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Abstract. With the COVID-19 global pandemic, computer-assisted diagnoses
of medical images have gained much attention, and robust methods of Semantic
Segmentation of Computed Tomography (CT) became highly desirable. Seman-
tic Segmentation of CT is one of many research fields of automatic detection
of COVID-19 and has been widely explored since the COVID-19 outbreak. In
this work, we propose an extensive analysis of how different data augmenta-
tion techniques improve the training of encoder-decoder neural networks on
this problem. Twenty different data augmentation techniques were evaluated on
five different datasets. Each dataset was validated through a five-fold cross-
validation strategy, thus resulting in over 3,000 experiments. Our findings show
that spatial level transformations are the most promising to improve the learning
of neural networks on this problem.

Resumo. Com a COVID-19, diagnósticos de imagens médicas assistidos por
computador ganharam muita atenção, e métodos robustos de Segmentação
Semântica de Tomografia Computadorizada (TC) tornaram-se altamente de-
sejáveis. A Segmentação Semântica de TC é um dos muitos campos de pesquisa
de detecção automática da COVID-19 e foi amplamente explorado desde o surto
da COVID-19. Neste trabalho, propomos uma análise extensiva sobre o quanto
diferentes técnicas de aumento de dados contribuem para melhorar o treina-
mento de redes neurais codificador-decodificador sobre este problema. Vinte
técnicas diferentes de aumento de dados foram avaliadas em cinco conjuntos
de dados diferentes. Cada conjunto de dados foi validado através de uma es-
tratégia de validação cruzada de cinco subconjuntos, resultando assim em mais
de 3.000 experimentos. Nossas descobertas mostram que as transformações de
nı́vel espacial são as mais promissoras para melhorar o aprendizado das redes
neurais sobre este problema.

1. Introduction

Since 2019 the world has struggled with the new coronavirus (COVID-19) pandemic, with
millions of infections and deaths worldwide [Wang et al. 2020]. Until now, there are a to-
tal of 427,169,421 global cases and a total of 5,902,878 global deaths [of Medicine 2022]
(updated February 22th, 2022). Due to the virus’s quick dissemination, early diagnosis
is highly desirable for faster treatment and tracking infected people [Chen et al. 2020a].
Automatic detection of COVID-19 infections in Computed Tomographys (CTs) shows



to be a great help for early diagnoses [Shi et al. 2021], with the Semantic Segmen-
tation [Cao and Bao 2020] of CTs being widely explored since the COVID-19 out-
break [Shi et al. 2021]. Deep Learning based techniques and Deep Neural Networks
achieved impressive results in the segmentation of COVID-19 CTs [Shi et al. 2021,
Krinski et al. 2021]. However, it has two limiting factors. The first one is that label-
ing Semantic Segmentation is a labor-intensive and timing-consuming process, and each
pixel of the image must receive the correct label. Otherwise, the network could converge
to wrong results [Shi et al. 2021, Cao and Bao 2020]. In addition to that, labeling CT
segmentation datasets must be made by highly specialized doctors to properly label the
lesion regions of the image [Shi et al. 2021].

With new approaches being proposed quickly, an urgency aggravated by the global
pandemic, the need for a proper evaluation becomes apparent. A broad benchmark of
architectures was presented by [Krinski et al. 2021], and one of their conclusions was that
the models’ generalization was impaired by the small number of samples on the field’s
datasets which also suffer from class imbalance introducing some bias to the models. Data
augmentation can mitigate this issue; however, the influence of data augmentation during
training was left out.

In this work, we propose an extensive analysis of how different data augmenta-
tion techniques improve the training of encoder-decoder neural networks on this prob-
lem. Twenty different data augmentation techniques were evaluated, see section 4,
in three distinct experiments using five CTs datasets: MedSeg [MedSeg 2021], Zen-
odo [Jun et al. 2020], CC-CCII [Zhang et al. 2020], MosMed [Morozov et al. 2020], Ri-
cord1a [Tsai et al. 2020]. Each dataset was validated through a five-fold cross-validation
strategy, thus resulting in over 3,000 experiments. The code for running these same ex-
periments is publicly available1.

2. Related Work

Data augmentation aims to generate a synthetic image by applying different operations to
a preexisting labeled image [Ruiz et al. 2020b]. The most common operation are varia-
tions of an affine transformation such as flip, translate, rotate, scale. The Random Eras-
ing [Zhong et al. 2020] is one example of data augmentation that adds information to the
original image. In this technique, a rectangle with random values is positioned in the
image. This rectangle’s height, width, and center points are random values. This data
augmentation helps the network learning process be more robust to object occlusions.
Also, it reduces the overfitting in the training step. The CutMix [Yun et al. 2019] follows
the same idea of the Random Erasing. However, instead of using constant values or even
random ones, the technique mixes two images by adding an image A to some region of
image B. This reduces information loss and encourages generalization.

Following the same line of CutMix [Yun et al. 2019], the study presented
by [Summers and Dinneen 2019] evaluated several different non-linear mixing algo-
rithms. The authors showed that non-linear mixing algorithms are also effective as linear
mixing data augmentations. [Hendrycks et al. 2020] proposed a mixing data augmenta-
tion called AugMix. In AugMix, sequences of data augmentations are applied in parallel,

1https://github.com/VRI-UFPR/SparkInTheDarkLars2021



generating a different image for each data augmentation sequence. In the end, an element-
wise convex combination is applied to mix all generated images. In [Kisantal et al. 2019],
the authors proposed a data augmentation technique for small objects to improve such ob-
jects’ detection and segmentation. The authors applied ”copy and pasting” strategy to
create several copies of the objects of interest. They showed that this strategy increases
the number of anchor boxes generated by the Mask-RCNN [He et al. 2017], which helps
the network to learn and detect small objects. The ANDA [Ruiz et al. 2019] and IDA
[Ruiz et al. 2020a] techniques follow the idea of introducing new objects, however since
those are techniques focused on the generic problem of Salient Object Detection (SOD),
some additional operations are necessary such as Image Inpainting to erase the original
object and some additional computation to choose which combination of background and
object produce a significant salience and the affine transformations to be applied to the
new object that will replace the original one.

In the Grid Mask [Chen et al. 2020b], a mask composed of black squares uni-
formly distributed is generated and applied on top of the image. This augmentation
follows the same idea of Random Erasing, which forces the network to learn from oc-
cluded regions in the image and reduces overfitting. The advantage over others that
randomly remove regions from the image is that random algorithms can remove rele-
vant regions from the image. The InstaBoost [Fang et al. 2019] uses an inpainting tech-
nique [Bertalmio et al. 2001] to remove the interest object from the image and place it
in another region in the image. An appearance consistency heatmap [Field et al. 1993] is
used to estimate the new region of the image where the object will be placed.

The authors of [Liu et al. 2019] proposed a data augmentation based on image-
to-image divided into two steps: training and deployment. The proposed method uses
several images of different classes in the training step, called source images, and learns
to translate the images between these classes. Then, in the deployment step, a small set
of images from the target class is used, with the proposed method being able to translate
from the source classes to the target class. For each image to be mixed in the Super-
Mix [Dabouei et al. 2020], a mixing binary mask with the salience information of the
respective image is generated. Then, a teacher model already trained in the problem is
applied to mix the images, optimize the position of the salient region in the mixed image,
and ensure that both salient regions are presented in the final mixed image.

These Data Augmentations (DAs) are, in general, for generic segmentation prob-
lems. However, there is no proper comparison of DA methods for the COVID-19 segmen-
tation problem. In this work, we focus on performing a extensive comparison of generic
DA methods in the approached problem.

3. Metrics and Datasets

The models were trained and evaluated across five different CTs datasets:
MedSeg [MedSeg 2021], Zenodo [Jun et al. 2020], CC-CCII [Zhang et al. 2020],
MosMed [Morozov et al. 2020], and Ricord1a [Tsai et al. 2020]. The MedSeg has 929
images and labels for four classes, with the following pixel proportion: Background
(0.98563), Ground Glass Opacity (GGO) (0.01072), Consolidation (0.00351), and Pleural
Effusion (0.0001). The Zenodo dataset has 3,520 images and labels for four classes, with
the following pixel proportion: Background (0.89893), Left Lung (0.04331), Right Lung



(0.04923), and Infections (0.00852). The MosMed dataset is composed of 2,049 images,
with labels for two classes, with the following pixel proportion: Background (0.99810)
and GGO-Consolidation (0.00189). Ricord dataset is divided into three sets: 1a, 1b, and
1c. The set 1a is the only one with segmentation masks and has 9,166 images with labels
for two classes, with the following pixel proportion: Background (0.95295) and Infections
(0.04704). We also used a sub-set of CC-CCII with segmentation masks composed of 750
images and has labels for four classes, with the following pixel proportion: Background
(0.87152), Lung Field (0.11691), GGO (0.00802), and Consolidation (0.00353).

One of the problems pointed out in [Krinski et al. 2021] was the class imbalance
due to several images with just the background class; in fact, recent work has shown
that several problems suffer from class imbalance [Laroca et al. 2021, Laroca et al. 2022].
Therefore, to mitigate this problem, in the first step of this evaluation, we removed from
the datasets images with no lesion in the ground-truth mask. In the CC-CCII dataset, 4 im-
ages were removed; in the MedSeg dataset, 457 images were removed; in the MosMed,
1,264 images were removed; in the Zenodo dataset, 547 were removed; and in the Ri-
cord1a, no image was removed. The datasets were split into 80% for training and 20% for
testing. Then, a five-fold cross-validation strategy further divided the training set between
training and validating sets. The metrics used for evaluation were the F-score described
by equation 1 and Intersection over Union (IoU) described by equation 2.

F − score =
TruePositive

TruePositive+ FalsePositive+FalseNegative
2

(1)

IoU =
intersection

union
(2)

4. Experiments
In general, when dealing with the COVID-19 CT segmentation problem it is
usual to either completely neglect a dedicated evaluation of the impact of DA
techniques or merely report using a limited set of generic DA, not optimized
or specially designed for medical images, like Flip and Rotation operations,
such as in [Zhao et al. 2021, Qiblawey et al. 2021, Raj et al. 2021, Müller et al. 2020,
Chen et al. 2020c, Xu et al. 2020]. To properly measure the impact of data augmenta-
tion on the COVID-19 CT segmentation problem, we evaluated twenty data augmentation
techniques.

In this work we evaluated the following twenty data augmentation techniques:
CLAHE, Coarse Dropout, Elastic Transform, Emboss, Flip, Gaussian Blur, Grid Dis-
tortion, Grid Dropout, Image Compression, Median Blur, Optical Distortion, Piecewise
Affine Transformation, Posterize, RBC, Random Crop, Random Gamma, Random Snow,
Rotate, Sharpen, Shift Scale Rotate. Figure 1 illustrates the twenty data augmentation
techniques applied to a CT image 1(a). All data augmentation techniques evaluated here
are available in the Albumentation library [Buslaev et al. 2020].

The encoder-decoder network chosen to evaluate the dataset augmentations was
the RegNetx-002 [Xu et al. 2021] encoder and U-net++ [Zhou et al. 2018] decoder. Since
the encoders achieved close results in the comparison performed in [Krinski et al. 2021],
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Figure 1. Illustration of twenty data augmentation techniques applied in a CT
image. In 1(a), the original image is presented. The data augmenta-
tions are illustrated in the following sequence: Contrast Limited Adaptive
Histogram Equalization (CLAHE) 1(b), Coarse Dropout 1(c), Elastic Trans-
form 1(d), Emboss 1(e), Flip 1(f), Gaussian Blur 1(g), Grid Distortion 1(h),
Grid Dropout 1(i), Image Compression 1(j), Median Blur 1(k), Optical Dis-
tortion 1(l), Piecewise Affine Transformation 1(m), Posterize 1(n), Random
Brightness Contrast (RBC) 1(o), Random Crop 1(p), Random Gamma 1(q),
Random Snow 1(r), Rotate 1(s), Sharpen 1(t), Shift Scale Rotate 1(u).

the RegNetx-002 was chosen due to being the network with a smaller number of pa-
rameters, making the RegNetx-002 faster for training. The U-net++ was chosen because
it achieved the highest F-score compared with other decoders [Krinski et al. 2021]. The
evaluation of how data augmentation affects the results of different encoders and decoders
was left for future evaluation. Also, all experiments were evaluated through a five-fold
cross-validation strategy. In total, we performed three sets of data augmentation evalua-
tion, with each set varying network training parameters. The varied parameters were the
number of epochs trained, the learning rate, and learning rate decay.

In the first evaluation of data augmentations, the architecture was trained for 50



Table 1. Results of the first data augmentation evaluation in the test set. The
blue-colored values indicate the best F-scores, and the red-colored values
indicate the best IoUs values. Two probabilities of applying the data aug-
mentation were evaluated: 0.1 and 0.2. The green highlighted values show
the data augmentations in which the P-value achieved values lower than
0.05, and the null hypothesis was rejected.

Probability Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo

F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.6419 0.6011 0.4763 0.4289 0.7859 0.7211 0.8956 0.8372 0.8497 0.8152

0.1

CLAHE
Coarse Dropout

Elastic Transform
Emboss

Flip
Gaussian Blur
Grid Distortion
Grid Dropout

Image Compression
Median Blur

Optical Distortion
Piecewise Affine

Posterize
RBC

Random Crop
Random Gamma
Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.6363
0.6410
0.6454
0.6409
0.6458
0.6419
0.6443
0.6409
0.6427
0.6423
0.6439
0.6430
0.6446
0.6452
0.6425
0.6421
0.6415
0.6473
0.6426
0.6452

0.5962
0.6004
0.6048
0.6007
0.6044
0.6011
0.6036
0.5999
0.6019
0.6015
0.6032
0.6025
0.6039
0.6039
0.6020
0.6017
0.6010
0.6064
0.6024
0.6043

0.4754
0.4756
0.4781
0.4749
0.4787
0.4758
0.4764
0.4748
0.4769
0.4764
0.4768
0.4756
0.4763
0.4780
0.4757
0.4759
0.4737
0.4775
0.4760
0.4785

0.4278
0.4281
0.4305
0.4275
0.4309
0.4283
0.4291
0.4272
0.4295
0.4290
0.4292
0.4282
0.4289
0.4303
0.4285
0.4280
0.4263
0.4299
0.4285
0.4307

0.7927
0.7904
0.7977
0.7922
0.7957
0.7892
0.7967
0.7916
0.7936
0.7851
0.7932
0.8000
0.7954
0.7859
0.7863
0.7907
0.7887
0.7998
0.7885
0.8001

0.7268
0.7244
0.7311
0.7265
0.7296
0.7238
0.7308
0.7265
0.7276
0.7201
0.7269
0.7335
0.7285
0.7202
0.7218
0.7252
0.7231
0.7335
0.7225
0.7336

0.8933
0.8941
0.8915
0.8960
0.8858
0.8942
0.8911
0.8954
0.8950
0.8955
0.8922
0.8909
0.8931
0.8930
0.8952
0.8933
0.8936
0.8893
0.8941
0.8924

0.8340
0.8350
0.8322
0.8374
0.8256
0.8353
0.8314
0.8367
0.8361
0.8371
0.8330
0.8320
0.8338
0.8336
0.8367
0.8345
0.8346
0.8297
0.8350
0.8330

0.8490
0.8488
0.8496
0.8490
0.8468
0.8494
0.8502
0.8493
0.8499
0.8496
0.8500
0.8499
0.8492
0.8493
0.8497
0.8496
0.8492
0.8475
0.8494
0.8494

0.8142
0.8140
0.8149
0.8143
0.8110
0.8148
0.8156
0.8146
0.8155
0.8151
0.8155
0.8154
0.8147
0.8146
0.8151
0.8149
0.8143
0.8118
0.8149
0.8146

0.2

CLAHE
Coarse Dropout

Elastic Transform
Emboss

Flip
Gaussian Blur
Grid Distortion
Grid Dropout

Image Compression
Median Blur

Optical Distortion
Piecewise Affine

Posterize
RBC

Random Crop
Random Gamma
Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.6386
0.6379
0.6454
0.6420
0.6465
0.6421
0.6476
0.6398
0.6436
0.6431
0.6455
0.6480
0.6417
0.6419
0.6456
0.6415
0.6422
0.6458
0.6418
0.6482

0.5978
0.5976
0.6050
0.6015
0.6054
0.6015
0.6070
0.5990
0.6022
0.6025
0.6045
0.6072
0.6014
0.6009
0.6044
0.6006
0.6015
0.6050
0.6009
0.6070

0.4723
0.4744
0.4785
0.4755
0.4771
0.4755
0.4802
0.4740
0.4776
0.4762
0.4781
0.4771
0.4772
0.4761
0.4752
0.4761
0.4711
0.4781
0.4770
0.4806

0.4252
0.4270
0.4303
0.4280
0.4292
0.4288
0.4325
0.4264
0.4299
0.4289
0.4300
0.4297
0.4299
0.4280
0.4279
0.4279
0.4237
0.4302
0.4289
0.4326

0.7844
0.7931
0.8015
0.7927
0.7991
0.7876
0.8038
0.7868
0.7965
0.7888
0.7941
0.8049
0.7967
0.7875
0.7943
0.7935
0.7875
0.8010
0.7852
0.8004

0.7192
0.7273
0.7345
0.7270
0.7328
0.7230
0.7368
0.7209
0.7310
0.7231
0.7279
0.7385
0.7317
0.7212
0.7287
0.7274
0.7215
0.7340
0.7189
0.7340

0.8955
0.8920
0.8839
0.8942
0.8889
0.8928
0.8886
0.8855
0.8963
0.8951
0.8938
0.8899
0.8923
0.8867
0.8953
0.8916
0.8883
0.8813
0.8954
0.8856

0.8367
0.8329
0.8229
0.8355
0.8289
0.8338
0.8288
0.8250
0.8378
0.8364
0.8352
0.8304
0.8330
0.8266
0.8368
0.8323
0.8284
0.8203
0.8370
0.8253

0.8491
0.8489
0.8491
0.8487
0.8444
0.8494
0.8496
0.8487
0.8499
0.8497
0.8503
0.8495
0.8497
0.8493
0.8497
0.8493
0.8484
0.8473
0.8495
0.8491

0.8142
0.8141
0.8141
0.8137
0.8080
0.8146
0.8148
0.8140
0.8155
0.8150
0.8159
0.8147
0.8151
0.8145
0.8150
0.8146
0.8133
0.8114
0.8148
0.8141

epochs with a learning rate of 0.001. The learning rate was divided by 10 every 10 epochs.
Two probabilities of applying the data augmentation were evaluated: 0.1 and 0.2. As
presented in Table 1, most of the data augmentations did not improve the F-score and
the IoU. The MosMed dataset was the only dataset that applying data augmentations
improved the results, with improvements in the F-score of 1% and 2% in most of the data
augmentations applied. In the Zenodo dataset, most of the augmentations achieved similar
results with the baseline. However, the Grid Distortion with the probability of 0.1 and the
Optical Distortion with the probability of 0.2 improved the F-score by 1%. In the MedSeg,
only the Shift Scale Rotate augmentation with the probability of 0.2 achieved better results
with an F-score 1% higher than the baseline. The CC-CCII and Ricord1a datasets did
not achieve improvements with data augmentations. To perform a statistical analysis of



the data augmentation evaluation, the one-sided Wilcoxon signed-rank test was applied
with the null hypothesis as the F-scores of the distribution without data augmentation are
greater than the distributions with data augmentation.

The datasets CC-CCII and MosMed were the datasets most sensitive to data aug-
mentation and achieved better F-scores in seven data augmentations when the data aug-
mentation was applied with probability 0.1 and eight data augmentations when applied
with probability 0.2. In the MosMed dataset, the null hypothesis was rejected in most of
the data augmentations applied in both probabilities. In the MedSeg, the null hypotheses
were rejected in only one data augmentation when applied with probability 0.1 and two
data augmentations when applied with probability 0.2. The Ricord1a and Zenodo did not
achieve statistical significance to reject the null hypotheses in any data augmentation.

Table 2. Results of the second data augmentation evaluation in the test set. The
blue-colored values indicate the best F-scores, and the red-colored values
indicate the best IoUs values. Two probabilities of applying the data aug-
mentation were evaluated: 0.1 and 0.2. The green highlighted values show
the data augmentations in which the P-value achieved values lower than
0.05, and the null hypothesis was rejected.

Probability Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo

F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.6447 0.6048 0.4780 0.4308 0.7938 0.7292 0.9031 0.8472 0.8511 0.8174

0.1

CLAHE
Coarse Dropout

Elastic Transform
Emboss

Flip
Gaussian Blur
Grid Distortion
Grid Dropout

Image Compression
Median Blur

Optical Distortion
Piecewise Affine

Posterize
RBC

Random Crop
Random Gamma
Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.6431
0.6429
0.6499
0.6458
0.6493
0.6448
0.6506
0.6412
0.6462
0.6462
0.6487
0.6495
0.6469
0.6439
0.6470
0.6449
0.6435
0.6522
0.6441
0.6504

0.6025
0.6016
0.6095
0.6054
0.6087
0.6045
0.6102
0.6011
0.6052
0.6060
0.6079
0.6092
0.6070
0.6037
0.6057
0.6043
0.6037
0.6115
0.6036
0.6096

0.4781
0.4769
0.4817
0.4777
0.4812
0.4799
0.4814
0.4802
0.4787
0.4765
0.4819
0.4819
0.4796
0.4805
0.4772
0.4783
0.4770
0.4810
0.4778
0.4823

0.4305
0.4304
0.4342
0.4308
0.4344
0.4329
0.4341
0.4324
0.4315
0.4299
0.4341
0.4349
0.4326
0.4326
0.4303
0.4305
0.4301
0.4341
0.4306
0.4350

0.7939
0.7985
0.8065
0.7953
0.8115
0.7917
0.8121
0.7927
0.7961
0.7959
0.8050
0.8018
0.7985
0.7940
0.7915
0.7949
0.7958
0.8073
0.7915
0.8060

0.7288
0.7335
0.7404
0.7296
0.7451
0.7265
0.7459
0.7279
0.7318
0.7314
0.7391
0.7370
0.7329
0.7276
0.7264
0.7300
0.7296
0.7416
0.7269
0.7397

0.9033
0.9027
0.8993
0.9039
0.8990
0.9035
0.9022
0.9019
0.9033
0.9023
0.9035
0.9022
0.9021
0.9025
0.9009
0.9020
0.9027
0.9007
0.9026
0.9026

0.8476
0.8464
0.8421
0.8482
0.8417
0.8473
0.8452
0.8453
0.8472
0.8458
0.8473
0.8454
0.8457
0.8460
0.8441
0.8455
0.8463
0.8439
0.8467
0.8460

0.8512
0.8510
0.8514
0.8509
0.8497
0.8511
0.8523
0.8511
0.8508
0.8516
0.8516
0.8522
0.8515
0.8512
0.8511
0.8510
0.8511
0.8501
0.8512
0.8518

0.8174
0.8174
0.8176
0.8171
0.8149
0.8173
0.8188
0.8174
0.8170
0.8179
0.8181
0.8186
0.8178
0.8174
0.8173
0.8171
0.8173
0.8158
0.8177
0.8181

0.2

CLAHE
Coarse Dropout

Elastic Transform
Emboss

Flip
Gaussian Blur
Grid Distortion
Grid Dropout

Image Compression
Median Blur

Optical Distortion
Piecewise Affine

Posterize
RBC

Random Crop
Random Gamma
Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.6408
0.6420
0.6526
0.6430
0.6501
0.6431
0.6543
0.6408
0.6460
0.6467
0.6492
0.6482
0.6472
0.6415
0.6449
0.6459
0.6416
0.6526
0.6466
0.6534

0.6005
0.6014
0.6121
0.6026
0.6091
0.6026
0.6139
0.6006
0.6057
0.6063
0.6085
0.6079
0.6063
0.6008
0.6049
0.6051
0.6018
0.6121
0.6063
0.6127

0.4764
0.4776
0.4840
0.4790
0.4813
0.4775
0.4835
0.4778
0.4782
0.4769
0.4821
0.4815
0.4793
0.4791
0.4771
0.4772
0.4752
0.4831
0.4778
0.4843

0.4293
0.4307
0.4366
0.4316
0.4341
0.4300
0.4365
0.4308
0.4308
0.4302
0.4346
0.4343
0.4318
0.4312
0.4299
0.4301
0.4280
0.4357
0.4310
0.4369

0.7919
0.7952
0.8137
0.7990
0.8066
0.7920
0.8102
0.7950
0.7962
0.7964
0.8057
0.8106
0.7930
0.7995
0.7963
0.7929
0.7961
0.8119
0.7867
0.8135

0.7273
0.7303
0.7469
0.7326
0.7408
0.7276
0.7441
0.7298
0.7310
0.7305
0.7396
0.7444
0.7280
0.7333
0.7309
0.7274
0.7291
0.7456
0.7209
0.7462

0.9025
0.9033
0.9012
0.9043
0.8977
0.9021
0.9007
0.9019
0.9048
0.9022
0.9030
0.9024
0.9027
0.9019
0.9034
0.9025
0.9028
0.8945
0.9035
0.8964

0.8461
0.8471
0.8439
0.8484
0.8397
0.8457
0.8432
0.8452
0.8494
0.8455
0.8466
0.8454
0.8463
0.8453
0.8474
0.8462
0.8467
0.8362
0.8474
0.8385

0.8512
0.8512
0.8517
0.8510
0.8486
0.8509
0.8524
0.8507
0.8512
0.8510
0.8518
0.8516
0.8512
0.8512
0.8513
0.8512
0.8507
0.8498
0.8515
0.8517

0.8173
0.8176
0.8178
0.8170
0.8135
0.8171
0.8189
0.8167
0.8175
0.8173
0.8183
0.8179
0.8174
0.8174
0.8175
0.8173
0.8166
0.8153
0.8180
0.8180



In the second evaluation of data augmentations, the architecture was trained for
100 epochs with a learning rate of 0.001. The learning rate was divided by 10 every 20
epochs. Two probabilities of applying the data augmentation were evaluated: 0.1 and
0.2. As presented in Table 2, the MosMed achieved the most significant improvements,
with the Grid Distortion with probability 0.1 and the Elastic Transform with probability
0.2 increasing the F-score by 2% compared with the baseline. However, unlike the first
evaluation, the MosMeg achieved better F-scores in only seven augmentations instead of
fourteen augmentations.

Table 3. Results of the third data augmentation evaluation in the test set. The
blue-colored values indicate the best F-scores, and the red-colored values
indicate the best IoUs values. Two probabilities of applying the data aug-
mentation were evaluated: 0.1 and 0.2. The green highlighted values show
the data augmentations in which the P-value achieved values lower than
0.05, and the null hypothesis was rejected.

Probability Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo

F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.6317 0.5893 0.4658 0.4183 0.7736 0.7089 0.9133 0.8610 0.8496 0.8153

0.1

CLAHE
Coarse Dropout

Elastic Transform
Emboss

Flip
Gaussian Blur
Grid Distortion
Grid Dropout

Image Compression
Median Blur

Optical Distortion
Piecewise Affine

Posterize
RBC

Random Crop
Random Gamma
Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.6288
0.6275
0.6330
0.6282
0.6348
0.6310
0.6328
0.6321
0.6296
0.6311
0.6328
0.6339
0.6308
0.6275
0.6295
0.6301
0.6278
0.6350
0.6322
0.6381

0.5873
0.5863
0.5912
0.5863
0.5922
0.5890
0.5911
0.5900
0.5876
0.5886
0.5911
0.5926
0.5889
0.5858
0.5874
0.5883
0.5863
0.5929
0.5895
0.5961

0.4618
0.4647
0.4679
0.4654
0.4686
0.4675
0.4704
0.4637
0.4653
0.4659
0.4696
0.4675
0.4645
0.4628
0.4626
0.4627
0.4610
0.4719
0.4650
0.4710

0.4149
0.4179
0.4208
0.4182
0.4214
0.4202
0.4229
0.4171
0.4182
0.4193
0.4219
0.4206
0.4179
0.4159
0.4156
0.4159
0.4146
0.4243
0.4177
0.4236

0.7698
0.7831
0.7907
0.7758
0.7933
0.7751
0.7907
0.7809
0.7725
0.7720
0.7862
0.7923
0.7762
0.7674
0.7764
0.7744
0.7675
0.7922
0.7740
0.7962

0.7068
0.7178
0.7249
0.7108
0.7278
0.7110
0.7241
0.7158
0.7086
0.7088
0.7205
0.7266
0.7113
0.7029
0.7112
0.7099
0.7032
0.7268
0.7099
0.7298

0.9140
0.9142
0.9136
0.9139
0.9130
0.9145
0.9144
0.9139
0.9142
0.9141
0.9141
0.9147
0.9141
0.9131
0.9128
0.9139
0.9141
0.9135
0.9146
0.9139

0.8617
0.8620
0.8610
0.8618
0.8603
0.8625
0.8621
0.8616
0.8620
0.8620
0.8620
0.8625
0.8621
0.8607
0.8605
0.8616
0.8620
0.8609
0.8626
0.8614

0.8498
0.8496
0.8505
0.8499
0.8493
0.8498
0.8509
0.8495
0.8477
0.8504
0.8496
0.8504
0.8502
0.8497
0.8498
0.8494
0.8496
0.8490
0.8499
0.8506

0.8155
0.8152
0.8163
0.8157
0.8147
0.8156
0.8169
0.8152
0.8144
0.8165
0.8160
0.8163
0.8159
0.8154
0.8156
0.8150
0.8151
0.8143
0.8157
0.8165

0.2

CLAHE
Coarse Dropout

Elastic Transform
Emboss

Flip
Gaussian Blur
Grid Distortion
Grid Dropout

Image Compression
Median Blur

Optical Distortion
Piecewise Affine

Posterize
RBC

Random Crop
Random Gamma
Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.6272
0.6286
0.6373
0.6288
0.6365
0.6297
0.6370
0.6304
0.6312
0.6297
0.6335
0.6344
0.6303
0.6273
0.6315
0.6313
0.6258
0.6368
0.6323
0.6380

0.5854
0.5870
0.5956
0.5870
0.5944
0.5880
0.5951
0.5887
0.5888
0.5882
0.5914
0.5927
0.5886
0.5860
0.5894
0.5893
0.5841
0.5948
0.5901
0.5960

0.4649
0.4625
0.4714
0.4639
0.4696
0.4659
0.4725
0.4649
0.4661
0.4681
0.4691
0.4726
0.4647
0.4668
0.4625
0.4629
0.4599
0.4739
0.4668
0.4712

0.4177
0.4160
0.4235
0.4171
0.4226
0.4188
0.4249
0.4177
0.4186
0.4212
0.4217
0.4253
0.4177
0.4193
0.4157
0.4155
0.4131
0.4259
0.4196
0.4243

0.7663
0.7822
0.7925
0.7745
0.7935
0.7755
0.7992
0.7795
0.7754
0.7779
0.7855
0.7940
0.7733
0.7748
0.7694
0.7722
0.7709
0.8004
0.7750
0.7967

0.7027
0.7174
0.7268
0.7101
0.7283
0.7120
0.7327
0.7150
0.7118
0.7145
0.7205
0.7280
0.7098
0.7096
0.7049
0.7074
0.7067
0.7338
0.7119
0.7308

0.9140
0.9137
0.9122
0.9142
0.9127
0.9140
0.9140
0.9133
0.9144
0.9144
0.9147
0.9145
0.9144
0.9131
0.9137
0.9132
0.9145
0.9127
0.9147
0.9134

0.8618
0.8614
0.8589
0.8622
0.8597
0.8619
0.8612
0.8608
0.8625
0.8624
0.8628
0.8621
0.8625
0.8603
0.8615
0.8610
0.8622
0.8596
0.8628
0.8602

0.8497
0.8495
0.8508
0.8495
0.8487
0.8501
0.8512
0.8492
0.8498
0.8501
0.8508
0.8509
0.8497
0.8498
0.8497
0.8496
0.8484
0.8495
0.8495
0.8511

0.8154
0.8152
0.8166
0.8151
0.8138
0.8160
0.8172
0.8148
0.8155
0.8159
0.8168
0.8168
0.8156
0.8155
0.8154
0.8152
0.8142
0.8148
0.8154
0.8171

The CC-CCII achieved better F-scores with the Grid Distortion, Rotate, and Shift
Scale Rotate. Also, MedSeg had better F-scores in nine augmentations with the proba-
bility of 0.1 and seven augmentations with the probability of 0.2. Data augmentations



did not improve the F-score in the Zenodo and Ricord1a datasets. The statistical analysis
pointed out that the CC-CCII rejected the null hypotheses in seven data augmentations in
both probabilities. Training for 100 epochs made the MedSeg achieve better F-scores in
eleven data augmentations with probability 0.1 and seven data augmentations with prob-
ability 0.2. The results achieved in the MosMed dataset got worse when compared with
the results presented in Table 1, with only seven data augmentations rejecting the null
hypotheses. In the Ricord1a and Zenodo datasets, besides the average F-score of the data
augmentations being very close to the average F-score without data augmentation, in the
Ricord1a dataset, the null hypothesis was rejected in two data augmentations with prob-
ability 0.2, and in the Zenodo dataset, the null hypotheses were rejected in three data
augmentations with probability 0.1 and two data augmentations with probability 0.2.

In the third evaluation, the architecture was trained for 100 epochs with a learning
rate of 0.0001. The learning rate was divided by 10 every 25 epochs. Two probabilities
of applying the data augmentation were evaluated: 0.1 and 0.2. As presented in Table 3,
in the MosMed, the Shift Scale Rotate with the probability of 0.1 and the Rotate with
the probability of 0.2 increased the F-score by 2% compared with the baseline. Also, the
MosMed achieved the best F-scores in nine augmentations with probability 0.1 and eight
augmentations with the probability of 0.2, pointing this training configuration with the
highest effectiveness for this dataset. Also, this training configuration showed significant
effectiveness in the Zenodo dataset, which achieved the best F-scores in six augmentations
with probability 0.1 and seven augmentations with probability 0.2.

However, this training configuration did not significantly affect other datasets.
The MedSeg achieved higher F-scores in only three augmentations with a probability of
0.1 and five augmentations with a probability of 0.2. Also, the CC-CCII and Ricord1a
datasets did not achieve improvements with any data augmentation. Statistical analysis
also was performed and, besides the average F-score of the data augmentations being
very close to the baseline without data augmentation, the Zenodo and Ricord1a datasets
achieved the highest number of data augmentations with the null hypotheses rejected.
The MosMed was the dataset with the most promising results, with the null hypotheses
rejected in twelve data augmentations. The CC-CCII and MedSeg had fewer data aug-
mentations with the null hypotheses rejected compared with previews experiments, show-
ing that this training configuration is not proper for data augmentations in these datasets.

5. Conclusion

These three experiments demonstrated that, although necessary, the generic data aug-
mentation techniques evaluated did not majorly improve the results in the COVID-19
segmentation problem. The MosMed achieved the most significant improvements with
data augmentation, with the F-score being up to 2% higher in comparison with baseline.
This dataset was the most sensitive to data augmentation techniques due to its imbalance
problem. Data augmentations also improved the CC-CCII and MedSeg dataset results,
but it was necessary to train the network for more epochs, and the data augmentations
only achieved 1% of improvements in the F-score. The Ricord1a and Zenodo datasets
were the most challenging and did not show improvements with data augmentations. Al-
though they achieved statistical significance to reject the null hypotheses in many data
augmentations, the average F-score slightly improved.



Another result of these data augmentation experiments is that spatial level trans-
formations such as Elastic Transform, Flip, Grid Distortion, Piecewise Affine, Rotate,
and Shift Scale Rotate were the operations that showed to be the most favorable data aug-
mentations to this problem. These data augmentations improved the results in most of the
experiments performed and thus are the most promising techniques for future experiments
with data augmentation. The evaluation of more domain-specific data augmentation tech-
niques was left for future works.
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