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Abstract. Several computational methods allow identifying genes related to
cancer (driver mutation) through patient mutation data and biological networks.
Usually, networks are not built focusing on biological activities associated with
cancer because they are designed for general use. In this study, we investi-
gate the performance of methods for identifying driver mutations using biolog-
ical networks and enriched biological networks, applying a gene prioritization
method to classify genes associated with cancer understudy in the biological
network. The results indicated that employing the enrichment method helped
identify different driver genes in all cases.

1. Introduction
Cancer is a disease in a constant evolutionary process. Its birth and manifestation are
related to mutations in a set of genes. Several mutations can occur in genes, but only
a few are relevant to cancer development. These are classified as driver mutations,
while non-significant mutations are classified as passenger mutations. These mutations
can be hereditary or acquired during a person’s lifetime. They can also vary in differ-
ent sources, making cancer more difficult to understand; many variables are involved
[Nussbaum et al. 2015].

Networks are generally used to represent complex biological systems. With
them, it is possible to model a biological system according to the interactions
of each element, be it a gene, protein, or other biomolecules [Ozturk et al. 2018].
In the literature, it is possible to find different biological networks, among them:
KEEG [Kanehisa et al. 2009], Reactome [Joshi-Tope et al. 2005] [Croft et al. 2013], Bi-
oGRID [Chatr-Aryamontri et al. 2017], HPRD [Keshava Prasad et al. 2008], STRING
[Szklarczyk et al. 2014], HINT [Das and Yu 2012], and others. Biological networks are
extensively used in network-based driver gene identification methods. These networks
are built and updated over time to represent interactions associated with various biolog-
ical mechanisms, which allows us to consider that it has a general rather than a specific
purpose. Thus, the network is not defined focusing only on the interactions associated
with a type of disease but rather interactions representing various biological activities.

The interest in identifying and discovering new driver mutations has contributed
to the development of computational methods that identify genes drivers, cancer genome
databases creation and maintenance, and biological networks. These methods also have



the primary function of distinguishing between driver and passenger mutations. These
methods use mutation data from patients (MAF) and biological networks as input data.
Some also allow the use of gene expression data. These input data are used internally in
the methods. Each method adopts a computational approach, which through the use of
genes from frequently mutated patients extracted from the MAF associated with the net-
work, can identify possible driver genes. The output of these methods is usually ordered
and scored a list of possible driver genes [Hristov and Singh 2017].

One of the computational techniques used to identify possible associations be-
tween genes and diseases is gene prioritization. The main objective of the gene priori-
tization method is to classify a set of candidate genes using different algorithms, which
can use data integration approaches from different databases, network-based approaches,
and machine learning-based approaches. These methods generally allow the use of seeds
gene lists, or disease selection or desired phenotype terms, to be used during the training
process. They also allow the use of candidate gene lists or complete genomes, which
are the genes to be prioritized. After sorting genes, the methods can generate lists with
sorted and scored genes [Zolotareva and Kleine 2019]. Some methods allow the use of
seeds gene lists for training, such as: Endeavour [Tranchevent et al. 2016], GeneMANIA
[Mostafavi et al. 2008], GPS [Meshkin et al. 2019], MaxLink [Guala et al. 2014], pBRIT
[Kumar et al. 2018], ToppGene [Chen et al. 2009], and ToppNet [Chen et al. 2009]). In
contrast, in other methods, instead of seed gene lists, the user can define disease or
phenotype terms as training data, such as: DisGeNET [Piñero et al. 2016], GLAD4U
[Jourquin et al. 2012], OpenTargets [Koscielny et al. 2017], Polysearch [Liu et al. 2015],
Phenolyzer [Yang et al. 2015], and PhenoRank [Cornish et al. 2018]. Various methods
allow the use of candidate genes lists, such as: OpenTargets, Phenolyzer, Endeavour, GPS,
pBRIT, ToppGene, and ToppNet. But, some methods only allow the use of a complete
genome instead of a list of candidate genes, such as: DisGeNET, GLAD4U, Polysearch,
PhenoRank, GeneMANIA, MaxLink [Raj and Sreeja 2018].

This study investigates whether there is an improvement in precision in the results
of driver gene identification methods when using networks enriched with genes associated
with each type of cancer compared to networks without enrichment. To enrich the genes
in the network, we used prioritization methods to score each set of genes in the network
according to each type of cancer, using genes from MAF.

For this study, the driver mutation identification method selected was the nCOP
[Hristov and Singh 2017]. Because it allows us to assign weights to each gene in the
network; it is easy to execute; and generates a list of potential driver genes, making it
possible to compare them with genes in the literature. Many driver gene identification
methods currently use complete biological networks (general-purpose). The nCop method
by default uses the HPRD [Keshava Prasad et al. 2008] network, and this was the network
adopted in this study.

We chose to use prioritization methods that simultaneously allow seed gene lists
for training and candidate gene lists. Only the Endeavour, GPS, pBRIT, ToppGene, and
ToppNet methods allow the use of both types of lists. We used this method category to
prioritize a list of genes extracted from the network (candidate genes) from a list of genes
extracted from MAF (seed genes). This choice made it possible to identify in the network
which genes have a functional association with frequently mutated genes for each type of



cancer. After analyzing the methods, we selected Endeavour, because it is one of the most
cited methods and compared with other methods in the literature.

We collected MAF for six cancer types and removed outliers from each file to
carry out the investigation proposed in this work. We also extracted genes from MAF and
the network used in the nCOP method. The extracted genes were used in Endeavor, where
genes from the MAF were used as seed genes, and genes extracted from the network
were used as candidate genes. We use the prioritization results to enrich the network. We
performed simulations with nCOP using MAF for each type of cancer and the enriched
and non-enriched networks. This study indicates that the enrichment of networks with
prioritized genes helps the driver identification methods discover a more significant gene
number recognized in the literature.

This paper is organized in the following order: Section 2 presents a computational
approach to investigate the performance of driver mutation identification methods using
biological networks and enriched biological networks. Next, Section 3 presents a com-
parative evaluation according to the literature, presenting the differences in performance
using biological networks and enriched biological networks. Finally, Section 4 describes
a summary of the results obtained in this study and discusses the contribution of the en-
richment process in driver mutation identification methods.

2. Methods

This section describes the methodology adopted to carry out this study, from selecting
data collection to the process adopted for the evaluation. Figure 1 graphically represents
the steps of the approach adopted in this study, and these are also described in detail in
the following subsections: 2.1 Data collection (1): We present the data that was collected
to be used in the experiment; 2.2 Data pre-processing (2): We describe what processes
are performed on the data for removing mutation data outliers, converting the mutation
file to nCOP, and extracting the list of genes with mutation frequency ≥ 3%, 5%, 10%
for each type of cancer, to be used in Endeavour; 2.3 Gene list prioritization (3): We
detail the parameters, criteria considered, and data generated as input for the Endeavour
to perform the prioritization in the candidate gene list, namely: list of genes for training
stage, database, and selection of candidate genes; 2.4 Simulation data preparation (4):
We adopted a process for the conversion of the list of genes prioritized by Endeavour, in
the nCOP weights file, for each experiment, as well as a description of how the network
used in nCOP is structurally represented in the file; 2.5 Simulation (5): We detail the
mutation data and weight files generated in the experiments for each cancer type and
mutation frequency used in each simulation; and 2.6 Evaluation results (6): We adopt
two different approaches to evaluate the results: an approach to calculate the precision
of each experiment, for each type of cancer, according to a benchmark, and an approach
to identify which genes are found only in enrichment, which is considered driver genes
according to the literature.

2.1. Data collection

This subsection presents the mutation data samples selected for each cancer type used dur-
ing the experiments and from which studies each sample was derived. A brief description
of the network selected to be used in this study is also presented.



Figure 1. A presentation of the approach.

2.1.1. Mutation data and Biological Network

In this study, we choose types of cancer frequently used in several studies and con-
sidered quite popular. After an analysis of the literature, we selected mutation data
for six types of cancer to be used as a case study: Bladder Cancer (BLCA) with 413
samples [Ciriello et al. 2015], Breast Invasive Carcinoma (BRCA) with 818 samples
[Robertson et al. 2017], Glioblastoma (GBM) with 206 samples [Network et al. 2008],
Pancreatic Adenocarcinoma (PAAD) with 184 samples, Prostate Adenocarcinoma
(PRAD) with 334 samples [Abeshouse et al. 2015], and Stomach Adenocarcinoma
(STAD) with 295 samples [Bass et al. 2014]. This data was captured in Mutation An-
notation Format (MAF)1 through cBioPortal2 [Gao et al. 2013]. A MAF file is a tab-
delimited text file that defines each type of information for each sample in each column.
The Hugo Symbol (gene name) and Tumor Sample Barcode (sample) fields are
relevant and used in this study.

1https://docs.gdc.cancer.gov/Data/File Formats/MAF Format
2https://www.cbioportal.org/datasets



HPRD is a protein interaction network extracted from the human protein reference
database, containing experimentally generated information with human proteome data.
All data entered into HPRD goes through a curation process, which increases its reliability
and avoids redundant protein insertion [Keshava Prasad et al. 2008]. HPRD is a network
used by default in the nCOP method. The HPRD used in this study is a preprocessed
version for the nCop method. The study [Hristov and Singh 2017] indicates that nodes
with high connectivity have been removed, being nodes with degrees > 900 and 10 nodes
with standard deviation outside the mean. Nine longer genes were also excluded, namely
TTN, MUC16, SYNE1, NEB, MUC19, CCDC168, FSIP2, OBSCN, GPR98, as they had
many mutations in extensive coverage of patients. The HPRD used has 9,379 nodes and
36,638 edges.

2.2. Data pre-processing

We extract all mutation data in MAF format, then pre-process to remove outliers and
convert the data to standard nCOP and Endeavour input format. A method of removing
hypermutated patients from the MAF, implemented by [Cutigi et al. 2020b], was used,
according to the method proposed by [Tamborero et al. 2013]. We identified all samples
that had a number of somatic mutations greater than (Q3 + 4.5× IQR), where Q3 is the
third quartile and the IQR is the interquartile range of the distribution of mutations in the
MAF samples. To generate the mutation data for nCOP, we identified in the MAF which
patients each gene appears mutated. We generate a list of all patients for each gene, then
create a mutation file extracted from each MAF, according to the mutation data standard
accepted by nCOP.

Endeavour allows the user to submit gene lists to the gene prioritization process:
gene lists for training and candidate gene lists. In this study, we used MAF genes as a
training set. However, we observed that the method has a computational limit, preventing
sending an extensive list of genes, making it necessary to select a smaller list of genes
to be used in the method. To define a smaller list of genes, we followed a long tail
distribution, where few genes appear mutated in many patients, and many genes appear
mutated in few patients. Based on the study of [Armenia et al. 2018], where it is indicated
that many genes appear mutated in less than 3% of patients, we took as motivation not to
select genes with a mutation rate lower than 3%.

In the literature, it is possible to find several approaches where genes with a high
mutation rate, strongly associated with a type of cancer, are preferentially considered.
Also, for this study, we chose to select genes with mutation frequency ≥ 3%, 5%, 10%, to
identify whether, from genes that appear mutated very frequently in patients, it is possible
through of them to identify possible new genes associated with each type of cancer. We
generate lists of genes for each type of cancer and each mutation frequency to do this. We
also extract all genes from the network and generate candidate genes from these genes.

2.3. Gene list prioritization

There are different methodologies used by gene prioritization methods, such as methods
based on networks, methods based on data aggregation, and others. Endeavour is based
on data aggregation. It uses sources of evidence to calculate the score for each gene,
which indicates the probability that the gene is possibly responsible for the phenotype.



[Zolotareva and Kleine 2019]. The Endeavour gene prioritization method allows the ex-
ecution of prioritization through four stages: 1) Species selection, 2) Selection of train-
ing genes list (seed genes), 3) Selection databases, and 4) Selection of candidate genes
[Tranchevent et al. 2016]. In this study we work with the species Homo sapiens.

2.3.1. Selection of list of training genes (seed genes):

Endeavour uses the genes from the training gene list to train its model according to the
biological processes associated with each seed gene [Tranchevent et al. 2016]. In this
study, we prioritize the genes extracted from the network according to the potential genes
associated with the biological activities of the genes in the training set. We extracted seed
genes from the mutation data for each type of cancer to be used as a training genes list.

2.3.2. Databases selection:

In Endeavour, the databases are used to help identify possible other genes that share
the same biological activities as the seed genes, those specified as a training set. In the
method, for each species type, it is possible to select one or a set of different databases,
ranging from pathway databases to pharmaceuticals databases. In this study, only the Re-
actome [Croft et al. 2013] database was used, which is a Pathways database. Reactome
was chosen because it is widely used, accepted by the scientific community, updated reg-
ularly, and all its data goes through a rigorous curation process.

2.3.3. Selection of candidate genes:

In the context of gene prioritization, a candidate gene list is a list of genes that should
be prioritized, according to the generated training model. Each gene can be prioritized
according to biological activities, phenotypes, or other characteristics of interest. In En-
deavour, biological activities are identified through selected databases. For each biolog-
ical activity, it is possible to locate which seed genes are present and which other genes
from the candidate list are also present and have great functional potential associated with
each seed gene [Tranchevent et al. 2016]. This study defined a list of candidate genes
from the extraction of genes of the biological network also used in nCOP. A reason for
choosing this approach to define the list of candidates is to prioritize the genes in the net-
work of the seed genes extracted from the mutation data for each type of cancer. For each
type of cancer, the genes in the network are prioritized for the cancer being studied.

2.4. Simulation data preparation

We generate a weights file by joining the weights assigned to the nCOP file and the scores
generated by Endeavour in the prioritization. From this process, we created a new weight
file containing all the genes of the network used in nCOP, with weights updated according
to the prioritization. We generate a weights file for each type of cancer and each type of
experiment. The network data used in nCOP has not changed. The network is represented
as a list of undirected edges. The weight file used in nCOP and the network have the same
genes.



2.5. Simulation

For each type of cancer, we performed four simulations, one simulation used only the
mutation data (complete) and the network, no gene prioritization. In comparison, the
other three simulations used mutation data (complete), the network, and the prioritized
weight file generated with a list of genes with mutation frequency ≥ 3%, 5%, 10% in the
source MAF file. In all, 24 simulations were performed with nCOP.

2.6. Evaluation

Identifying driver mutations generates a sorted and scored list, from the most relevant to
the least relevant driver gene found for the cancer type studied. Still, some genes found
by the method may be a driver gene, but not for cancer studied. Validations were done
using studies from the literature that indicate whether the gene is a gene driver or not.

We divided the results evaluations into two stages: 1) We calculated the precision
of the results using a benchmark to verify the experiments’ performance to find signif-
icant genes for each type of cancer. In this case, we use the benchmark because it is
constantly updated and well consolidated, CGC 3. 2) We evaluated whether genes found
only with enrichment are driver genes for the type of cancer in the experiment and how
often they appeared in samples obtained from intOGen 4 for cancer studied. The results
of the evaluation process are described in the next section.

3. Results
To evaluate the results, we adopted a precision calculation method by the literature refer-
ence to identify and compare the precision between the types of experiments performed
for each type of cancer. We performed the precision calculation according to the presence
or absence of genes in the Cancer Gene Sensus (CGC). The following calculation defines a
precision: Precision = nGiB/(nGiB+nGoB), where nGiB represents the number of
genes found in the benchmark and nGoB represents the number of genes not found. This
evaluation model was proposed by [Cutigi et al. 2020a]. At this stage of the evaluation,
we analyzed the three types of experiments individually compared to the no-enrichment
experiment for each type of cancer. In this step, we had the objective of calculating the
precision of each experiment to identify in which situations the experiments carried out
with enrichment have greater precision than the experiments without.

We observed that the number of genes found without enrichment is smaller than
those found with enrichment in some experiments. This fact limits the validation accu-
racy to the limit of the number of genes available. The results of the evaluation are shown
in Figure 2, where you can see the lines that indicate the precision for each type of ex-
periment. In some cases, enrichment experiments obtained greater accuracy than without
enrichment. In other cases, lower performance. However, the enrichment process helped
discover more genes in all cases.

To validate that each enrichment-only gene is a significant gene for the type of
cancer, we collected data from intOGen samples for each experiment, which allowed us
to identify which genes appear in the samples and how often. For this validation step, we

3https://cancer.sanger.ac.uk/census
4https://www.intOGen.org/



selected data sets from six types of Cancer in intOGen, namely: BLCA (411 samples),
BRCA (973 samples), GBM (391 samples), PAAD (176 samples), PRAD (492 samples),
and STAD (436 samples). All datasets selected in intOGen come from the TCGA.

Figure 2. Comparison of precision between results. No enrichment (normal), and
gene enrichment with mutation frequency ≥ 3%, 5%, 10%.

We obtained favorable results in all three types of experiments at this validation
stage, experiment with enrichment using genes with mutation frequency ≥ 3%, 5%,
10%. In all three types of experiments, we found the same driver genes in each can-
cer analyzed, such as: BLCA: PIK3CA (19.95%), ERBB2 (11.92%), ERBB3 (9.98%),
TSC1 (6.33%), RHOA (4.62%), HRAS (4.14%), KRAS (3.89%), PTEN (3.16%),
PIK3CB (2.19%), RAF1(0.97%); BRCA: RB1 (2.26%), CTCF (2.16%), CREBBP
(1.44%), FBXW7 (1.34%), SMAD4 (0.51%); GBM: PTPN11 (2.81%), NRAS (1.02%);
PAAD: GNAS (4.55%), TGFBR2 (3.98%), PIK3CA (2.84%), U2AF1 (1.14%); PRAD:
LRP1B (5.08%), KDM6A (1.22%); and STAD: KRAS (5.73%), PTEN (3.21%), ERBB2
(2.98%), SDC4 (0.92%). These results are graphically represented in the Figure 3.

4. Conclusion and Discussion
This study investigated the performance of driver mutation identification methods using
biological networks and enriched networks. We selected two computational methods for
the experiment stage: 1) nCOP as a driver mutation identification method and 2) En-
deavour as a gene prioritization method from training gene set, pathways database, and
candidate gene set. As data set were MAFs for 6 cancer types (BLCA, BRCA, GBM,
PAAD, PRAD, and STAD), and a biological functional interaction network (HPRD).



Figure 3. Genes present in the intOGen.

We used nCop as a driver gene identification method in this study and Endeav-
our as a gene prioritization method. We selected nCop because it allows us to assign
weights to each gene in the network, but the same experiment can be performed using
other methods to assign weights to the genes in the network.

We note Endeavour has computational limitations regarding the size of the data
input, which would make it impossible to use all the genes from the MAF’s, as some
have more than 15,000 genes. Therefore, we extracted from each MAF only genes with
mutation frequency greater than or equal to 3%, 5%, and 10%. We adopted this pro-
cess to remove from the samples only genes with low mutation frequency and analyze
whether even genes with a higher mutation rate allow the discovery of more driver genes
in conjunction with nCOP.

The results indicate that even for the experiment with enrichment that obtained a
lower precision than without enrichment, it was possible to discover a more significant
number of driver genes recognized by the literature. In all cases, the results were posi-
tive concerning the number of driver genes discovered when we used enrichment in the
experiment.

For future work, we will identify if the genes discovered with enrichment and that
by the literature are not yet recognized as drivers, if they are cited in recent studies as a
driver, oncogene, or tumor suppressor. This future work may indicate that possible genes
found with enrichment are not recognized as drivers, but studies are emerging on them



that indicate their association with cancer.

Acknowledgments

The authors acknowledge Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior
(CAPES) for their financial support for the conclusion of this study.

References

Abeshouse, A., Ahn, J., Akbani, R., Ally, A., Amin, S., Andry, C. D., Annala, M.,
Aprikian, A., Armenia, J., Arora, A., et al. (2015). The molecular taxonomy of primary
prostate cancer. Cell, 163(4):1011–1025.

Armenia, J., Wankowicz, S. A., Liu, D., Gao, J., Kundra, R., Reznik, E., Chatila, W. K.,
Chakravarty, D., Han, G. C., Coleman, I., et al. (2018). The long tail of oncogenic
drivers in prostate cancer. Nature genetics, 50(5):645–651.

Bass, A. J., Thorsson, V., Shmulevich, I., Reynolds, S. M., Miller, M., Bernard, B., Hi-
noue, T., Laird, P. W., Curtis, C., Shen, H., et al. (2014). Comprehensive molecular
characterization of gastric adenocarcinoma. Nature, 513(7517):202.

Chatr-Aryamontri, A., Oughtred, R., Boucher, L., Rust, J., Chang, C., Kolas, N. K.,
O’Donnell, L., Oster, S., Theesfeld, C., Sellam, A., et al. (2017). The biogrid in-
teraction database: 2017 update. Nucleic acids research, 45(D1):D369–D379.

Chen, J., Bardes, E. E., Aronow, B. J., and Jegga, A. G. (2009). Toppgene suite for gene
list enrichment analysis and candidate gene prioritization. Nucleic acids research,
37(suppl 2):W305–W311.

Ciriello, G., Gatza, M. L., Beck, A. H., Wilkerson, M. D., Rhie, S. K., Pastore, A., Zhang,
H., McLellan, M., Yau, C., Kandoth, C., et al. (2015). Comprehensive molecular
portraits of invasive lobular breast cancer. Cell, 163(2):506–519.

Cornish, A. J., David, A., and Sternberg, M. J. (2018). Phenorank: reducing study bias in
gene prioritization through simulation. Bioinformatics, 34(12):2087–2095.

Croft, D., Mundo, A. F., Haw, R., Milacic, M., Weiser, J., Wu, G., Caudy, M., Garapati,
P., Gillespie, M., Kamdar, M. R., et al. (2013). The reactome pathway knowledgebase.
Nucleic acids research, 42(D1):D472–D477.

Cutigi, J. F., Evangelista, A. F., and Simao, A. (2020a). Genwemme: a network-based
computational method for prioritizing groups of significant related genes in cancer. In
Advances in Bioinformatics and Computational Biology: 12th Brazilian Symposium
on Bioinformatics, BSB 2019, Fortaleza, Brazil, October 7–10, 2019, Revised Selected
Papers, volume 11347, page 29. Springer Nature.

Cutigi, J. F., Evangelista, R. F., Ramos, R. H., Ferreira, C. d. O. L., Evangelista, A. F.,
de Carvalho, A. C., and Simao, A. (2020b). Combining mutation and gene network
data in a machine learning approach for false-positive cancer driver gene discovery. In
Brazilian Symposium on Bioinformatics, pages 81–92. Springer.

Das, J. and Yu, H. (2012). Hint: High-quality protein interactomes and their applications
in understanding human disease. BMC systems biology, 6(1):92.



Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., Sun, Y., Ja-
cobsen, A., Sinha, R., Larsson, E., et al. (2013). Integrative analysis of complex cancer
genomics and clinical profiles using the cbioportal. Science signaling, 6(269):pl1–pl1.

Guala, D., Sjölund, E., and Sonnhammer, E. L. (2014). Maxlink: network-based prioriti-
zation of genes tightly linked to a disease seed set. Bioinformatics, 30(18):2689–2690.

Hristov, B. H. and Singh, M. (2017). Network-based coverage of mutational profiles
reveals cancer genes. Cell systems, 5(3):221–229.

Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono, B., Jas-
sal, B., Gopinath, G., Wu, G., Matthews, L., et al. (2005). Reactome: a knowledgebase
of biological pathways. Nucleic acids research, 33(suppl 1):D428–D432.

Jourquin, J., Duncan, D., Shi, Z., and Zhang, B. (2012). Glad4u: deriving and prioritizing
gene lists from pubmed literature. BMC genomics, 13(8):1–12.

Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., and Hirakawa, M. (2009). Kegg
for representation and analysis of molecular networks involving diseases and drugs.
Nucleic acids research, 38(suppl 1):D355–D360.

Keshava Prasad, T., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan,
S., Telikicherla, D., Raju, R., Shafreen, B., Venugopal, A., et al. (2008). Human protein
reference database—2009 update. Nucleic acids research, 37(suppl 1):D767–D772.

Koscielny, G., An, P., Carvalho-Silva, D., Cham, J. A., Fumis, L., Gasparyan, R., Hasan,
S., Karamanis, N., Maguire, M., Papa, E., et al. (2017). Open targets: a platform for
therapeutic target identification and validation. Nucleic acids research, 45(D1):D985–
D994.

Kumar, A. A., Van Laer, L., Alaerts, M., Ardeshirdavani, A., Moreau, Y., Laukens,
K., Loeys, B., and Vandeweyer, G. (2018). pbrit: gene prioritization by correlating
functional and phenotypic annotations through integrative data fusion. Bioinformatics,
34(13):2254–2262.

Liu, Y., Liang, Y., and Wishart, D. (2015). Polysearch2: a significantly improved text-
mining system for discovering associations between human diseases, genes, drugs,
metabolites, toxins and more. Nucleic acids research, 43(W1):W535–W542.

Meshkin, A., Shakery, A., and Masoudi-Nejad, A. (2019). Gps: Identification of disease
genes by rank aggregation of multi-genomic scoring schemes. Genomics, 111(4):612–
618.

Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C., and Morris, Q. (2008). Genema-
nia: a real-time multiple association network integration algorithm for predicting gene
function. Genome biology, 9(1):1–15.

Network, C. G. A. T. R. et al. (2008). Comprehensive genomic characterization defines
human glioblastoma genes and core pathways. Nature, 455(7216):1061.

Nussbaum, R. L., McInnes, R. R., and Willard, H. F. (2015). Thompson & Thompson
genetics in medicine e-book. Elsevier Health Sciences.

Ozturk, K., Dow, M., Carlin, D. E., Bejar, R., and Carter, H. (2018). The emerging po-
tential for network analysis to inform precision cancer medicine. Journal of molecular
biology, 430(18):2875–2899.
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