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Abstract. Machine learning methods have been applied to predict COVID-19
using chest X-ray images in several works. However, to be helpful, a machine
learning model must be robust to give reliable predictions for any target pop-
ulation, rather than only for the population used to generate the training data.
Despite such an important issue, testing the generalizability of machine learn-
ing models is frequently not performed in current works. To test the general-
izability of three models of CNN, four different databases obtained from vari-
ous data sources are investigated in this paper in an internal-and-external val-
idation procedure. All models are trained considering lung segmentation as a
pre-processing step and without lung segmentation. The results show how im-
portant an external evaluation is to avoid providing performance evaluations
excessively optimistic and inaccurate.

Resumo. Diversos trabalhos têm utilizado métodos de aprendizagem de
máquina para detectar Covid-19 a partir de imagens de raio x. Entretanto, para
serem úteis, modelos de aprendizagem de máquina devem ser generalistas a fim
de prover predições confiáveis para qualquer população de pacientes, não ape-
nas para a população utilizada para gerar sua base de treinamento. Apesar da
importância dessa caracterı́stica, os trabalhos atuais dificilmente testam a ca-
pacidade de generalização dos modelos de aprendizagem de máquina entre dife-
rentes populações. Neste artigo, nós estudamos a capacidade de generalização
de três modelos de CNN em quatro bases de dados obtidas a partir de diver-
sas populações de pacientes. É utilizado um processo de validação interna
e externa. Todos os modelos são treinados considerando dois cenários: pré-
processamento via segmentação da região do pulmão; e sem segmentação. Os
resultados mostram a importância de realizar uma validação externa em uma
população diferente da população que compõe a base de treinamento para evi-
tar avaliações de desempenho excessivamente otimistas e imprecisas.

1. Introduction

The research on automatic diagnosis of coronavirus (COVID-19) has been rapidly de-
veloped since the pandemic began in early 2020. Chest X-ray (CXR) radiographs and



abdominal computed tomography (CT) scans are considered important evidence to sup-
port clinical diagnosis of COVID-19 [Zu et al. 2020]. Besides allowing confirming the
infection, it is possible to evaluate the extent of damage incurred to the lungs by screen-
ing through CXR and CT imaging [Khan et al. 2021]. In one hand, there may be visible
lesions on CT that are not visible on CXR images. On the other, among CXR and CT
scans, CXR images are interesting because they have a lower associated cost, are faster to
acquire, and are more widely available [Pereira et al. 2020], [López-Cabrera et al. 2021].
In this work, we focus our attention on the CXR images.

Convolutional Neural Networks (CNN) have especially achieved great success
in COVID-19 diagnosis using radiological imaging, such as CXR radiographs and CT
[Arias-Garzón et al. 2021], [Saha et al. 2021] and [Khasawneh et al. 2021]. Despite this
success, the literature indicates that several works may suffer from biases or issues in
terms of generalization ability (generalizability)[Roberts et al. 2021].

Generalizability is related to the ability of a model to predict accurately on var-
ied data sources not included in the model’s training dataset. It has been suggested that
the performance of deep learning models, including CNN, may show variable generaliza-
tion on external data (also called out-of-distribution data) [Li et al. 2020a]. This behavior
could be due to the so-called shortcut learning problem [Geirhos et al. 2020], which refers
to models that learn decision rules to solve a given problem based on the simplest solu-
tion instead of on features related to the pathology to be classified. In the case of CXR
images, the shortcut learning problem may result from differences in X-ray equipment
manufacturers and acquisition techniques, for instance [Li et al. 2020a].

The literature indicates external validation as one of the ideal approaches to try to
measure the generalizability of learning-based models. Internal validation refers to testing
the model using data from the same source as that used to train on, while in external
validation, the test and training datasets are from different sources. This procedure allows
providing more insight about the model’s generalizability. However, very few works have
been devoted to cope with generalizability issues or to try to evaluate this problem in the
context of diagnosis or prognosis of COVID-19 using CXR or CT images.

In the systematic review presented in [Roberts et al. 2021], the authors discuss 62
papers published from January 2020 to October 2020, which address machine learning
applied to the automatic identification of COVID-19 using CXR or CT images. They
point out only three works dealing with CXR images that handle external data. However,
one work [Elaziz et al. 2020] does not evaluate the model on an external dataset, while
the other two works [Li et al. 2020a] and [Li et al. 2020b] are not devoted to classification
problems but focus on measuring the degree of severity of COVID-19.

Besides performing evaluation using out-of-distribution data, another strategy
recommended in the literature is to extract features from the region containing the
lung area only [Tartaglione et al. 2020], discarding possible bias sources, such as text
and medical devices. In the survey presented in [López-Cabrera et al. 2021], the
authors highlight five works that use an external dataset to evaluate their models
[Tabik et al. 2020], [DeGrave et al. 2021], [Ahmed et al. 2021], [Tartaglione et al. 2020]
and [Yeh et al. 2020]. Except for [Tabik et al. 2020], which deals with severity analy-
sis, the remaining four works confirm a decrease in generalization in new data sources



when detecting COVID-19 in CXR images. However, lung area segmentation/crop is not
performed in [DeGrave et al. 2021]. In [Ahmed et al. 2021], despite cropping the lung
region, the authors conclude that the models still learn spurious features related to the
data sources. However, using only segmented lung masks, instead of cropping, may be a
better strategy to provide features related to the real underlying pathology of COVID-19.
Finally, the authors [Tartaglione et al. 2020] and [Yeh et al. 2020] perform segmentation,
but generalizability was not their focus.

Unlike the works mentioned above, in this paper we evaluate CNN generalization
to diagnose COVID-19 automatically using the internal-and-external validation procedure
and segmentation of the lung region. In addition, both fine-tuning of pretrained CNN
and end-to-end training of a developed CNN model are used. The two approaches are
investigated with and without lung segmentation.

The remainder of this paper is organized as follows. A short review of related
work is provided in Section 2. The description of the datasets, as well as the models
investigated in this paper, is provided in Section 3. Section 4 describes experiments and
results. Finally, conclusions and future work are presented in Section 5.

2. Related Work
In [Elaziz et al. 2020], the authors propose a method to extract and reduce features of
CXR images that are used as input to a KNN classifier designed to distinguish between
COVID-19, normal, and pneumonia classes. The proposed method was evaluated using
two datasets provided by two different sources. The first dataset consists of data collected
by Joseph Paul Cohen, Paul Morrison, and Lan Dao on GitHub [Cohen et al. 2020], which
groups into the COVID-19 class images extracted from 43 different publications. Images
used to compose the normal and the viral pneumonia classes were obtained from the X-ray
image database (pneumonia) [Kermany et al. 2018]. In turn, the second dataset is com-
posed of data collected by a team of researchers from Qatar University, Doha - Qatar; the
University of Dhaka, Bangladesh, along with collaborators from Pakistan and Malaysia
[Chowdhury et al. 2020]; as well as the dataset from the Italian Society of Medical and
Interventional Radiology (SIRM) COVID-19 database 1. Despite working with datasets
from different sources, the model was not evaluated on external test sets, since the authors
performed training and inference using the classical holdout validation in the same data
source. Therefore, possible biases in terms of generalizability were not tackled or even
evaluated.

On the other hand, internal and external validation is performed by Li et al. in
[Li et al. 2020a] and [Li et al. 2020b]. Their first work [Li et al. 2020a] indicated that
their model was able to generalize to data obtained from a hospital different from the
hospital the training data was obtained. Nevertheless, since the internal and external
datasets were from urban areas of the same location, they extended their experiments in
[Li et al. 2020b] to test the generalizability of the same model on four datasets acquired
from different patient populations from three hospitals in two countries (Brazil and the
United States). In addition, they tuned the model using outpatient data to improve model
generalizability. The results showed that the model was able to generalize across distinct
patient populations due to being tuned with outpatient data. It is important to mention

1https://www.sirm.org/category/senza-categoria/covid-19/



that the model investigated in these works is a convolutional Siamese neural network.
Moreover, the task dealt with was calculating the degree of severity of COVID-19 lung
disease, not the prediction of COVID-19. The work presented in [Tabik et al. 2020] also
conducts external validation in the context of COVID-19 severity analysis. It is worth
noting that there are additional works dealing with COVID-19 pneumonia severity scor-
ing in CXR that address internal and external validation, such as [Frid-Adar et al. 2021],
which employs CNN models.

Considering the detection of COVID-19 in CXR using CNN,
[DeGrave et al. 2021] perform an internal and external validation similar to the
process presented in [Li et al. 2020b]. They investigated various CNN architectures and
showed a very significant performance drop when comparing the models performance
using internal and external datasets. In order to better investigate the poor performance
in the external dataset, the authors employed saliency maps. Their results showed that
the models were looking at non-lung regions of the images to classify the instances,
consequently confirming the shortcut learning problem. Therefore, by working with the
lung region only, one may potentially remove possible bias sources to reduce the shortcut
learning effect.

This was the objective in [Ahmed et al. 2021]. The lung region is obtained using
an approach divided into two steps: 1) segmentation of the lung field; and 2) cropping
of the bounding boxes containing the lung area. The pre-trained ResNet50 was used as
CNN model in a bi-class classification problem (COVID-19 and non-COVID-19 classes).
The experiments results indicate that focusing only on the bounding boxes containing
the lung area does not guarantee the mitigation of shortcut learning, since the models
reached high performance on internal test data but low performance on external test data.
Consequently, there is still need for better strategies to focus on areas within the lungs to
adequately separate the classes taking into account features indeed related to the disease.

3. Methods
In this work, we study the challenges on predicting COVID-19 from CXR images con-
sidering only a multiclass problem, precisely three classes: COVID-19, Pneumonia (non-
COVID19 infection, e.g., viral, bacterial, etc.) and normal (no infection), since it is well
accepted in the literature that the potential utility of a model increases when it is capable
of distinguishing patients with COVID-19 from patients without COVID-19 and other
types of pneumonia. Two approaches are employed, (a) a lightweight CNN with end-to-
end training and no transfer learning; and (2) two pre-trained deep CNN models. In both
approaches, all network models are trained using original images and segmented images.
The investigated methods are described in this section.

3.1. Lightweight CNN

The model used is publicly available2. It is designed with the following architecture:
input layer accepting 224 x 224 images; 10 convolutional layers; 04 pooling layers, a
flatten layer, a dropout layer and 02 fully-connected (FC) layers. Figure 1 shows the
model. The pooling layers use max pooling, whilst ReLU is the activation function in

2https://medium.com/@estevestoni/deep-learning-e-covid-19-utilizando-de-imagens-de-raio-x-
63296b5dc77a



convolutional and FC layers. Softmax is employed in the output layer. Finally, Adam
(Adaptive Moment Estimation) with a learning rate of 1e-4 was used as the optimizer.

Figure 1. Architecture of the CNN with end-to-end training.

3.2. Pre-trained deep CNN
The two CNNs studied are: ResNet50v2 and VGG16. The original FC layers and the
classification output layer were removed from the network architecture, while a global
max pooling 2D layer, a FC layer with 1024 neurons and a classification layer were added
for application to the task of predicting COVID-19. The process applied to fine-tune each
model was to unfreeze all layers. In addition, data augmentation was conducted in both
fine-tuning and end-to-end training. The augmentation techniques carried out are random
shifting up to 20% (horizontally and vertically), rotation up to 20°, zoom in up to 10%,
and flip horizontally. Finally, Nadam was the optimizer employed using learning rate 1e-
5 in the first and third experimental scenarios and 1e-4 in the second. The experimental
scenarios are described in the following sections.

3.3. Segmentation
As previously mentioned, both lightweight and pre-trained CNNs are evaluated consid-
ering two pipelines: 1) image segmentation + feature extraction and classification; 2)
feature extraction + classification. In the first pipeline, U-Net [Ronneberger et al. 2015]
is responsible for performing the segmentation step. U-Net was originally developed for
biomedical image segmentation. In this paper, Montgomery County and Shenzhen Hos-
pital3 are the two databases used to train U-Net in lung segmentation. The pulmonary
segmentation masks were dilated and the images were resized to 224x224.

The Montgomery County dataset is composed of CXR images acquired in the
context of a tuberculosis control program from the Montgomery County Department of
Health and Human Services in the United States. The data set contains 138 instances
divided into two classes: 80 from normal and 58 are from abnormal classes. The lungs
were manually segmented in all images. In terms of the second dataset, it contains CXR
images collected in the Shenzhen Hospital, Shenzhen - Guangdong province - China.
This dataset is composed of 662 images, also divided into two classes: 326 images from
healthy patients and 336 with abnormalities. The two datasets used to train U-Net are
different from the datasets investigated in our internal-and-external validation procedure,
as detailed in the next section.

3.4. Datasets
The following four datasets are investigated in this paper: (CIDC) COVID-19 Image Data
collection [Cohen et al. 2020], RSNA Pneumonia Detection Challenge dataset 4, (CXRP)

3https://lhncbc.nlm.nih.gov/LHC-downloads/downloads.html#tuberculosis-image-data-sets
4https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data



Chest X-Ray Images (Pneumonia)5, and COVIDx dataset6 [Wang et al. 2020]. In this
section, we first describe the datasets carefully. Then, we explain how they are divided in
an internal-and-external validation procedure.

3.4.1. Datasets Description

• CIDC: it contains 950 CXR images of COVID-19 positive or suspected patients,
and patients with pneumonia due to other viral or bacterial sources from several
studies and several countries.

• RSNA: it is composed of 29,700 CXR images divided into three classes: No Lung
Opacity/Not Normal, Lung Opacity and Normal. This dataset is a sample of a
larger database that contains more than 100,000 anonymized patients, published
by the National Institute of Health Clinical Center hospital, United States, to be
used in the RSNA Pneumonia Detection Challenge competition in 2018.

• CXRP: it consists of 5,863 CXR images belonging to one of two classes: Pneu-
monia and normal. The images are from the Guangzhou Women and Children’s
Medical Center, China. These are data from patients aged one to five years old and
were obtained during routine examinations between July, 2013 - March, 2017.

• COVIDx: it currently contains 13.975 CXR images distributed among 3 classes:
COVID-19, Normal and Pneumonia. This database was built and organized by
Wang [Wang et al. 2020] to provide a dataset larger than the public databases
available. The authors have combined and modified five public repositories to
generate this dataset: (1) CIDC; (2) COVID-19 Chest X-ray Dataset Initiative; (3)
ActualMed COVID-19 Chest X-ray Dataset Initiative; (4) COVID-19 radiography
database7; and (5) RSNA.

3.4.2. Data Partition Configurations

As previously mentioned, CIDC and RSNA are among the different repositories used
to compose COVIDx. Thus, to avoid reusing data, instances from these two reposito-
ries were removed from the original COVIDx. Therefore, we try to assure that all four
databases used in our experiments are not overlapping datasets.

To perform and evaluate the internal-and-external validation procedure, we con-
duct three configurations of data combination and partition. It is important to mention that
only instances from Pneumonia and normal classes from the RSNA and CXRP databases
are used in our experiments. In terms of COVIDx and CIDC, only instances from their
COVID-19 class were considered for data partitioning. In the first configuration, train and
validation sets are composed of instances from COVIDx and RSNA, while the test set is
composed of images from CIDC and CXRP. In the second configuration, COVIDx and
CXRP are combined and further divided into training and validation sets, while instances
from CIDC and RSNA are used to compose the test set. Finally, in the third scenario,
all four datasets are put together to form a more extensive database and then divided into

5https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
6https://github.com/lindawangg/COVID-Net
7https://github.com/agchung/Figure1-COVID-chestxray-dataset



training, validation, and test sets using the classical holdout validation to evaluate perfor-
mance. Using datasets assembled from other datasets, as is done in the third scenario, is
common in the literature [Roberts et al. 2021].

Besides varying the data source, we partitioned the instances in a balanced way.
For the first and second configurations, the training and validation sets were obtained by
dividing in a holdout strategy 8/10 and 2/10 of the instances, respectively. In the third
configuration, holdout was performed to provide training, test, and validation partitions
with 8/10, 1/10, and 1/10 of the instances, respectively. Class balancing was obtained by
randomly choosing a similar number of instances per class for each partition. Tables 1, 2,
and 3 highlight the number of instances in each data partition of each configuration.

Table 1. Number of instances in each data partition - first configuration.

Train Validation Test
COVID-19 840 213 450
Normal 843 210 450
Pneumonia 843 210 411
Total 2526 633 1341

Table 2. Number of instances in each data partition - second configuration.

Train Validation Test
COVID-19 839 214 450
Normal 843 210 474
Pneumonia 799 210 439
Total 2481 634 1363

Table 3. Number of instances in each data partition - third configuration.

Train Validation Test
COVID-19 1202 150 151
Normal 1204 149 149
Pneumonia 1198 149 149
Total 3604 448 449

4. Results

Two series of experiments are conducted in this paper. In the first, the third configuration
is investigated using three different CNN models: 1) Lightweight CNN, 2) ResNet50v2,
and 3) VGG16. In the second series, the same CNN models are applied using the first
and the second configuration of datasets. In all scenarios, the models were investigated
using non-segmented and segmented images. The results are the average of metrics across
classes: Normal, COVID-19, and Pneumonia.



4.1. Holdout Evaluation Study

We first analyze the performance of each model when segmentation is not conducted.
As it can be observed in Table 4, the performance metrics (accuracy, precision, and sen-
sitivity) show a behavior quite expected when using only internal validation, e.g: high
performance is obtained - accuracy was slightly below 95%; the pre-trained CNN outper-
formed the lightweight model; and the pre-trained models achieved very similar results.

Table 4. Results attained using the 3th configuration without segmentation.

Model Acc. Prec. Sens.
Lightweight 91.31 93.87 91.39
ResNet50v2 94.20 97.92 93.38
VGG16 94.43 94.74 95.36

When observing the results reached using segmented images (Table 5), it is pos-
sible to verify that they did not exceed the results obtained using non-segmented images.
These results were not expected, since lung segmentation usually helps to improve the
classification performance. However, the key issue for performance improvement is to
obtain accurate lung segmentation. Even though we have used U-Net, which is the tra-
ditional model in lung segmentation, and the datasets commonly used to train the model
[Frid-Adar et al. 2021], the segmentation step was not successful in our work. Figure 2
illustrates the result of an accurate (a) and an inaccurate segmentation (b). Therefore, im-
provements in this process are necessary to achieve reliable and accurate segmentation,
as in [Frid-Adar et al. 2021] for instance.

Table 5. – Results attained using the 3th configuration with segmentation.

Model Acc. Prec. Sens.
Lightweight 85.30 86.42 80.13
ResNet50v2 91.98 95.83 91.39
VGG16 92.65 95.24 92.72

Figure 2. Two examples of segmented CXR images: (a) accurate segmentation,
and (b) unsuccessful segmentation.



4.2. Generalizability Assessment

The results from our previous series of experiments were achieved without performing an
external validation. In this second series of experiments, however, we investigate the per-
formance when using external validation. This is done by employing data configurations
1 and 2.

The results shown in Tables 6 and 8 were attained by the models using no segmen-
tation on configurations 1 and 2 respectively. These results highlight that all performance
metrics drastically decreased when compared to the results obtained in the first series.
We observed that all three investigated models failed to generalize to other data sources.
Despite high sensitivity rates in the third configuration, accuracy and precision rates show
that the models reached errors lower than the expected error of a randomized predictor in
both scenarios.

Unexpectedly, lung segmentation as a pre-processing step did not help to increase
the performance metrics, as it can be seen in Tables 7 and 9. Again, the reason for this
behavior is probably an inaccurate lung segmentation step performed.

Table 6. Results attained using the 1st configuration without segmentation.

Model Acc Prec Sens
Lightweight 31.77 30.35 70.88
ResNet50v2 48.86 42.12 46.89
VGG16 37.12 34.25 91.11

Table 7. Results attained using the 1st configuration with segmentation.

Model Acc Prec Sens
Lightweight 39.34 35.10 72.00
ResNet50v2 39.04 34.26 70.89
VGG16 40.66 34.02 73.33

Table 8. Results attained using the 2nd configuration without segmentation.

Model Acc Prec Sens
Lightweight 34.82 33.91 98.88
ResNet50v2 38.92 35.03 94.67
VGG16 34.82 33.89 98.44

Table 9. Results attained using the 2nd configuration with segmentation.

Model Acc Prec Sens
Lightweight 36.47 34.43 97.56
ResNet50v2 34.30 33.78 96.00
VGG16 35.12 33.90 97.56

These results confirm that models trained using only one data source demonstrate
high performance, while these models exhibit substantial performance degradation when



tested on external data. This indicates that the investigated models failed to generalize
to other data sources even using only segmented images. Therefore, if the potential of
machine learning models to predict COVID-19 focuses solely on performance on a single
data source, this kind of evaluation leads to uncertainty of these models generalizability
and implementation across real healthcare settings.

5. Conclusions
In this paper, we investigated the generalizability of CNNs on predicting COVID-19 from
chest X-ray images when the model is tested on patient populations (data sources) differ-
ent from the data sources used to train the model, i.e. when an internal-external validation
procedure is conducted. Our results showed the models’ inability to generalize well on
external datasets, even using only segmented lungs, and reinforce the need for employing
internal-external validation to reduce the risk of optimistic performance evaluations. The
impact of showing that learning models provide accurate predictions across a variety of
diverse data sources play a key role in the fulfillment of achieving practical application of
these models in healthcare settings. However, it would be ideal to use more data sources
to evaluate the models on a broader different population of patients.
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