy
[Li and Hurford 2020, French 2007]. Also, considering the lack of continuous release of
new antiepileptic drugs, approximately 20 to 40% of new patients diagnosed with epilepsy
will become refractory [French 2007].

In this specific type of epilepsy, surgical intervention is necessary to minimize or
eliminate its occurrence. However, surgical treatment is only indicated in cases where
there is a complete certainty of the epileptogenic zone, that is, the region that causes
excessive neuronal discharges. The complete resection or disconnection of this area leads
to the interruption of the crises [Rosenow and Lüders 2001].

Within the scope of epileptogenic lesions, a group of lesions named Focal Cortical
Dysplasia (FCD) was detected as one of the main causes of Refractory Epilepsy. This type
of lesion has heterogeneous histopathological characteristics, with clinical presentation
and distinct images [Taylor et al. 1971, Colombo et al. 2003].

FCD are difficult to diagnose lesions and, even when identified, determining
their limits is usually a hard task. Currently, several works in the literature detect
these lesions on Magnetic Resonance Images (MRI) [Antel et al. 2003, Hong et al. 2014,
Wang et al. 2020] however, they are not easily available for use. Thus, we emphasize
the importance of developing computer-aided diagnosis systems to detect subtle epilepto-
genic lesions, such as Focal Cortical Dysplasia. Such systems can assist neurologists and
neurosurgeons to perform operations with greater precision and fewer side effects.

Medical computer vision applications usually consist of three stages method. The
image preprocessing is the first stage, which may enhance features, remove noise and
unwanted information by segmenting the Region of Interest (ROI). The second stage is
to represent the image into a numerical vector based on features that best describe the
content. And finally, a pattern recognition algorithm is used in order to detect patterns
and classify new images [Conci et al. 2008].

Thus, our goal with this paper is to develop a classification method in which,
based on textural and morphological features extraction, a machine learning algorithm



can recognize patterns and assist doctors in detecting FCD lesions.

Recent works in the literature approached the FCD classification problem
[Antel et al. 2003, Besson et al. 2008, Hong et al. 2014]. In contrast to the actual lit-
erature, this work brings a voxel-based classification method that implements a Fully-
Connected Neural Network, based on Deep Learning approach, to detect patterns based
on textural and morphological features. Alongside the Deep Learning approach, multi-
ple traditional classifiers were tested in order to obtain the best method for the proposed
extracted features.

Thus, this paper is organized as follows. In Section II, we analyzed the classifi-
cation methods for FCD detection present on the state of art. Section III described the
feature dataset used in this work. Section IV describes the classification method, both
based on Deep Learning approach and the traditional machine learning approach. Section
V brings the results obtained and a discussion is made upon observations. Finally, Section
VI concludes this work.

2. FCD Lesions Classification on the Literature

Detect precisely the epileptogenic region can lead neurosurgeons to stop patient’s epilep-
tic seizures. Some authors addressed in the literature the development of automatic clas-
sification methods to detect these lesions.

In 2003, [Antel et al. 2003] developed a classification method to detect corti-
cal dysplasia lesions using computational models created from MRI analysis. In their
method, it was extracted textural features alongside a Bayesian Classifier. The reported
results were around 100% of specificity and 61% of sensitivity.

[Besson et al. 2008] developed an automatic detection of FCD for MRI lesions
based on morphological features. Their surface-based method with a classifier based on
Artificial Neural Network (ANN) achieved an overall accuracy of 87%.

[Loyek et al. 2008] developed an FCD detection method based on textural fea-
tures extracted from a voxel perspective. This paper aims to evaluate different texture
features to explore which are suitable for detecting epileptogenic lesions. The method
was evaluated over five subjects in which the best results were over the fifth patient, with
98% sensitivity and 92% specificity.

Later in 2014, [Hong et al. 2014] used textural and morphological features in or-
der to automatically detect cortical dysplasia type-II on MRI. According to the author,
using LDA classifier, the proposed method achieved 100% specificity and 74% sensitiv-
ity.

In 2017, [Adler et al. 2017] proposed a solution for a related problem. On their
method, the authors used a novel surface features to detect FCD for pediatric epilepsy.
They also compared the obtained results using their novel approach for surface feature
extraction with the traditional morphological features. Using an Artificial Neural Network
classifier, the authors achieved an AUC of 87%.

After, in 2018, [Jin et al. 2018] proposed a similar work to detect cortical dys-
plasia lesions using Artificial Neural Network. Their method detected patterns over a
morphological dataset with an AUC of 75%. The authors also reported a sensitivity of



73.7% and 90% specificity.

[Dev et al. 2019] developed a method to automatically detect FCD regions on
MRI using a personalized Fully Convolutional Neural Network based on U-net. Their
work achieved a recall of 82.5%, patient-wise.

Recently, in 2020, [Wang et al. 2020] developed a classification method to detect
cortical dysplasia. Different from the other methods which use texture and morphological
features for feature detection, the authors chose to use Convolutional Neural Networks in
order to perform the classification and feature extraction. CNN’s have convolutional lay-
ers, responsible for extracting features in the form of feature maps. The authors reported
an overall accuracy of 85%, a sensitivity of 90%, and a specificity of 99.78%.

3. Textural and Morphological Features Dataset

All the features used in this paper were processed, extracted and provided by
[Simozo 2018]. The author acquired an MRI with T1, T2, and FLAIR modalities. First,
15 images went through a preprocessing stage. In this stage, the images (i) underwent a
correction of the inhomogeneity of the magnetic field, using the N4BiasFieldCorrection
(ANTs) method; (ii) went through a process of isolating the cortical surface called skull
stripping; (iii) were submitted to a histogram matching process in order to standardize
the histogram’s intensity levels; and finally (iv) the images went through PeronaMalik
filter for noise removal. After this stage, neurologists manually segmented the FCD le-
sions. According to the authors, the purpose of this manual segmentation was to delimit
the regions of the cortex tissue belonging to the FCD lesion in order to correctly extract
features. Figure 1 has an example of the preprocessing each image went through before
feature extraction.

After this stage, 20 morphological and textural features were extracted by the au-
thors for each voxel of the image and labeled to allow tissue differentiation between health
and FCD lesion. The vector descriptor is composed of eight Haralick’s textural features,
namely: (i) Energy, (ii) Entropy, (iii) Correlation, (iv) Contrast, (v) Cluster Shade, (vii)
Cluster Prominence, (viii) Haralick Correlation, alongside the (ix) Intensity Level and the
(x) Cortical Thickness, which is a morphological feature, extracted using Freesurfer algo-
rithm. These ten features are then compared to a template of what a healthy cortex would
be, so the score-z is calculated for each feature, resulting in a descriptor vector with size
20. The final dataset had 495.306 voxels, 247.653 of each class.

4. Classification Methodology

To detect patterns over the features previously described, traditional machine learning al-
gorithms were used in order to evaluate their performance in classifying FCD lesions.
Also, a Deep Learning algorithm is designed and compared alongside the traditional
methods.

4.1. Deep Neural Network Design

The Deep Neural Network developed was based onthe Fully-Connected Neural Network
(FCNN) architecture. The FCNN is a powerful architecture to detect complex patterns by
mixing up features representing in hierarchical patterns over numerical input vectors.



Figure 1. The preprocessing steps performed.

(a) (b) (c)

(d) (e)

In (a) inhomogeneity correction using N4 Bias Field Correction, (b) cortical surface
isolation through Skull Stripping, (c) intensity histogram normalization using Histogram

Match, (d) noise removal through PeronaMalik Filter, and (e) Manual Segmentation.
Source: [Simozo 2018].

The proposed Deep Neural Network is modeled as follows. The input layer has 20
neurons to fit all 20 features extracted from MRI. Then, there are three hidden layers, with
16 neurons each, to process and combine hierarchically patterns that best describe and
allow an efficient classification. Finally, there is one binary neuron on the output layers,
representing the healthy and FCD lesion classes. Figure 2 has a visual representation of
the neural network architecture proposed in this work.

In order to set the right hyperparameters, we used the GridSearchCV algorithm
distributed on Scikit-Learn framework. This algorithm tests several combinations of hy-
perparameters such as activation functions, activation function in the output layer, opti-
mizers, and different loss functions.

In this stage, the GridSearchCV searched for three hyperparameters, (i) the activa-
tion function used in the hidden layers, (ii) the activation function used in the output layer,
and (iii) the optimizer. Four activation functions for the hidden layers were tested, they
were the Rectifier Linear Unit (ReLU), Softmax, Sigmoid, and the Exponential Function.
In the output activation function, the Sigmoid and Softmax functions were tested. And fi-
nally, Adam, RMSprop, and Adadelta optimizers were tested. For each setup, the training
algorithm ran for over 100 epochs evaluating the network performance with the validation
accuracy. The results of each combination are represented in Table 1.

The final set of hyperparameters, based on the best accuracy obtained during the
hyperparameters search, is described as follows. It was used the Rectifier Linear Unity



Figure 2. The proposed Deep Neural Network architecture.

Source: author.

Table 1. Hyperparameters search and tuning results.

Hidden Layers Output Layer Optimizer Accuracy
Exponential Sigmoid Adam 50.13%
Exponential Sigmoid RMSprop 50.13%
ReLU Sigmoid RMSprop 87.57%
Softmax Sigmoid Adam 87.76%
Softmax Sigmoid RMSprop 87.44%
Sigmoid Sigmoid Adam 87.68%
Sigmoid Sigmoid RMSprop 87.25%
ReLU Sigmoid Adam 88.22%

Source: author.

(ReLU) activation function on the input and hidden layers, while the output layer the Sig-
moid activation function was used. To calculate the loss rate it was used the binary cross-
entropy function. The Adam algorithm was used to optimize the classification method
model and to implement its adaptive learning rate. The batch size used had the size of 32.

Also, in order to avoid overfitting the model into the training set, it was imple-
mented three dropout layers in between the hidden layers. This prevented the model to
overfit generalizing the patterns learned by randomly turning off around 20% neurons on
each hidden layer.

4.2. Other Classifiers

In order to benchmark the classification performance over the dataset above mentioned,
other classifiers were used. These algorithms are based on traditional machine learning,
such as Naive Bayes and Logistic Regression, and were developed with Weka 3 Data
Mining Software. The following list of algorithms was used during our evaluations:



1. Bayesian Approach
• Naive Bayes

2. Function Approach
• Logistic Regression
• Multilayer Perceptron (MLP)

3. Lazy Approach
• K-Nearest Neighbours

4. Rules-based Approach
• Decision Table
• One Rule
• Zero Rule

5. Rule-based Approach
• Decision Stump
• Hoeffding Tree
• J48
• Random Tree
• REP Tree

5. Experiments and Results
This section is divided into two parts. The first explains how the Deep Neural Network
experiments were conducted and its classification results. The second part shows the other
classifiers’ results to benchmark and rank the classifiers.

In order to compare the results, all experiments followed the k-fold cross-
validation protocol. This protocol separates part of the database under test and training
subset so that the data used for training will not be used to evaluate the method. All
algorithms used the value 10 as the default value of k. Besides, all classifiers were eval-
uated using similar metrics. The classification accuracy, sensitivity, and specificity were
calculated for each approach.

5.1. Experiments with the deep neural network
The experiments with FCNN were conducted using Anaconda 3 Data Science Platform,
set up with computer vision frameworks, such as OpenCV 4.0, Tensorflow 2.2, Scikit-
Learn 0.23, and Keras 2.3. All the algorithms were implemented using Python 3.7 pro-
gramming language. The experiments ran on a computer with Windows 10 Pro operating
system, AMD Ryzen 7 processor, 16 GB of RAM and NVIDIA GTX 1060 GPU.

The proposed method was evaluated following the K-Fold Cross-Validation pro-
tocol. In this experiment with the FCNN, we set the k value to 10. For each of the ten
folds, we calculated five metrics in order to evaluate the method. The metrics calculated
were accuracy (ACC), the area under the ROC curve (AUC), sensitivity (SEN), specificity
(SPE) and F-Score. By the last experiment, an average between the results obtained was
also calculated to represent the classification efficiency. All the results are described in
Table 2.

The proposed method obtained an average value of AUC around 97.72%, a rel-
atively high value of effectiveness to carry out the classification proposed in this work.
Also, by analyzing the average sensitivity and specificity, it’s verified that both classes are
well classified.



Table 2. Evaluation results obtained from the proposed classification method
using K-Fold Cross-Validation.

Fold ACC AUC SEN SPE F-Score
0 91.60% 97.72% 90.19% 93.02% 91.49%
1 92.06% 97.74% 90.25% 93.89% 91.94%
2 92.28% 98.89% 89.79% 94.78% 92.10%
3 91.93% 97.72% 89.15% 94.67% 91.66%
4 91.84% 97.48% 88.86% 93.89% 91.15%
5 91.51% 97.62% 89.31% 94.34% 91.60%
6 91.95% 97.62% 88.29% 94.75% 91.25%
7 91.60% 97.77% 89.11% 94.76% 91.68%
8 91.41% 97.36% 88.60% 94.63% 91.39%
9 91.17% 97.26% 88.93% 93.87% 91.16%

Mean 91.76% 97.76% 89.25% 94.26% 91.54%
Source: author.

The algorithm converged around epoch 100-200. Figure 3 illustrates the loss and
the validation accuracy curve over the last fold. Note that the accuracy and the loss curve
stay stable after epoch 100. Also, the presented curve differs from the overfitting behavior
in which the training curve tends to 100% while the validation curve lowers.

In addition to these experiments, we tested different amounts of neurons in the
hidden layers and also the number of inner layers used in the network. It was observed that
after the third inner layer, the algorithm hardly converged to accuracy values above 90%,
showing no improvements in the classification quality. Lower amounts of 16 neurons and
greater than 20 also did not show superior results. This behavior allows us to state that
very complex classification models do not allow a more efficient classification and may
even result in an inefficient method.

5.2. Experiments with other classifiers

The experiments with the other classifiers were conducted using Weka 3 Data Mining
Software. The algorithms chosen to be part of this analysis were the algorithms that
work well with numerical classification problems, similar to the data represented in the
database of textural and morphological features of the voxels. All algorithms followed
similar parameters for comparison purposes, such as the number of folds from cross-
validation and the evaluation metrics. The following Table 3 contains the results for each
classification method mentioned above.

Analyzing the results obtained, we notice that some approaches have excelled
over others. In this way, the J48 and REP Tree algorithms stand out. The J48 is a tree that
assembles the nodes based on the best chances of separating the classes correctly given
a characteristic. As there is no limit to the number of times a feature can be used, it is
expected that this algorithm will be able to create a more efficient path but with risks of
overfitting the classification curve since in the experiments, it was observed that the tree
built by the algorithm had approximately 3500 leaf nodes. However, to avoid this type
of problem, the pruning technique was used in order to generalize the tree, and therefore,
the results of this technique are reliable. The REPTree algorithm is based on the same



Figure 3. The loss and validation accuracy curve over the last fold.

(a)

(b)

In (a) the validation accuracy per epoch curve and, in (b) the validation loss per epoch.
Source: author.

Table 3. Evaluation results for other classifiers.

Algorithm ACC SEN SPE
Naive Bayes 78.51% 83.4% 73.6%

Logistic Regression 81.57% 85% 78.1%
Multilayer Perceptron 89.86% 88.5% 91.2%

Decision Table 87.15% 87.7% 86.6%
One Rule 83.62% 82.3% 84.9%
Zero Rule 49.99% 70% 30%

Decision Stump 78.12% 63.2% 93%
Hoeffding Tree 89.76% 63.2% 93%

J48 96.15% 96.1% 96.2%
Random Tree 94.63% 94.7% 94.6%

REP Tree 95.49% 95.3% 95.7%
FCNN 91.76% 89.25% 94.26%

Source: author.



previous algorithm, so it is expected that both will have similar results.

6. Conclusion

Refractory epilepsy is a specific type of epilepsy that cannot be controlled by normal
antiepileptic drugs. This disease is characterized by an excessive neuronal discharge on
a certain region of the brain named the epileptogenic zone. Surgical treatments, such as
a complete resection or disconnection of this area could lead to the interruption of the
crises. In order to assist neurosurgeons to precisely detect the epileptogenic zones, in
this paper we proposed a novel approach based on a voxel-level classification using Deep
Learning. The proposed method achieved stable and precise results compared to other
literature papers.

The thesis that it is possible to identify FCD regions in the cortex by the extracted
morphological and textural characteristics is proven due to the detection of patterns per-
formed by several classifiers, even in their different methodologies and approaches. Be-
sides, it is important to note that, although Deep Learning reached results inferior to the
tree-based algorithms, it is possible to explore more FCNN architectures and hyperpa-
rameters setups. Approaches such as the Very Deep Convolutional Neural Network and
three-dimensional Convolutional Neural Networks are also a possibility to deal with MRI
volumes. For future work, it is expected to develop a graphic tool for making inferences
of exams in order to help neurologists to identify FCD regions in the cortex.
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