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Abstract. Breast Cancer (BC) is the most frequently diagnosed cancer for
women. This way, the Brazilian Unified Health System (SUS) focuses on study-
ing the disease and improving all the steps involved in dealing with BC. The
presence or absence of the Estrogen Receptor (ER) and the Progesterone Re-
ceptor (PR), which define invasive subtypes, is detected through Immunohis-
tochemistry (IHC). One way to assist the manual assessment of pathologists
and histopathologists is to develop automatic scoring systems. Fortunately,
digital pathology is increasingly achieving higher agreement with the pathol-
ogist. Therefore we create an automatic scoring system composed of image pre-
processing, feature extracting, and classification achieves a 69% f-score rate.

1. Introduction
Cancer is a group of diseases characterized by the uncontrolled growth and spread of
abnormal cells that can lead to death. Unfortunately, only the increasing risk factors are
known, while the associated root causes remain uncharted [Society 2018]. This way, clas-
sifying cancer as a leading cause of death and an obstacle to the increase in life expectancy
worldwide [Sung et al. 2021].

In 2020, the GLOBOCAN 2020 estimated Breast Cancer (BC) as the most inci-
dent cancer with 2.3 million new cases and 685 thousand deaths, surpassing lung cancer
when compared with the GLOBOCAN 2018. Furthermore, BC was the most frequent
cancer diagnosed for women in almost every country and the most frequent cause of
death in a little more than half of them [Sung et al. 2021].

In Brazil, BC was the cancer type with the highest mortality rate. In addition, the
GLOBOCAN 2020 Brazilian numbers estimate were 88,492 new cases and 20,725 deaths,
besides the 299,542 cases for 5-year BC prevalence [Ferlay et al. 2020]. Resulting in it
being the cancer type with the highest rates with a magnitude two to three times greater
than the second most frequent [Instituto Nacional de Câncer 2019b].

To have a better knowledge of the disease course and its molecular characteristics,
the Brazilian Unified Health System (SUS) has been improving the diagnosis and the local



and systemic treatments for BC. Its Linha de Cuidado no Câncer de Mama has, since the
year 2000, been the source of information and research material. That consists of strategic
planning that organizes actions and precautions for prevention, early detection, diagnostic
investigation, and palliative care.

Because there are various histological and molecular invasive subtypes, a molec-
ular pattern evaluation is important to acknowledge both prognosis and response to spe-
cific treatments or therapies. That, consists of qualifying the Estrogen Receptor (ER) and
the Progesterone Receptor (PR) biomarkers through Immunohistochemistry (IHC) tests
[Instituto Nacional de Câncer 2019a] using the Positive cells Intensity score (IS), with 0:
no staining, 1+: weak positive staining, 2+: moderate positive staining and 3+: strong
positive staining, as possible values.

Traditionally, this quantification is still done manually [Liu et al. 2016]. This way,
it depends on the pathologist’s or histopathologists experience and professional back-
ground, being an expensive, tedious, and time-consuming task that can over-fatigue the
professional, causing errors and misdiagnosis [Han et al. 2017]. Also suffering from
intra- and interobserver variability [Robertson et al. 2018]

Fortunately, digital pathology scanning systems and image analysis tools have
become more popular in recent years [Tollemar et al. 2018]. Therefore, considering the
increasing need to develop automated imaging systems to support experts as a second
opinion in the prognosis and diagnosis and the necessity for correct and personalized
treatment, we propose investigating an automated method for BC ER/PR scoring in Whole
Slide Image (WSI).

2. Related Work
QuPath [Bankhead et al. 2017, Bankhead et al. 2018] is a free and publicly bioim-
age analysis software designed to be a user-friendly and open-source digital pathol-
ogy and whole slide image analysis solution for desktop. The authors applied their
system for T-cell markers CD3 and CD8 analyzing in [Bankhead et al. 2017]. In
[Bankhead et al. 2018], the authors applied their system to score five BC biomarkers: ER,
PR, HER2, Ki-67 and p53. Utilizing stain estimation, Tissue MicroArray (TMA) dear-
raying, cell segmentation, feature computation, and tumor cell identification, each core in
the images automatically received a score. When comparing with the pathologists’ score,
the system gives a mean 0.94 AUC score, indicating high agreement and correlation.

ImmunoRatio [Tuominen et al. 2010] is a quantitative image analysis software of
the ER, PR and Ki-67 biomarkers, available as an ImageJ plugin. It takes an immunos-
tained cellular image and performs blankfield correction or background subtraction. Then
this image passes through color deconvolution to separate the stains by color. Both com-
ponent images become pseudo-colored result images when processed with filtering, adap-
tive thresholding, nucleus segmentation, and small particles discard and overlayed onto
the source image. That way, the Diaminobenzidine (DAB)/total nuclear area percentage
can be pixel counted. For validation, the creators tested their software by applying it on
the three biomarkers achieving an r = 0.97 and r = 0.98 correlation with visual cell nuclei
counting, when with and without the camera adjustment wizard, respectively.

In the [Mouelhi et al. 2018] work, the authors developed a software able to seg-
ment and classify cancer nuclei in IHC images in order to provide quantitative evalua-



tion of ER or PR status. The workflow had two stages: cell nuclei segmentation and
cancer nuclei classification using histogram equalization for contrast enhancement and
background elimination and adaptive morphological criterion to highlight the cancerous
nuclei. Also, four maximal color separation techniques compute the intensity images,
allowing to measure the intensity score and calculate the percentage of positive staining
for subsequent Allred scoring. The evaluation achieved a 98% rate for sensitivity and
accuracy, for both detected nuclei and image cancer scoring over the truths provided by
experienced pathologists, showing the best correlation with the expert’s score (Pearson’s
correlation coefficient = 0.993, p-value <0.005).

The authors of the [Paulik et al. 2017] work developed and validated an image
analysis application aiming it to be a robust nuclear biomarker detector in WSIs. The
first step was to extract the image’s nuclear channel from the background information
using its average intensity. After this, an adaptive thresholding method homogenized the
background intensity for a maxima finding algorithm to detect the center cell points and
separate them. Each point receives a unique ID for the watershed algorithm to do the
segmentation. Also, a hole-filling method is applied utilizing nuclear segmentation and
background objects labeling and filtering. The correlation between manual and algorith-
mic nuclear segmentation reached a good result, with r = 0.99323, n = 30, and P <0.05,
and precision and recall rates achieved 90.23 ± 4.29% and 88.23 ± 4.84%, respectively.

3. Proposed approach

3.1. Dataset

The dataset created in this work is composed of BC IHC slides from 135 patients from the
local (Curitiba, Paraná, Brazil) hospital, whose Ethics Committee on Research approved
this work. These patients were tested for both ER and PR, totalizing 270 digitized WSI
images made using objective lens of 40x magnification. Also, all images were divided into
patches with 400x300 pixels to facilitate the manipulation by the proposed algorithms and
had the diagnosis withdrawn from the patient records having the IS score.

3.2. Pre-processing

Based on the work of [Mouelhi et al. 2018], we pre-processed our images with contrast
enhancement and thresholding methods, both using local and adaptive approaches. For
contrast enhancement, a histogram equalization limits the contrast amplification, reducing
noise amplification. And in this case, the method uses the luminance difference between
objects and background to enhance.

For thresholding, the first step is to smooth the image at a color level, mainly
to erode some of the small color areas, and then overlay the resulting mask with the
enhanced image. Then, in order to separate objects by color and remove any remaining
background, the image in the HSV color space passes through color separation using the
H (hue) channel as a guide, once it is the channel that defines the pure color.

3.3. Feature Extraction

The feature extraction step is expected to describe the images and use them to represent
the classes in a discriminate way. That is, make the images enable the classes to be
recognizable and distinguishable. To do so, we create one, two, and three-dimensional



histograms by using one, two, and three image channels, respectively, in the HSV color
space.

It is worth mentioning that histograms account the channel’s intensity frequency.
So a one-dimensional histogram can be defined as in h(rk) = nk, where rk denotes
the intensity/gray level with k going from 0 to L− 1, nk represents the number of
pixels in the image f(x, y) with intensity rk and bins subdivide the intensity scale
[Gonzalez and Woods 2018].

This way, we can define a two-dimensional histogram as h(rk, sl) = nk,l, where
rk and sl correspond to the intensities from the two channels with k and l going from 0
to L1 and L2, respectively. And nk represents the number of pixels in the image f(x, y)
that have rk and sl intensities as indexes of the matrix in which the histogram is stored.
Following the same logic, a three-dimensional histogram can also be created.

3.4. Classification

In order to classify the images, we pass the feature vectors (histograms) sets to the Support
Vector Machine (SVM) classifier after normalizing them into a [-1, 1] interval. And to
find its best hyper-parameters for the training, we applied the grid search method on top
of the dataset evaluated at the time (ER examples and PR examples).

The strategy used for training and testing is the k-fold data separation named
leave-one-patient-out, meaning that the classifier is trained N times with N - 1 patients
and tested with 1, where N is the number of patients. And the decision function used is
the one-vs-rest, that creates n classifiers, where n is the number of classes.

SVM is a machine learning classifier that separates the training set received as
feature vectors by mapping it into a high dimensional feature space and constructing a
linear decision surface that ensures the generalization inside it. Consequently, it searches
for an optimal hyperplane that separates and generalizes the data well.

So, computationally, the support vectors, which are a few samples taken out of the
training set, determine this margin. From this, it is possible to see that SVM is a binary
classifier, although a multi-class problem can use it by mapping the training data into an
N-dimensional space [Cortes and Vapnik 1995].

4. Results and Discussion
Purposing to evaluate the proposed approach and its experiments, we use the f-score met-
ric extracted from the confusion matrix. As the four IS classes can also be described as
negative, borderline, and positive, corresponding to 0/1+, 2+, and 3+, respectively, we did
the same experiments for both four and three classes divisions using the images, as men-
tioned before, in the HSV color space. Table 1 exposes both class division distributions.

The experiments consisted of constructing seven base histograms (Table 2) and
use them alone or concatenated (respecting the dimension) as input for the SVM clas-
sifier. This way, we had a total of 15 histograms combinations: seven made of the
one-dimensional histograms (H, S, V, H S, S V, V H, H S V), seven made of the two-
dimensional histograms (HS, SV, VH, HS SV, SV VH, VH HS, HS SV VH), and the
last three-dimensional histogram (HSV).



Table 1. IS classes distribution in the dataset with four (1a) and three (1b) classes.

(a)

IS Rec ER Rec PR

0 34 50
1+ 13 4
2+ 14 33
3+ 74 48

(b)

IS Rec ER Rec PR

0/1+ 47 54
2+ 14 33
3+ 74 48

Table 2. Base histograms.

Dimensions Histogram Bins

1
H 30
S 32
V 32

2
HS 30*32
SV 32*32
VH 32*32

3 HSV 30*32*32

Using these histograms we performed the experiments and discuss the results for
the ER and PR biomarkers IS score separately, since they are two different markers. In
addition, we extracted three different sets of histograms: the first one (A) using only the
color separation technique; the second one (B) using histogram enhancement, threshold-
ing and color separation; and the third one (C) using the same methods as the former one
((B)), but to extract the histogram only of the positive stained cells, which are the ones
with a brown coloration. Figure 1 shows one example for each set.

(a) (b) (c)

Figure 1. 1a Image example from the (A) histogram set. 1b Image example from
the (b) histogram set. 1c Image example from the (C) histogram set

4.1. ER Image Set

Table 3 shows the f-score for all of the 15 histogram combinations regarding the three
histogram sets, A, B, and C, mentioned before, divided into four (4 clss) and three (3clss)
classes. Firstly, set B of histograms notably is the one with a slightly higher average rate,
which indicates that it could be the best approach for these images, despite the best f-score
belonging to set A.



Table 3. F-score from A, B, and C sets of histograms from the ER biomarker.

A B C

Histogram 4 clss 3clss 4 clss 3clss 4 clss 3clss

H 0.5150 0.6067 0.4953 0.6743 0.4802 0.6471
S 0.4196 0.6351 0.4014 0.6689 0.4813 0.6934
V 0.4196 0.6351 0.4828 0.6299 0.4187 0.6241

H S 0.5259 0.6443 0.5191 0.6126 0.5384 0.6522
S V 0.4240 0.6180 0.4861 0.6524 0.4418 0.6424
V H 0.5259 0.6443 0.5029 0.6414 0.4402 0.6204

H S V 0.4906 0.6986 0.5160 0.6430 0.4823 0.6466

HS 0.5061 0.6405 0.5559 0.6857 0.5573 0.6951
SV 0.5184 0.6945 0.5147 0.6560 0.4502 0.6601
VH 0.5363 0.6357 0.5060 0.6346 0.5132 0.6341

HS SV 0.5574 0.6934 0.5440 0.6579 0.4577 0.6333
SV VH 0.4946 0.6604 0.5082 0.6634 0.4503 0.6323
VH HS 0.5051 0.6506 0.5579 0.6615 0.5230 0.6053

HS SV VH 0.5876 0.6826 0.5376 0.6798 0.4531 0.6587

HSV 0.5049 0.6710 0.5445 0.6937 0.4133 0.5717

Average 0.5020 0.6540 0.5082 0.6557 0.4778 0.6460

In sets A, B, and C, the best results come from when using the three classes divi-
sion because the samples are better distributed. When looking at the confusion matrices
in Tables 4a, 5a, and 6a, the classes 0 and 3+ are the ones less confused with the others.
Which can also be seen in Tables 4b, 5b, and 6b, confirming that the classes with more
examples are the ones that the classifier learns the best. Moreover, precisely for having
fewer samples, the borderline class (2+) is the worst learn.

Table 4. Average confusion matrix relative to all ER histogram combinations
using (4a) four and (4b) three classes in set A.

(a)

Actual
class

Predicted
0 1+ 2+ 3+

0 21 5 3 5
1+ 5 5 2 1
2+ 3 2 4 5
3+ 8 6 4 56

(b)

Actual
class

Predicted
0/1+ 2+ 3+

0/1+ 38 3 5
2+ 4 5 4
3+ 14 4 57

4.2. PR Image Set
Table 7 presents the metric from each one of the 15 combinations in each set (A, B, and C)
when using the four original (4 clss) and the three (3 clss) classes. It is verifiable that set
C is the one with the two best f-scores and with the higher average f-score rates, meaning



Table 5. Average confusion matrix relative to all ER histogram combinations
using (5a) four and (5b) three classes in set B.

(a)

Actual
class

Predicted
0 1+ 2+ 3+

0 18 9 2 4
1+ 4 6 2 2
2+ 2 2 5 5
3+ 5 5 5 58

(b)

Actual
class

Predicted
0/1+ 2+ 3+

0/1+ 39 3 5
2+ 4 5 5
3+ 11 5 59

Table 6. Average confusion matrix relative to all ER histogram combinations
using (6a) four and (6b) three classes in set C.

(a)

Actual
class

Predicted
0 1+ 2+ 3+

0 20 3 2 9
1+ 4 3 0 6
2+ 2 0 2 10
3+ 4 4 3 63

(b)

Actual
class

Predicted
0/1+ 2+ 3+

0/1+ 37 3 6
2+ 4 5 5
3+ 8 6 60

this could be the best approach for these images. Furthermore, the three class division
enables the classifier to better learning of the classes.

Table 7. F-score from A, B and C sets of histograms from the PR biomarker.

A B C

Histogram 4 clss 3clss 4 clss 3clss 4 clss 3clss

H 0.4400 0.5785 0.4130 0.6327 0.4661 0.5665
S 0.3974 0.5642 0.3909 0.5189 0.4247 0.5506
V 0.3974 0.5642 0.3608 0.5059 0.4070 0.6071

H S 0.4064 0.5304 0.4017 0.5217 0.4534 0.5547
S V 0.4015 0.5114 0.3624 0.5262 0.4437 0.5442
V H 0.4064 0.5304 0.3415 0.5217 0.4312 0.6035

H S V 0.4158 0.5304 0.4069 0.5251 0.4531 0.6211

HS 0.4436 0.5340 0.4516 0.5588 0.4703 0.6646
SV 0.4665 0.5446 0.3815 0.5751 0.4014 0.5792
VH 0.4686 0.5540 0.3938 0.5656 0.4479 0.5385

HS SV 0.4685 0.5620 0.4240 0.5783 0.4099 0.5783
SV VH 0.4589 0.5653 0.3796 0.5783 0.3858 0.5783
VH HS 0.4402 0.5653 0.4468 0.5720 0.4519 0.5578

HS SV VH 0.4382 0.5718 0.4231 0.5783 0.4291 0.5783

HSV 0.3979 0.5814 0.4118 0.5814 0.4144 0.5783



Table 7 continued from previous page
Average 0.4326 0.5523 0.3993 0.5594 0.4361 0.5792

When observing the confusion matrices in Tables 8a, 9a, and 10a, the four class
division simply does not enable the classifier to learn the 1+ class. But when looking
in Tables 8b, 9b, and 10b, the joining with class 0 brings its learning up. Unfortunately
in comparison, the borderline class (2+) goes from having almost half samples correctly
classified to almost none correct predictions. This happens, because it is the class with the
fewer amount of examples, which is the same that happens to class 1+ in the four class
division.

Table 8. Average confusion matrix relative to all PR histogram combinations
using (8a) four and (8b) three classes in set A.

(a)

Actual
class

Predicted
0 1+ 2+ 3+

0 36 4 6 5
1+ 2 0 1 1
2+ 9 2 16 7
3+ 11 1 13 24

(b)

Actual
class

Predicted
0/1+ 2+ 3+

0/1+ 48 5 1
2+ 3 3 27
3+ 3 7 39

Table 9. Average confusion matrix relative to all PR histogram combinations
using (9a) four and (9b) three classes in set B.

(a)

Actual
class

Predicted
0 1+ 2+ 3+

0 35 5 7 4
1+ 3 0 1 0
2+ 12 2 12 8
3+ 10 2 11 25

(b)

Actual
class

Predicted
0/1+ 2+ 3+

0/1+ 50 3 1
2+ 2 2 30
3+ 2 6 41

Table 10. Average confusion matrix relative to all PR histogram combinations
using (10a) four and (10b) three classes in set C.

(a)

Actual
class

Predicted
0 1+ 2+ 3+

0 38 3 5 4
1+ 3 0 1 0
2+ 9 2 11 11
3+ 7 1 10 29

(b)

Actual
class

Predicted
0/1+ 2+ 3+

0/1+ 48 4 2
2+ 4 5 24
3+ 3 6 39



5. Conclusion

Finally, BC is a big threat to women’s health and, preferably, has to be detected and
treated in its early stages. For this, the pathologists manually assess the slides in a time-
consuming and tedious work, quantifying and qualifying the slides that contain stained
biomarkers, such as ER and PR.

From the results discussed in the previous section, the proposed approach fails to
achieve an f-score rate higher to 70%, indicating that the SVM classifier did not learn all
classes equally. Considering the distribution of the samples in the classes and analyzing
the confusion matrices, a more even distribution of samples could bring the rate up.

To try to resolve this problem, we propose developing a cell segmentation,
counting, and classification method as future work. Together with it, we intend to
have the diagnosis withdrawn from the patient records revised by a specialist (patholo-
gist/histopathologist).
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