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Abstract. Among the current data-centric technologies, clinical decision 

support systems (CDSS) figure out as one of the most promising for healthcare. 

Despite the technological advances facilitating its implementation, the 

maintenance of knowledge base for CDSS remains open to improvements. Here, 

we argue that the Appropriateness Criteria provided by ACR guidelines can be 

used as an open data-source that, combined with appropriate algorithms, can 

push forward basic research and technological developments regarding 

knowledge bases for CDSS. Therefore, we developed a pipeline capable of 

forming tabular datasets from ACR guidelines, stored in a web site in textual 

PDF files. We also experimentally demonstrate that the proposed pipeline 

successfully recovers the interested contents, and the best composition, in terms 

of its component algorithms, is discussed. Future research focused on 

algorithms flexibility in the face of PDF template updates could improve our 

work. 

Resumo. Entre as tecnologias centradas em dados, os sistemas de suporte à 

decisão clínica (CDSS) figuram entre os mais promissores. Avanços 

tecnológicos facilitaram sua implementação, mas a manutenção da base de 

conhecimento para CDSS permanece aberta a melhorias. Aqui, defendemos as 

diretrizes de adequabilidade do ACR como fonte valiosa de dados abertos e que, 

se combinados com algoritmos apropriados, podem impulsionar a pesquisa 

com CDSS. Portanto, desenvolvemos um pipeline capaz de formar conjuntos de 

dados tabulares a partir das diretrizes do ACR, armazenados em website como 

arquivos PDF. Também demonstramos experimentalmente que esse pipeline 

recupera com sucesso os conteúdos de interesse e a melhor composição, em 

termos de seus algoritmos componentes, é discutida. Pesquisas futuras que 

focarem na flexibilidade do pipeline frente a atualizações de template dos PDFs 

contribuirão para o avanço deste trabalho. 

 



1. Introduction 

In the last decade, the concept of data has become a central topic for a wide range of 

human activities. Concerns on how data is collected, its contents, where and how it is 

stored, among other issues, currently permeate even disparate areas of inquiry, from law 

to mathematics, passing through virtually all fields related to modern digital technology. 

For health sciences, the historical importance of data collection and its availability 

dramatically deepened with the dawn of data-centric paradigm [Towbin 2019]. 

Among current data-centric technologies in health sciences, decision support systems 

(and more specifically, clinical decision support systems - CDSS for short) figures out as 

one of the most promising concepts [Parsania and Jani 2015, Doyle et al. 2019, Sutton et 

al. 2020, Akturk 2021]. Practically speaking, a CDSS is implemented as a software, 

usually integrated with previously existing information systems [Sutton 2020]. Such 

software runs under the rotinetely use of a local system, displaying some type of 

signalization to the user when the prescription of clinical exams is detected. The 

signalization delivers suggestions of best practices, given patient information [Sutton et 

al. 2020]. 

One of the most critical steps in implementing a CDSS regards the knowledge base 

formation and maintenance [Kumar 2016, Sutton et al. 2020]. In the first deployed 

systems, this work was done manually and was highly labor-intensive. But in the recent 

years, very flexible and performatic data structures becomes ready to use, greatly 

facilitating the implementation of knowledge bases. Even so, the maintenance remains 

open to advances [Kumar 2016, Greenes et al. 2018]. 

Guidelines for professional practice presents a rich and effective source of knowledge for 

clinical decision support systems [Shiffman and Greenes 1994, Shiffman 1997, Greenes 

et al. 2018]. Specifically for radiology, the American College of Radiology (hereafter, 

ACR) maintains the Appropriateness Criteria guidelines, a web resource in which a team 

of experts provide a series of high-quality guidance for prescription of radiological exams. 

The ACR guidelines are presented in Portable Document Format (i.e., PDF files), listed 

in a searchable webpage, organized by clinical specialities. The access is free and open, 

just navigate to the URL https://acsearch.acr.org/list. Such resource encompasses the very 

nature of a knowledge base for CDSS.  

Naturally, the ACR guidelines should be considered a major information source for 

clinical decision support in radiology (and, in fact, it is). However, it is designed to human 

readers, being presented in unstructured, textual PDF files, not easily prone to machine 

reading. We argue that ACR guidelines are too valuable data-resource and computational 

algorithms and pipelines able to parse it to structured data could help to push forward 

both basic research and application developments regarding CDSS for radiology. 

Thus, in the present work, we conceptualize a pipeline for processing ACR guidelines to 

a structured tabular dataset. We also provide a python implementation, as well as a 

benchmark experiment, where correctness and computational performance were assessed. 

 

2. Background 

Currently, research on the different aspects of data collection by computational means 

unfolded in several research programs, each one focused on slightly different aspects of 



data collection, its levels of complexity and types of digital applications. Inevitably, the 

literature is huge, spanning different areas of computer science for decades. Examples are 

text mining, web mining, document understanding, and information retrieval, just for 

naming some of them [Zhang and Segall 2008, Zhang et al. 2015, Harman 2019, Kim et 

al. 2021, Baviskar et al. 2021]. Despite of theoretical and technical specificities, raw data 

must be collected (or recovered) at some step.  

In the context of digital health science projects, Towbin (2019) points out that data 

collection, besides data analysis, is a core activity, especially in radiology. Data collection 

can be performed through different approaches [Towbin 2019, Roh et al. 2021]. In manual 

data collection, a few people (or even only one) conduct all the work. It also can be carried 

out in a distributed manner, by professionals in disparate organizations or geographical 

locations. This last approach is currently employed by a number of research teams in a 

world-wide scale [Towbin 2019]. The main advantage concerns that the collection itself 

probably could be done by any minimally trained person and, in the case of multi-

institutional teams, data could be available in a short timeframe. The main disadvantage 

is related to data quality and heterogeneity, as raw data potentially has been collected 

using different protocols and equipment. Moreover, the manually collected data is 

naturally prone to human error [Barchard and Pace 2011, Towbin 2019]. 

Electronic data collection is the most used approach, as digital storage of large volumes 

of data has become cheaper over the last few decades and database management systems 

have advanced to become more palatable to users [Bellatreche et al. 2018, Towbin 2019, 

Roh et al. 2021]. The advantage of this approach regards the large volume and 

accessibility provided by current data-base applications. Also, such applications can be 

moderately automated, increasing the availability of relevant data. But specialized 

professionals are demanded to structure the data-base application, especially in cases of 

data ingestion from multiple sources [Towbin 2019]. 

Fully automated data collection, extraction and evaluation is currently possible, thanks to 

advances in artificial intelligence algorithms and computational power [Towbin 2019, 

Roh et al. 2021]. By this approach, disparate and unstructured data can be processed along 

with structured data. The final datasets can be presented in tabular data structures, 

convenient for data analytics and machine learning. This approach has tremendously 

impacted digital data collection [Towbin 2019, Roh et al. 2021]. The downside is that 

highly specialized professionals are demanded, and a longer timeframe is needed till the 

application for data collection is up to be used [Towbin 2019]. 

Several conceptual and practical developments have been done for electronic data 

collection and fully automated data collection [Towbin 2019, Roh et al. 2021, Yin et al. 

2022]. Despite of that, we were not able to find in the literature any work that has 

specifically focused on the formation of structured datasets from the ACR guidelines. 

Being Appropriateness Criteria provided by ACR a valuable data-source, we proceeded 

with a first conceptual approach and computational implementation and experimentation 

for tabular dataset formation from such data-source. 

 

3. The proposed pipeline 

The PDF documents of ACR guidelines are relatively well-structured texts, presenting its 

main contents (which are clinical indications and its respective recommendations of 



radiological exams) in tables and in visually distinguishable locations throughout the 

documents. Despite of that, a number of other tables and textual contents usually are 

presented, such as expert considerations, synthesis of available empirical data, and 

referential literature. Moreover, the interested contents usually appear in many different 

places, composing different document sections. An example can be viewed at Figure 1. 

 

Figure 1. Examples of PDF files provided by ACR guidelines. Note 
that slightly different templates are used by ACR. 

 

Here, our contents of interest comprises the Variant texts and the tables for 

Appropriateness Criteria (see Figure 1). Also, the filename presents the name of the 

guideline specific group, providing another piece of interested data for our purposes here. 

Thus, our main algorithm, the DatasetBuilder algorithm, is built upon sub-algorithms 

(also designed by us) able to map specific contents. 

At the core of DatasetBuilder algorithm, the sub-algorithms GetFileName, 

ExtractVariants, ExtractTables and BuildDataset performs the main tasks 

independently. As the main algorithm iterates over the set of PDF filepaths provided by 

user, the GetFileName just manipulate such string in order to return the filename from 

an inputted filepath. The ExtractVariants algorithm is an OCR-based algorithm which 

converts each page in the PDF file into images, compute all text blocks coordinates 

throughout the document, performs the conversion from image to text (i.e., the OCR-

procedure itself) and, from the obtained set of strings, find Variant text blocks, returning 

it as its output. The ExtractTables algorithm is a wrapper for the tabula-py and 

camelot python libraries. Both libraries present the computational function 

read_pdf(), which parses file contents and returns the found tables. For a detailed 



description of the algorithms underling these third party functions, please refer to the 

respective projects documentation (https://tabula-py.readthedocs.io/en/latest/index.html, 

for tabula-py; https://camelot-py.readthedocs.io/en/master/ for camelot). In a fourth 

step, the BuildDataset receives the output objects from the previous three algorithms 

and operates on them, in order to restructure such data structures into a single one 

(specifically, a matrix-like data structure). In tandem, these algorithms are able to extract 

the interested data from an ACR guideline PDF file, returning it as a single, structured 

tabular data for that file. Finally, the final output from DatasetBuilder is a dictionary, 

in which the keys are filenames and the values are tabular data structures bearing the 

interested contents for each respective file. A diagrammatic representation of our pipeline 

is shown in Figure 2. 

Figure 2. Diagrammatic representation of the proposed pipeline, 
showing the component algorithms and indication of data 
structures. 

 

4. Experiment 

In order to accomplish the evaluation of the proposed pipeline, our first step was to 

produce a reference dataset for benchmark. Thus, we randomly selected 10 PDF files at 

ACR Appropriateness Criteria website (https://acsearch.acr.org/list). The interested 

contents were manually parsed to a usual CSV file and located in a convenient directory 

in our project file system.  

Our benchmark algorithm iterates over each column name found in the benchmark 

dataset. This is necessary to constrain our analysis focused on the interested contents, 

teasing apart possible failures regarding other ACR guidelines content, beyond the scope 

of our research. Future work should be carried out on this topic. For each column, all of 

its row contents were concatenated into a single textual data structure. Then, our 

benchmark algorithm performs the comparison of such aggregated column data by the 

means of comparing the strings for the dataset produced by the pipeline against the 

respective ones in the benchmark dataset. For the measurements of the level of match, the 

Levenshtein distance were used. Also, we compute a percentual error, by dividing the 

Levenshtein metric value by the total number of characters in the reference string (for 



each column). The values were registered along with PDF filename, column name and 

number of characters in the reference string for that column. 

To consistently evaluate the proposed pipeline, the benchmark algorithm was structurally 

encapsulated into an iterative algorithm tailored specifically for this task. This algorithm 

is responsible for running experiment replicates. These replicates were designed to make 

it possible to evaluate the time complexity of the proposed pipeline, the performance with 

different combinations of PDF files, the table extraction core methods (i.e., tabula-py 

and camelot), and the stability of the computational implementation. All data referring 

to iterations were also registered along with the metric value, as described in the 

paragraph above. The Algorithm 1 (BenchmarkExperiment) provides the pseudocode 

representation for our benchmark algorithm (note that RandomSelectFiles, 

ReadBechmarkData, DatasetBuilder, GetColumns, GetStringForColumn, 

Levenshtein, AgregateData are auxiliary functions – for the full implementation, 

please refer to https://github.com/AndersonEduardo/pipeline_acr_guidelines). 

 

 

All the implementations were conducted using python version 3.8.8, in a personal 

computer with an Intel® Core™ i5-10210U, 1.60GHz-2.11GHz CPU and 16GB 

RAM. The data produced by the experiment was analyzed graphically, using Matplotlib 

------------------------------------------------------------- 

Algorithm 1: The BenchmarkExperiment algorithm 
------------------------------------------------------------- 

1: niterations ← user input for the number of iterations 

2: nmax ← user input for the max number of PDF files to be     
    processed in the experiment 

3: l ← string inputted by the user, informing the path to  
 the directory containing the PDF files 

4: �⃗� := [tabula-py, Camelot] 
5: o := an empty tabular data structure 

6: for each a ∈  �⃗� do 
7:  for each n ∈ {1, ..., nmax} do 
8:   for each i ∈{1, ..., niterations} do 

9:   �⃗� ← RandomSelectFiles(l, n) 
10:    B ← ReadBechmarkData(�⃗�) 
11:    M ← DatasetBuilder(�⃗�) 
12:    𝑐 ← GetColumns(B) 
13:    for each c ∈ 𝑐 do 
14:     sreference ← GetStringForColumn(B[c]) 

15:     stest ← GetStringForColumn(M[c]) 

16:     d ← Levenshtein(sreference, stest) 

17:     o ← AgregateData(o, d, c, i, n, a) 

18:    end for 

19:   end for 

20:  end for 

21: end for 

22: return o 



version 3.3.4 and Seaborn version 0.11.1. All the implementation code is provided 

via a dockerized project, available at 

https://github.com/AndersonEduardo/pipeline_acr_guidelines. 

 

5. Results and Discussion 

Experimental results show that the proposed pipeline was able to recover up to 100% of 

our benchmark dataset for the columns Relative Radiation Level and Category. Also, a 

high performance was observed for the other columns, especially Procedure and 

Appropriateness Category. Strictly speaking, the lower performance was observed for 

Subcategory (Levenshtein distance of ~4), but it must be noted that the percentual error 

was <0.10% (Figure 3). By inspectioning the experiment outputs, we verify that just a 

small fraction of characters was not correctly captured by the pipeline in such top tier 

results. 

Figure 3. Experiment results for comparison between output 
datasets, produced using the proposed pipeline, and the 
benchmark dataset. All comparisons were performed in terms of 
whole column contents. The percentual error is computed dividing 
the Levenshtein value by the total number of characters in the 
reference dataset (details in the text). Note that y-axes are in 
different scales. 

 



The core function employed in the ExtractTables algorithm strongly affected the 

pipeline output. The best performance was observed only when camelot is employed. 

Using tabula-py, the whole performance decays to critical levels, with the interested 

contents being only loosely recovered. In the worst cases, whole tables were not 

recovered, compromising the final pipeline output. In fact, camelot is built upon 

tabula-py, improving many of its algorithms. Despite of that, the performance results 

for tabula-py do not resembles the one observed for camelot, meaning that the 

relatedness between these python libraries is not translated in terms of similar 

performance for our pipeline. 

 

Figure 4. Results of time complexity for the proposed pipeline. 
The two core functions (i.e., tabula-py and camelot) for table 

extraction are compared. A very similar, linear pattern is 
observed for both versions of the pipeline. 

 

For the range of input files considered in our experiment, the empirical time complexity 

shows a linear pattern (Figure 4). Moreover, it was very similar for both camelot and 

tabula-py, being only sensitively lower for the second one. We attribute such 

observations to the fact that tabula-py loses some tables, thus it is prone to parse 

slightly less data from de PDF files. In other words, the better performance provided by 

camelot does not take additional time cost, in relation to tabula-py. Future work 

should be carried out on this topic, in order to explore a wider range of input-files number 

(ideally, in terms of hundreds of PDF files). 

 

6. Conclusion 

In this work, we proposed an experimental pipeline designed to form tabular datasets 

from online Appropriateness Criteria guidelines of ACR. Combining authoral and third-

party algorithms (open source), our proposed pipeline relies on NLP and computer vision 

concepts and technics, being able to successfully parse PDF files from ACR guidelines. 

Taken together, experimental results shown that our approach recovered the contents of 

our benchmark dataset with a percentual error of <0.1%, when camelot is employed for 



table extraction. Through the pipeline, the Appropriateness Criteria data from ACR 

becomes readily accessible for machine learning and data analytics studies. The python 

implementation is available, and it shows a good computational performance even in an 

ordinary personal computer. 

Future work should focus on making the pipeline algorithms more flexible, in view of 

stability in the face of changes or updates to PDF templates by ACR. 
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