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Abstract. According to the World Health Organization, by the year 2030, 23.6
million people will die from heart disease. Therefore, automatic arrhythmia de-
tection is highly desirable. The techniques based on neural networks have ob-
tained outstanding results for this problem. The present work explores arrhyth-
mia detection with Graph Convolutional Networks and Dynamic Time Warping
to align the heartbeats. This is the first work to address the problem as a single
graph with the heartbeats as nodes to the best of our knowledge. The results
indicate that the approach is promising with a Positive Prediction of 100% for
Supraventricular ectopic heartbeat detection and a Sensibility of 100% for Ven-
tricular ectopic heartbeat detection with a global accuracy of 90%.

Resumo. Segundo a Organização Mundial da Saúde, até 2030, 23,6 milhões de
pessoas morrerão de doenças cardı́acas. Portanto, a detecção automática de
arritmia é desejável. As técnicas baseadas em redes neurais têm obtido ótimos
resultados para este problema. Este trabalho visa explorar a detecção de arrit-
mias com Rede Convolucional de Grafos e Dynamic Time Warping para alinhar
os batimentos cardı́acos. Até onde sabemos, este é o primeiro trabalho a abor-
dar o problema como um único grafo com os batimentos cardı́acos como nós.
Os resultados indicam que a abordagem é promissora com Predição Positiva de
100% para detecção de batimentos ectópicos supraventriculares e Sensibilidade
de 100% para detecção de batimentos ectópicos ventriculares com acurácia
global de 90%.

1. Introduction
According to the World Health Organization (WHO), heart disease is the leading
cause of death on the planet, taking an estimate of 17.9 million lives each year
[Organization 2021]. Besides that, approximately 75% of cases occur in low and middle-
income countries. The Electrocardiogram (ECG) is the main medical exam for heart
disease diagnosis due to its examination simplicity [Cohen 1986].

One of the most common heart diseases is arrhythmia - an abnormal heartbeat
that changes the ECG wave’s morphology. It can be sporadic and harmless, or it can
indicate a severe heart problem and must be detected as soon as possible. However, the
detection process is laborious and error-prone for a physician, as it consists of a beat-to-
beat analysis. An alternative to speed up this process is automatic arrhythmia detection.



Automatic arrhythmia detection based on machine learning methods have pre-
sented expressive results [Acharya et al. 2017, Kachuee et al. 2018, Hannun et al. 2019,
Mousavi and Afghah 2019, Hammad et al. 2020]. However, most of the methods
have poor performance when dealing with imbalanced databases, which is one of
the biggest obstacles to their integration with medical equipment [Luz et al. 2016,
Mousavi and Afghah 2019]. Furthermore, they present low accuracy for classes with a
low number of samples. The majority of these works use the conventional ECG signal as
input of their approaches.

Some works in the literature [Garcia et al. 2017, Queiroz et al. 2015] explored
the transformation of ECG into graphs for Arrhythmia detection as an attempt to ex-
tract more information from the non-majority ECG classes. The work presented in
[Garcia et al. 2017], proposed a Temporal Vectorcardiogram (TVCG), which is a 3D sig-
nal, wherein two ECG leads are considered, along with time as the third dimension. A
graph structure is built based on TVCG, in which complex network techniques perform
feature extraction. The experimental results indicated that the usage of these features
presents promising results (as we mention in Section 2). The TVCG is a representation
based on the Vectorcardiogram (VCG) [Llamedo and Martı́nez 2010], a 2D signal com-
posed of two ECG leads disregarding time. In [Queiroz et al. 2015], the proposed ap-
proach applies complex network techniques to extract features from a VCG-based graph.
Next, the authors feed an SVM classifier with the extracted features. The experiments re-
vealed that the feature extraction procedure contains relevant information for arrhythmia
detection.

In this work, we propose a new ECG graph representation, using only one lead and
Dynamic Time Warping for heartbeat alignment. We model each heartbeat as a node on a
graph and use a Graph Convolutional Network (GCN) to classify the nodes (a heartbeat).
To the best of our knowledge, this is the first work in the literature to explore one lead
of ECG classification with a GCN in a node classification fashion. We believe that this
approach has advantages that justify the investigation: (i) we use only one ECG lead,
(ii) The Dynamic Time Warping (DTW) technique applied provides a great measure to
heartbeats’ alignment, (iii) The GCN allows us to explore message passing through the
nodes.

In the present work, the ECG is transformed into a graph and feed-forwarded
to a GCN [Kipf and Welling 2016]. It is also verified if a GCN is able to extract more
information from an ECG-based graph. Different from the approaches presented in
[Queiroz et al. 2015] and [Garcia et al. 2017], we investigate if a specialized graph clas-
sifier can improve the ECG classification for non-majority classes, such as the Supraven-
tricular ectopic beat (S) and, mainly, the Ventricular ectopic (V), which has the smallest
number of samples in the dataset used in this work.

The experimental results indicated a global accuracy of 90%, a Positive Predic-
tion of Supraventricular ectopic arrhythmia type (class S) of 100%, and a Sensibility of
Ventricular ectopic arrhythmia type (class V) of 100%.

The remainder of this work is divided as follows. In Section 2, the related works
are presented. The Dynamic Time Warping is described in Section 3 and the Graph Con-
volutional Network in Section 4. The proposal of representing a heartbeat as a graph is



presented in Section 5. The experiments are described in Section 6 and the discussion of
the results in Section 7. Finally, the conclusions reached with the proposed approach are
presented in Section 8.

2. Related Works
Several authors have effectively contributed to the automatic arrhythmia detection prob-
lem.

In [Lin and Yang 2014], the authors proposed an automatic heartbeat classification
method for arrhythmia detection and classification based on normalized RR intervals and
morphological features. Their approach consists of signal preprocessing, feature extrac-
tion, and linear discriminant classification. First, the high-frequency noise and baseline
drift is removed from the ECG input signal. Then, the feature extraction applies wavelet
analysis and linear prediction modeling to derive the normalized RR intervals and two
types of morphological features. Finally, the linear discriminant classifier combines the
extracted features to the classification test. The authors applied their method to the MIT-
BIH database and achieved a global accuracy of 93.00% under the inter-patient paradigm.

In [Garcia et al. 2017], it is developed a new ECG representation called Temporal
Vectorcardiogram (TVCG), which is a three-dimensional signal composed of two distinct
ECG leads and the time. The TVCG is turned into a complex network for feature extrac-
tion. Their approach employs an optimization stage based on particle swarm optimization
to select the best features of the complex network. This stage also enables the fine-tuning
of the Support Vector Machine (SVM) classifier for arrhythmia detection. The experimen-
tal results adopting the MIT-BIH database and under the inter-patient paradigm presented
a global accuracy of 92.40%.

It is presented in [Mousavi and Afghah 2019] an automatic heartbeat classifier for
arrhythmia detection applying the sequence-to-sequence model along with a Convolu-
tional Neural Network (CNN). The sequence-to-sequence model architecture is composed
of a Recurrent Neural Network (RNN) encoder and decoder. The encoder consists of
Long Short-Term Memory (LSTM), which encodes the input signal. The decoder, on the
other hand, computes the category of each beat of the input signal. The authors applied
their approach to the MIT-BIH database and achieved a global accuracy of 99.53% under
the inter-patient paradigm.

In [Hammad et al. 2020], the authors presented a multi-tier Deep Learning Model
suffused with Machine Learning and optimization based on Genetic Algorithm (GA) for
arrhythmia detection. The Deep Neural Network model extracts features of each pa-
tient. Then, the Genetic Algorithm determines the optimum combination of these fea-
tures. Next, several classifiers, such as K-Nearest Neighbors (KNN), SVM, Multilayer
Perception (MLP), are utilized to classify the features. The experimental results adopting
the MIT-BIH database and under the inter-patient paradigm presented a global accuracy
of 87.20% when the method used KNN along with GA.

To the best of our knowledge, no work in the literature represents each heartbeat as
a node of a network and applies GCN for ECG classification, which makes our approach
a novelty. Besides, it is advantageous to use only one lead because we do not always have
access to more than one, combined with the fact that we have a reduced computational
cost.



3. Dynamic Time Warping (DTW)

The Dynamic Time Warping is an algorithm to find an optimal alignment between two
time dependent sequences by measuring the similarity between them [Müller 2007]. It
detects similar shapes with different phases and thus minimizes the effects of shifting and
distortion in the time-series [Senin 2008].

The Euclidean distance metrics and its variants are highly sensitive to tempo-
ral axis distortion, as can be seen in Figure 1(a). The DTW algorithm, on the other
hand, addresses the time axis distortions issue through non-linear time-normalisation
[Riedel et al. 2007], as can be seem in Figure 1(b).

(a) Euclidean distance (b) Dynamic Time Warping

Figure 1. Difference between the alignment used when comparing the time series
using the Euclidean Distance and Dynamic Time Warping.

In order to find the best alignment between two time-series: A and B, the DTW
searches a path through a cost matrix of dimensions iA and jB that minimizes the total
distance between them, where iA is the number of points of time-series A and jB the
number of points of time-series B.

The cost matrix is composed of the distances between each point of A in relation
to every point in B and vice versa. The distances can be calculated by Euclidean distance,
Manhattan distance or other distance metrics.

Equation 1 presents the time-normalized distance between A and B:

G(A,B) =

[∑k
s=1 d(ik, jk) · ws∑k

s=1ws

]
, (1)

where d(ik, jk) is the distance between point ik, from the time-series A, and point jk, from
the time-series B. ws is a weighting coefficient.

The best alignment path between A and B is given by:

P = arg min(G(A,B)). (2)

The Figure 2(a) presents a heat-map of the cost function of two different heart-
beats, where the regions of low cost are indicated by dark colors and regions of high cost
by light colors. The white line in Figure 2(a) is the path with lowest cost, which indicates
the corresponding points of the first time-series in the second time series, as can be seem
in the Figure 2(b).



(a) Heat-map of the cost function of two
different heartbeats
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(b) Corresponding points of the first time-series in the
second one

Figure 2. DTW corresponding points of two heartbeats.

4. Graph Convolutional Network (GCN)

The Graph Convolutional Networks were firstly proposed in [Defferrard et al. 2016]
to generalize Convolutional Neural Networks (CNNs) from regular Euclidean space
domain data, such as image, video, and speech, to high-dimensional irregular do-
mains, like data represented by graphs such as social networks and brain connections.
In [Kipf and Welling 2016], the authors proposed a semi-supervised GCN, with message
passing operations inspired by a linear approximation to spectral graph convolutions, fol-
lowed by a non-linear activation function. The authors consider a multi-layer GCN with
the layer-wise propagation rule presented by

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) , (3)

in which Ã = A + IN is the matrix A (adjacency matrix of the undirected graph G)
with added self-connections, IN is the identity matrix, D̃ii =

∑
j Ãij and W (l) is a

layer-specific trainable weight matrix. σ(.) denotes an activation function, such as the
ReLU() = max(0, ). H(l) ∈ RN×D is the matrix of activations in the lth layer and
H(0) = X .

The convolution of a signal x with a filter gθ′ is given by

gθ′ ⋆ x ≈
K∑
k=0

θ
′

kTk(L̃)x , (4)

in which L̃ = 2
λmax

L− IN , λmax denotes the largest eigenvalue of L. L is the normalized
graph Laplacian defined as L = IN−D− 1

2AD− 1
2 , where D is the diagonal matrix with the

degrees of each vertex, i.e., Dii =
∑

j Aij . θ
′ ∈ RK is a vector of Chebyshev coefficients.

The Chebyshev polynomials are recursively defined as Tk(y) = 2y Tk−1(y) − Tk−2(y),
with T0(y) = 1 and T1(y) = y [Hammond et al. 2011].

A GCN can be constructed by stacking multiple convolutional layers of the form
of Equation 4, each layer followed by a point-wise non-linearity.



In the present work, it is considered a two-layer GCN for semi-supervised node
classification on a graph. First, in a pre-processing step, we calculate Â = D− 1

2 ÃD− 1
2 .

Then the forward model takes the form:

Z = f(X,A) = softmax(Â ReLU(ÂXW (0))W (1)) , (5)

in which W (0) ∈ RCxH is an input-to-hidden weight matrix for a hidden layer with H
feature maps. W (1) ∈ RHxF is a hidden-to-output weight matrix. The softmax activation
function is applied row-wise and it is defined as softmax(xi) = 1

Z exp(xi) with Z =∑
i exp(xi). For semi-supervised classification, the cross-entropy error is evaluated over

all labeled examples presented in Equation 6:

L = −
∑
l ϵYL

F∑
f=1

Ylf ln Zlf , (6)

in which YL is the set of node indices that have labels and Ylf is the set of labeled exam-
ples.

The neural network weights W (0) and W (1) are trained using gradient descent.

5. A Graph of Heartbeats

We convert the ECG signal into a graph, to apply the GCN to detect cardiac arrhythmia
through ECG classification. The first step is to define the graph nodes. Therefore, a single
node is a heartbeat like the one in Figure 3(b), which comes from the segmentation of an
ECG signal like the one in Figure 3(a).

(a) ECG sinal (b) Segmented heartbeat

Figure 3. ECG segmentation.

Each heartbeat was segmented with 300 samples, centered on the R peak.

The node features is a list of the heartbeat values are represented as a list of heart-
heartbeat raw samples (Figure 4).

We use Dynamic Time Warping (DTW) as the similarity algorithm to link nodes
due to the optimal alignment of the heartheartbeats it provides. Two nodes are connected
if the DTW value is less than a global threshold, which is empirically computed as we
discuss in Section 6. The obtained undirected graph G provides the matrix A, mentioned
in Section 4.
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Figure 4. ECG node representation.

6. Experiments
6.1. The MIT-BIH database
The MIT-BIH database provides real clinical situations/scenarios. For this reason, this
database is used in most works found in the literature. It consists of 48 annotated records
obtained from 47 patients studied by the Beth Israel Hospital Arrhythmia Laboratory
in Boston, USA, between the years of 1975 and 1979. Each record has 30 minutes ECG
acquisition of two leads sampled at 360 Hz. The database has a total of more than 109.000
heartbeats. Each R peak of these heartbeats is labeled as a heartbeats type.

The experiments are conducted with the MIT-BIH database, following the inter-
paradigm protocol proposed in [De Chazal et al. 2004], in which the database is split into
a group called DS1, which is used for training and DS2, which is used for evaluation.

The signals from DS1 used for training are: 108, 114, 116, 118, 124, 201, 203,
205 and 207. and the ones used for testing (DS2) are: 208, 209, 215 and 223.

Among the classes of ECG presented in the MIT database, the present work focus
on the classification of the 3 main classes: Normal heartbeat (N), Supraventricular ectopic
heartbeat (S) and Ventricular ectopic heartbeat (V).

The number of samples used for training and testing are indicated in Table 1 and
2, respectively.

Table 1. Data used for training

Class samples
(N) 300
(S) 300
(V) 300

Total 900

Table 2. Data used for testing

Class samples
(N) 69
(S) 14
(V) 17

Total 90

6.2. Graph Convolutional Network algorithm
The implemented Graph Convolutional Network has two layers. The model is trained in
100 epochs. The first hidden layer generates 100 hidden features and the second layer
generates 3 output features corresponding to the number of classes of the classification
problem. The Adam optimizer is used to optimize the weights with the learning rate of
10−4.

6.3. Neighborhood Sampling for Node classification
The proposed GCN approach receives a single graph G to perform the training and testing,
as discussed in Section 5. In some cases, the graph is so large that it makes its entire



processing unfeasible because it consumes all the memory available. That is the case in
this work, since the graph generated with all the ECG signals has more than a hundred
thousand nodes with 300 features of float type. For this reason, a Neighborhood Sampling
approach is implemented. This technique first takes a group of nodes, where the message
passing (convolution) will be performed. The number of nodes of this group is defined
according to the batch size. For example, considering batch size of 1, a single node is
selected. Then, the graph G, which contains all the nodes, is transformed into a sub-graph
containing only the selected node and its neighbors. Finally, it is sent to the GCN, where
the convolution is performed.

Figure 5(a) shows this step with batch size equals to 1, in which node 8 is selected.
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(a) Selecting node 8 for neighborhood sampling
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Figure 5. Neighborhood Sampling.

The Neighborhood Sampling approach used in the experiments results applies a
batch size of 200.

6.4. Evaluation metrics
The metric used to evaluate the GCN is the Overall accuracy (Acc), and a confusion
matrix for a better understanding of the results. We also evaluate the Positive Prediction
(+P ) and Sensibility (Se) for the class S and class V,

Acc =
TPN + TPS + TPV

#samples

+PS =
TPS

TPS + FPS

+PV =
TPV

TPV + FPV

SeS =
TPS

TPS + FNS

SeV =
TPV

TPV + FNV

(7)

in which TPN is the number of normal samples correctly classified; TPS is the number
of class S samples correctly classified; TPV is the number of class V samples correctly
classified; FNS is the number of class S samples classified as normal or class V; FNV

is the number of class V samples classified as normal or class S; FPS is the number of
normal and class V samples classified as class S; and FPV is the number of normal and
class S samples classified as class V.



7. Results and Discussion

The proposed approach has some limitations, such as the fact that the construction of the
graph is computationally expensive. For this reason, it is not possible to use all the data
available in the database to carry out the experiments. Therefore, the current evaluation
is not ideal. However, we aim to investigate the feasibility of exploring the ECG classi-
fication problem as a single graph, considering each of its nodes as a heartbeat, which is
challenging and unprecedented in the literature. We do not intend to compare our results
with state-of-the-art methods, but rather to evaluate the robustness and feasibility of the
proposed approach.

The global accuracy of the testing was 90.00%. Hence, a confusion matrix was
built to observe the performance of the GCN in the classification of each ECG class. The
confusion matrix of the testing results is shown in Figure 6.

Figure 6. Confusion Matrix of the testing. 0 represents the Normal Class, 1 the S
class and 2 the V class.

Through the Figure 6, we observe that all samples classified as classes N and S
by the proposed approach were correct. However, the samples of class V were not fully
correctly classified. The percentage of correct answers for the class V samples was 41.2%.
Since the data was not normalized and the threshold was empirically defined as 0.8, the
nodes of class V may have been impacted by data instability.

The analysis of the results indicates that the new representation of ECG through a
graph is promising. It is noteworthy the quality of the connections of the nodes of classes
N, that obtained 100.0% of positive prediction, compared to the classes S and N, that
obtained accuracy of 100.0% (+PS) and 41.2% (+PV ), respectively in the tests. Further-
more, the use of Neighborhood Sampling allowed not only the use of more samples, but
also a faster execution. The sensibility was 92.0% for the class N, 77.8% (SeS) for the
class S and 100.0% (SeV ) for the class V.

8. Conclusion

Automatic arrhythmia detection is a complex process with room for improvement. GCN
has emerged as a promising approach to several pattern recognition problems, however, it
has not yet been explored for arrhythmia detection.



In this work, a new GCN is proposed for the task and Neighborhood sampling is
also applied to the ECG graph. Besides that, it is important to measure two heartbeats’
alignment to know if they can connect or not. For this task, we used the DTW algorithm.

Through the results, we verified that the implemented GCN algorithm got promis-
ing results for the classes N and S, both 100.0% of positive prediction. However, the
algorithm underperformed for class V - 41.2% of positive prediction but 100.0% of sensi-
tivity. We observed that class V nodes did not have good connections within the generated
ECG graph, though.

In future work, we intend to implement approaches that allow the use of the entire
database without overloading memory. In this way, it will be possible to explore the full
potential of the proposed approach. In addition, future works include the definition of a
better threshold and the normalization of the nodes features.
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