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Abstract. Membranous Nephropathy (MN) is one of the most common glomeru-
lar diseases that cause adult nephrotic syndrome. To assist pathologists on MN
classification, we evaluated three deep-learning-based architectures, namely,
ResNet-18, DenseNet and Wide-ResNet. In addition, to accomplish more reli-
able results, we applied Monte-Carlo Dropout for uncertainty estimation. We
achieved average F1-Scores above 92% for all models, with Wide-ResNet ob-
taining the highest average F1-Score (93.2%). For uncertainty estimation on
Wide-ResNet, the uncertainty scores showed high relation with incorrect classi-
fications, proving that these uncertainty estimates can support pathologists on
the analysis of model predictions.

1. Introduction
A modern alternative to human inspection of pathological slides is the exploitation of Ar-
tificial Intelligence technologies for computer-aided diagnosis. In this context, computer
vision methods have already been proposed for the automatic identification of glomerular
findings from pathological slide images [Becker et al., 2020]. Nevertheless, given the
importance of these pathological assessments and the critical impacts in real applications,
the effectiveness of current models is still unsatisfactory and does not meet real-world
demands. Given that large scale data acquisition for supervised learning is still an open
issue in the field, the difficulty of building a large enough training corpus has imposed
significant limitations to previous work.

Considering the nephropathology field, Membranous Nephropathy (MN) is a
common glomerular disease, which usually is a cause of the nephrotic syndrome in
adults. MN is an autoimmune glomerular disease characterized with the presence of a
large amount of immune complex sediments on the epithelial cells. This characteristic



Figure 1. An example of a glomerulus with membranous nephropathy.

causes a thickening in the glomerular basement membrane, which is the main visual fea-
ture for detecting this disease. Figure 1 illustrates an example of glomerulus with MN
where we can note the thickened membranes. Detecting the visual features that mark a
MN disease is not an easy task, which requires experienced pathologists and even might
lead to non-consensus situations. In this context, automatic classification methods can
assist pathologists by becoming an useful tool in the decision making pipeline. By intro-
ducing and optimizing deep learning models, computer vision applications have signifi-
cantly improved through time and its full potential for pathological analysis is still being
investigated [Litjens et al., 2017].

Particularly for MN classification, the already reported experimental results in
the literature [Uchino et al., 2020, Chen et al., 2020] have generally relied on extremely
limited and highly unbalanced data sets, which impinges the construction of effective
generalized predictive models. Such constrained experimental settings avoid a rigorous
validation of the models and reduce the extent and reliability of the findings. In terms
of the underlying learning infrastructure, just a few deep networks have been assessed,
notably the U-Net (for glomeruli segmentation [Chen et al., 2020]) and just a few main-
stream convolutional and residual networks such as InceptionV3 [Uchino et al., 2020] and
ResNet [Chen et al., 2020].

Beyond this, the few initiatives on MN identification, besides achieving low effec-
tiveness and using limited data, have only focused on image-level label-only classifica-
tion, providing no additional supportive information for the pathologist decision making
process. Begoli et al. [2019] highlight the importance of estimating a reliable uncer-
tainty score for medical imaging assessment, stating that this estimation can benefit both
research and practical applications in the medical domain. An ideal uncertainty metric
should be related with erroneous predictions, leading to an interpretation that a high un-
certainty prediction indicates a ”confused” model. This information could be useful when
specialists analyze the model predictions. Therefore, in this work we evaluate deep learn-
ing architectures for MN classification, as well as we perform an uncertainty estimation
for supportive information. Among several uncertainty estimation methods, we opted for
Monte-Carlo Dropout [Gal and Ghahramani, 2016] approach, due to its implementation



that needs no large changes in the baseline models.

The main contributions of this work are listed as follows:
• The experimental analysis is performed over an unprecedentedly large Membra-

nous Nephropathy image collection, allowing a reasonable assessment of the tar-
get nephropathy task;

• the effectiveness assessment is performed for a diverse set of deep network archi-
tectures; and

• the exploration and validation of an uncertainty estimation technique in the context
of nephropathy identification and its impact to overall recognition effectiveness.

2. Related Work
Considering the absence of comprehensive models for the identification of many of the
major glomerular pathological findings, Uchino et al. [2020] conducted a broad assess-
ment of a deep learning network for pathology identification. The authors trained in-
dependent binary models for each pathology using a fine-tuning approach over the In-
ceptionV3 [Szegedy et al., 2016] network. Specifically for MN, the dataset included
167 MN cases out of the total 3481 cases (including seven types of findings). Al-
though the experimental results demonstrated high performance for some findings (e.g.,
AUC = 0.983± 0.001 / AUC = 0.986± 0.001 with Periodic acid–Schiff (PAS) and Pe-
riodic acid-methenamine silver (PAM) stainings for global sclerosis), for MN it achieved
a lower performance with AUC = 0.816 ± 0.034 / AUC = 0.734 ± 0.011 (PAS/PAM).
Notice that MN was also weakly represented in the experimental data set, corresponding
to 1.5% / 2.1% (PAS/PAM) and 2.3% / 4.6% (PAS/PAM) of the training and testing data,
respectively.

Chen et al. [2020] proposes the SPIKE-NET, a simple two-phase process for MN
identification combining convolutional and residual deep network architectures. The first
phase regards the glomeruli segmentation and the second phase comprises the lesion clas-
sification. For the glomeruli segmentation, SPIKE-NET relies on the well known U-Net
CNN-based network [Ronneberger et al., 2015]. For the classification phase, the authors
proposed using the ResNet residual network [He et al., 2016], which achieved superior
classification accuracy when compared to AlexNet [Krizhevsky, 2014] and VGG16 [Si-
monyan and Zisserman, 2014] networks. Specifically, SPIKE-NET achieved 94.44%
of MN identification accuracy against 92.86% and 91.27% of UNet-VGG16 and UNet-
AlexNet, respectively. The authors highlighted a 98.26% effectiveness in terms of recall,
which means a low rate of missed diagnosis. Although such effectiveness may be consid-
ered significantly high, the whole experiments were conducted in a limited dataset with
1,267 glomeruli (653 with MN and 614 normal). In fact, a single assessment round was
performed with only 126 glomeruli images used for the final evaluation of the optimized
models, which hardens further conclusions.

Medical imaging applications require associated uncertainty scores. These needs
have led several works to apply uncertainty estimation approaches on different medical
domains. Since our work focus on Monte-Carlo Dropout estimation (detailed in Sec-
tion 3), we cite some works that apply this approach for medical imaging. Leibig et al.
[2017] proposed a deep-learning-based approach to detect diabetic retinopathy (DR) from
fundus images. They used a custom sequential convolutional neural network and a VGG-
inspired [Simonyan and Zisserman, 2014] network. For uncertainty estimation, Leibig



et al. [2017] used Monte-Carlo Dropout, adopting AUC, variance, and entropy as evalua-
tion metrics. They achieved competitive results for DR classification, as well as reliable
uncertainty estimates via Monte-Carlo Dropout. This reliability is confirmed by the re-
sults revealing the relation between high uncertainties and incorrect classifications.

Laves et al. [2019] have a similar proposal by comparing Monte-Carlo Dropout
with a variational inference approach considering an optical coherence tomographies
(OCT) condition classification. An interesting point is they compare two variations of
Monte-Carlo Dropout. One by adding dropout right before the last full-connected layer,
and another one by adding dropout after each residual block. They used ResNet-18 as
baseline model, comparing with the other three variations. Considering classification
scores, they achieved competitive results with the lowest F1-Score associated with the
model that used second type of dropout. Their conclusion was that adding dropout after
each residual block led to higher noise and consequently lower results. This outcome mo-
tivated us to evaluate the Monte-Carlo Dropout considering dropout layers added before
the last convolutional layer only. The variance of the Monte-Carlo Dropout was chosen
for the uncertainty analysis. Just as the work of Leibig et al. [2017], high uncertainties
were associated with incorrect predictions.

Combalia et al. [2020] combines Monte-Carlo Dropout with Test Time Data aug-
mentation for skin lesion classification. This combination will be detailed in Section 3,
because we adopt their uncertainty estimation method in our experiments. Since they use
Efficient-Net-B0 [Tan and Le, 2019] only as convolutional backbone, our approach differs
on evaluating different architectures before estimating uncertainties for our task.

In Nephropathology field, Cicalese et al. [2020] proposed a kidney level lupus
nephritis classification with uncertainty estimation. They adopted DenseNet [Huang et al.,
2017] as backbone and Monte-Carlo Dropout for uncertainty estimation. Competitive re-
sults were achieved for both glomerular-level and kidney-section-level classification. Pre-
dictive entropy was used for uncertainty analysis. As occurred in other works, high un-
certainties were related with incorrect predictions, which justify our selection of Monte-
Carlo Dropout for uncertainty estimation on MN classification.

3. Materials and Methods

3.1. Data set

The data set consists of 4,682 images of human glomerulus, containing images labelled as
one of the following classes: Primary membranous nephropathy, secondary membranous
nephropathy, hypercellularity, glomerular sclerosis (referred as sclerosis), and images
with no lesion (referred as normal). The images were selected from the digital histological
image library of the [anonymized for revision] and properly disconnected to the patient
information to avoid identification. The tissue samples were fixed in Bouin’s fixative or
formalin–acetic acid–alcohol, included in paraffin. Sections of 2–3 µm were stained by
Hematoxylin and Eosin (H&E). The images were captured using an Olympus QColor 3
digital camera attached to a Nikon E600 optical microscope (using 200×magnification).
From each section, relevant regions were cropped and labelled individually by pathol-
ogists for diagnosis purposes. The data set was built considering only the crops that
contained at least one glomerulus.



Table 1. Class distribution considering individual labels and grouped classes.

Normal Membranous Other lesion
Primary Secondary Hypercellularity Sclerosis

869 712 1354 1237 510
2066 1747

Our work focused on the membranous nephropathy lesion, which was collected
in primary and secondary variations. Since for now we are not interested in the differ-
entiation between the MN types, primary and secondary MN images were grouped into
a single group called ”membranous”. In fact, that differentiation is frequently hard to be
made considering only visual features, but in practice, the following criteria can be used:
glomeruli with primary membranous have MN characteristics only; diversely, glomeruli
with secondary membranous have MN characteristics and other lesions involved. A com-
mon validation approach would be to train the models in a membranous×no-lesion setup.
However, in real case scenarios, other lesions not related to MN may show up. Since the
data set also contained glomerular images with hypercellularity and sclerosis, we grouped
these images into a class called ”other lesions”. Therefore, the final class configuration
can be summarized as follows (see Table 1 for detailed class distribution):

• Membranous: glomeruli with any lesion combination that includes MN;
• Other lesions: glomeruli with hypercellularity or sclerosis, but no MN;
• Normal: glomeruli with no lesion.

3.2. Evaluation pipeline

The proposed evaluation pipeline is shown in Figure 2. The process can be split into two
steps: evaluation of selected deep learning architectures for MN classification; and uncer-
tainty estimation. The first step consists of training and validation of the following net-
work architectures selected from the literature: ResNet-18, DenseNet, and Wide-ResNet
([He et al., 2016, Huang et al., 2017, Zagoruyko and Komodakis, 2016] respectively).
This validation phase allowed the selection of the architecture that achieved the highest
effectiveness in terms of F1-Score.

The second step starts by introducing the MC dropout to the best architecture and
retraining this updated network. With dropout activated, we can estimate uncertainty by
performing Monte-Carlo samples from the trained network. The details of the training
and validation procedures and the uncertainty estimation process are presented next.

3.2.1. Training and validation

For training and validation of the candidate architectures, a K-fold cross-validation ap-
proach was used. This approach consists of splitting the data set into K folds and inter-
actively evaluate the models by using K − 1 folds for training and the 1 left for valida-
tion. Therefore, on each iteration we train and evaluate the model using different training
and validation sets. This way, we validate the architectures by considering the average
performance on K rounds. In order to avoid a large reduction on the training set, the
cross-validation was performed adopting K = 10.



3.2.2. CNN architectures and training procedure

In the experiments, three CNN architectures were assessed: ResNet-18, DenseNet, and
Wide-ResNet. Each architecture rely on a different approach in the learning process.
ResNet-18 introduced the residual blocks, which main novelty was the skip connections
to prevent the vanishing gradient problem. DenseNets expand the skip connections by
connecting each layer to every other forward layer. Finally, Wide-ResNet is a ResNet
variant with decreased depth and increased width, which allows the learning of more
features without increasing the depth of the network, leading to a faster convergence on
training.

The Pytorch framework [Paszke et al., 2019] was used for modeling, training and
evaluating the models. Since fine-tuning pretrained models leads to faster and better
convergence for medical imaging [Raghu et al., 2019], all models were initialized with
weights pretrained on the ImageNet data set [Russakovsky et al., 2015] with an adjusted
softmax layer with three neurons respective to the target classes. The networks were
trained across 100 epochs with a batch size of 32, setting a learning rate schedule with
step decay of factor 0.1 at every 30 epochs. We experimented the values of 0.1, 0.001, and
0.0001 for the initial learning rate, and 0.0001 was the top performing configuration. All
training procedures used AdamW optimizer [Loshchilov and Hutter, 2017] running on a
machine with 8GB RAM and an NVIDIA GEFORCE GTX 1060. In order to increase
input variability, we adopted online image augmentation by applying pre-defined random
transformations. These transformations include: Random rotation within an angle range
of 90 degrees and probability of 0.5; random horizontal and vertical flip; random crop
of size 224 × 224 after resizing the input height to 224, thus keeping aspect ratio and
matching the input size of 224× 224 for all networks.

3.2.3. Classification metrics

A quite common metric for evaluation of classification models is Accuracy, which corre-
sponds to the ratio between the number of correct predictions and the number of instances.

Architectures

ResNet-18

Densenet

Wide-ResNet

Training with 
10-Fold 

cross-validation

Select best model 
considering 

average F1-score

Add dropout on 
best architecture

Uncertainty 
estimation with 

MC Dropout
Mean and variance

Figure 2. Proposed evaluation pipeline split into two steps: Evaluation of chosen
architectures, and uncertainty estimation.



However, this metric can lead to a biased analysis when some class is predominant or
under-represented. Since we have a slightly unbalanced data set, additional evaluation
measures were adopted to ensure the performance for each class is taken into account.
The Precision metric summarizes how much positive predictions are actually positive.
The Recall metric summarizes how much positive examples were correctly classified as
positive. By combining these two metrics, we used the F1-score, which is computed by
taking the harmonic mean between precision and recall. Considering that there are some
similarities between secondary membranous and the ”other lesions” class, we computed
the confusion matrix of the overall best model.

3.2.4. Uncertainty estimation

We followed the uncertainty estimation approach described by Combalia et al. [2020].
This approach combines Monte-Carlo Dropout [Gal and Ghahramani, 2016] and Test-
Time Data Augmentation [Ayhan and Berens, 2018] to estimate both aleatoric and epis-
temic uncertainty. Aleatoric uncertainty represents noise inherent to the observed data,
mostly related to the labelling process and the challenges of the domain. Conversely, the
epistemic type captures uncertainty about the model and the generalization process.

After selecting the architecture with the best average F1-Score on the 10-fold
cross-validation, a dropout layer was introduced previous to the last fully-connected layer.
Hence, the network was retrained with a dropout rate of 0.5. This means that for each for-
ward pass, there was a chance of 50% of turning off the neurons connected in the dropout
layer. Dropout helps preventing overfitting and can be used to estimate uncertainty via
Monte-Carlo sampling. During test time, we keep dropout activated and for each input x
we perform M forward passes. Each forward pass results in a different set of activated
neurons as well as a different prediction score. So, each image xi yields M predictions
p = {p1, p2, . . . , pM}. The mean of these predictions is the final prediction yi, and the
variance is interpreted as the uncertainty score ui. Additionally, random data augmenta-
tion was applied during test time for each input xi at each of the M forward passes, thus
achieving combined aleatoric and epistemic uncertainty.

4. Results and discussion

Table 2 shows the results of the chosen architectures on our proposed MN classification.
For each architecture, average metrics and respective standard deviations are displayed.
Overall, all architectures achieved competitive results, displaying average metrics above
92% with low standard deviation. As expected, Wide-ResNet achieved the highest aver-
age F1-Score (in bold) with similar values for all the other metrics, showing robustness
in the results. Also, Wide-ResNet achieved the lowest standard deviation for all metrics,
showing more stable results across all folds.

Even though a high F1-Score indicates a good learning per class, we computed the
confusion matrix for Wide-ResNet to check whether the class imbalance was prioritizing
one class in the learning process. In addition, we can use the confusion matrix to check
the most common misclassification cases. To get an aggregated view, we summed the
confusion matrices across all 10 folds. Figure 3 illustrates the confusion matrix sum using
a heatmap approach to highlight the highest values. The correct classifications are located



Table 2. Comparative results of the ResNet-18, DenseNet and Wide-ResNet deep-
learning-based architectures.

Model µAccuracy µF1-score µPrecision µRecall

ResNet-18 0.924(±0.010) 0.922(±0.008) 0.922(±0.010) 0.922(±0.009)
DenseNet 0.932(±0.011) 0.930(±0.011) 0.928(±0.012) 0.933(±0.013)
Wide-ResNet 0.937(± 0.007) 0.936(± 0.007) 0.936(± 0.008) 0.936(± 0.008)
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Figure 3. Wide-ResNet confusion matrix sum over the 10-fold cross-validation
with a heatmap visualization.

in the main diagonal, where the ground truth labels match the predicted labels. We can
note that the main diagonal is indeed the highlighted region from the heatmap, ratifying
the results from Table 2. Among the regions out of the main diagonal, we selected the
two highest values. Interestingly, the 2 most common misclassifications were: 95 ”other
lesion” images predicted as membranous; and 69 membranous images predicted as ”other
lesion”. This behaviour was quite expected, since secondary membranous images could
have visual features that are also present on the images from ”other lesion” label.

For uncertainty estimation, we applied Monte-Carlo Dropout using M = 100
forward passes. After adding the dropout layer, we trained the model initialized with Im-
ageNet weights and computed the same metrics in a 10-fold cross-validation. For better
comparison, we refer to this model variation as D-Wide-ResNet. Table 3 summarizes
the average scores of the D-Wide-ResNet over the 10 folds. The results are below, but
still close to the performance of the other models, with a lower standard deviation. We
used variance as the main metric on our study of uncertainty for MN classification. To

Table 3. Results of D-Wide-ResNet with M = 100 forward passes over 10 valida-
tion folds.

Model µAccuracy µF1-score µPrecision µRecall

D-Wide-ResNet 0.922(±0.006) 0.921(±0.006) 0.920(±0.006) 0.922(±0.008)
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Figure 4. Uncertainty scores visualizations grouped into correct and incorrect
predictions. Left: Normalized density histogram with a Gaussian kernel
density estimation. Right: Boxplots of uncertainty scores.

confirm whether the variance has relation with erroneous predictions, we gathered two
sets: variances of correct predictions and variances of incorrect predictions over the 10
validation folds. Average uncertainty of erroneous predictions was 0.0012, which was
eight times higher than the average uncertainty of correct predictions. Figure 4 illustrates
relative frequencies (left) and boxplots (right) for uncertainty of correct and incorrect pre-
dictions. To illustrate the distribution of uncertainty, we plotted the normalized density
histograms with a gaussian kernel density estimation to better represent the uncertainty
areas of correct and incorrect predictions. The correct predictions are clustered in the
region with lower uncertainty. On the other hand, incorrect predictions have a spread dis-
tribution over regions with higher uncertainty scores. The boxplots ratify that the correct
predictions have lower and more concentrated uncertainties, just as incorrect predictions
have higher and more disperse uncertainties.

5. Conclusion

Membranous Nephropathy (MN) is an autoimmune disease with high risk and pathol-
ogy relevance. Identifying this lesion is an important and challenging task, which could
be assisted with automatic classification methods. In this work, we investigated deep-
learning-based architectures for MN classification considering three classes: membra-
nous, other lesions, and no lesion. By evaluating ResNet-18, DenseNet and Wide-ResNet
in a 10-fold cross-validation setup, we achieved top results with all architectures, ob-
taining average F1-Scores above 92% for all models. Among the chosen architectures,
Wide-ResNet achieved the highest average F1-Score (93.6%). Besides evaluating MN
classification, we modeled the prediction uncertainty from Wide-ResNet. Uncertainty es-
timation is important to achieve more reliable results, specially in a high risk domain as
medical imaging. We used Monte-Carlo Dropout to estimate uncertainty scores based
on the variance of Monte-Carlo samples. Although the modified Wide-ResNet achieved
slightly lower results (F1-Score of 92.1%), the uncertainty estimates showed high relation
with misclassifications where the average uncertainty of incorrect predictions was eight



times higher than the average uncertainty of correct predictions.

For future work, we will evaluate whether the high-uncertainty images are hard
to specialists’ diagnose. In addition, Monte-Carlo dropout should be evaluated by adding
dropout layers inside the backbone, such as after each convolutional layer or after each
convolutional block. Ultimately, we plan to comparing other uncertainty estimation meth-
ods with our current results on Monte-Carlo dropout.
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