
A pipeline for tabular dataset formation from unstructured

data provided by ACR Appropriateness Criteria guidelines

Anderson A. Eduardo1, Rafael M. Loureiro2, Adriano Tachibana2, Pedro

V. Netto2, Tatiana F. de Almeida3, André Pires1

1TMDA – Hospital Israelita Albert Einstein (HIAE)

01451-001 – São Paulo, SP – Brazil
2Relacionamentio Médico – Hospital Israelita Albert Einstein (HIAE)

05652-900 – São Paulo, SP – Brazil
3Departmento de Imagem – Hospital Israelita Albert Einstein (HIAE)

05652-900 – São Paulo, SP – Brazil

{act082, rafael.loureiro, adriano.tachibana, pedro.netto,

tatiana.almeida, andre.dsantos}@einstein.br

Abstract. Among the current data-centric technologies, clinical decision

support systems (CDSS) figure out as one of the most promising for healthcare.

Despite the technological advances facilitating its implementation, the

maintenance of knowledge base for CDSS remains open to improvements. Here,

we argue that the Appropriateness Criteria provided by ACR guidelines can be

used as an open data-source that, combined with appropriate algorithms, can

push forward basic research and technological developments regarding

knowledge bases for CDSS. Therefore, we developed a pipeline capable of

forming tabular datasets from ACR guidelines, stored in a web site in textual

PDF files. We also experimentally demonstrate that the proposed pipeline

successfully recovers the interested contents, and the best composition, in terms

of its component algorithms, is discussed. Future research focused on

algorithms flexibility in the face of PDF template updates could improve our

work.

Resumo. Entre as tecnologias centradas em dados, os sistemas de suporte à

decisão clínica (CDSS) figuram entre os mais promissores. Avanços

tecnológicos facilitaram sua implementação, mas a manutenção da base de

conhecimento para CDSS permanece aberta a melhorias. Aqui, defendemos as

diretrizes de adequabilidade do ACR como fonte valiosa de dados abertos e que,

se combinados com algoritmos apropriados, podem impulsionar a pesquisa

com CDSS. Portanto, desenvolvemos um pipeline capaz de formar conjuntos de

dados tabulares a partir das diretrizes do ACR, armazenados em website como

arquivos PDF. Também demonstramos experimentalmente que esse pipeline

recupera com sucesso os conteúdos de interesse e a melhor composição, em

termos de seus algoritmos componentes, é discutida. Pesquisas futuras que

focarem na flexibilidade do pipeline frente a atualizações de template dos PDFs

contribuirão para o avanço deste trabalho.

1. Introduction

In the last decade, the concept of data has become a central topic for a wide range of

human activities. Concerns on how data is collected, its contents, where and how it is

stored, among other issues, currently permeate even disparate areas of inquiry, from law

to mathematics, passing through virtually all fields related to modern digital technology.

For health sciences, the historical importance of data collection and its availability

dramatically deepened with the dawn of data-centric paradigm [Towbin 2019].

Among current data-centric technologies in health sciences, decision support systems

(and more specifically, clinical decision support systems - CDSS for short) figures out as

one of the most promising concepts [Parsania and Jani 2015, Doyle et al. 2019, Sutton et

al. 2020, Akturk 2021]. Practically speaking, a CDSS is implemented as a software,

usually integrated with previously existing information systems [Sutton 2020]. Such

software runs under the rotinetely use of a local system, displaying some type of

signalization to the user when the prescription of clinical exams is detected. The

signalization delivers suggestions of best practices, given patient information [Sutton et

al. 2020].

One of the most critical steps in implementing a CDSS regards the knowledge base

formation and maintenance [Kumar 2016, Sutton et al. 2020]. In the first deployed

systems, this work was done manually and was highly labor-intensive. But in the recent

years, very flexible and performatic data structures becomes ready to use, greatly

facilitating the implementation of knowledge bases. Even so, the maintenance remains

open to advances [Kumar 2016, Greenes et al. 2018].

Guidelines for professional practice presents a rich and effective source of knowledge for

clinical decision support systems [Shiffman and Greenes 1994, Shiffman 1997, Greenes

et al. 2018]. Specifically for radiology, the American College of Radiology (hereafter,

ACR) maintains the Appropriateness Criteria guidelines, a web resource in which a team

of experts provide a series of high-quality guidance for prescription of radiological exams.

The ACR guidelines are presented in Portable Document Format (i.e., PDF files), listed

in a searchable webpage, organized by clinical specialities. The access is free and open,

just navigate to the URL https://acsearch.acr.org/list. Such resource encompasses the very

nature of a knowledge base for CDSS.

Naturally, the ACR guidelines should be considered a major information source for

clinical decision support in radiology (and, in fact, it is). However, it is designed to human

readers, being presented in unstructured, textual PDF files, not easily prone to machine

reading. We argue that ACR guidelines are too valuable data-resource and computational

algorithms and pipelines able to parse it to structured data could help to push forward

both basic research and application developments regarding CDSS for radiology.

Thus, in the present work, we conceptualize a pipeline for processing ACR guidelines to

a structured tabular dataset. We also provide a python implementation, as well as a

benchmark experiment, where correctness and computational performance were assessed.

2. Background

Currently, research on the different aspects of data collection by computational means

unfolded in several research programs, each one focused on slightly different aspects of

data collection, its levels of complexity and types of digital applications. Inevitably, the

literature is huge, spanning different areas of computer science for decades. Examples are

text mining, web mining, document understanding, and information retrieval, just for

naming some of them [Zhang and Segall 2008, Zhang et al. 2015, Harman 2019, Kim et

al. 2021, Baviskar et al. 2021]. Despite of theoretical and technical specificities, raw data

must be collected (or recovered) at some step.

In the context of digital health science projects, Towbin (2019) points out that data

collection, besides data analysis, is a core activity, especially in radiology. Data collection

can be performed through different approaches [Towbin 2019, Roh et al. 2021]. In manual

data collection, a few people (or even only one) conduct all the work. It also can be carried

out in a distributed manner, by professionals in disparate organizations or geographical

locations. This last approach is currently employed by a number of research teams in a

world-wide scale [Towbin 2019]. The main advantage concerns that the collection itself

probably could be done by any minimally trained person and, in the case of multi-

institutional teams, data could be available in a short timeframe. The main disadvantage

is related to data quality and heterogeneity, as raw data potentially has been collected

using different protocols and equipment. Moreover, the manually collected data is

naturally prone to human error [Barchard and Pace 2011, Towbin 2019].

Electronic data collection is the most used approach, as digital storage of large volumes

of data has become cheaper over the last few decades and database management systems

have advanced to become more palatable to users [Bellatreche et al. 2018, Towbin 2019,

Roh et al. 2021]. The advantage of this approach regards the large volume and

accessibility provided by current data-base applications. Also, such applications can be

moderately automated, increasing the availability of relevant data. But specialized

professionals are demanded to structure the data-base application, especially in cases of

data ingestion from multiple sources [Towbin 2019].

Fully automated data collection, extraction and evaluation is currently possible, thanks to

advances in artificial intelligence algorithms and computational power [Towbin 2019,

Roh et al. 2021]. By this approach, disparate and unstructured data can be processed along

with structured data. The final datasets can be presented in tabular data structures,

convenient for data analytics and machine learning. This approach has tremendously

impacted digital data collection [Towbin 2019, Roh et al. 2021]. The downside is that

highly specialized professionals are demanded, and a longer timeframe is needed till the

application for data collection is up to be used [Towbin 2019].

Several conceptual and practical developments have been done for electronic data

collection and fully automated data collection [Towbin 2019, Roh et al. 2021, Yin et al.

2022]. Despite of that, we were not able to find in the literature any work that has

specifically focused on the formation of structured datasets from the ACR guidelines.

Being Appropriateness Criteria provided by ACR a valuable data-source, we proceeded

with a first conceptual approach and computational implementation and experimentation

for tabular dataset formation from such data-source.

3. The proposed pipeline

The PDF documents of ACR guidelines are relatively well-structured texts, presenting its

main contents (which are clinical indications and its respective recommendations of

radiological exams) in tables and in visually distinguishable locations throughout the

documents. Despite of that, a number of other tables and textual contents usually are

presented, such as expert considerations, synthesis of available empirical data, and

referential literature. Moreover, the interested contents usually appear in many different

places, composing different document sections. An example can be viewed at Figure 1.

Figure 1. Examples of PDF files provided by ACR guidelines. Note
that slightly different templates are used by ACR.

Here, our contents of interest comprises the Variant texts and the tables for

Appropriateness Criteria (see Figure 1). Also, the filename presents the name of the

guideline specific group, providing another piece of interested data for our purposes here.

Thus, our main algorithm, the DatasetBuilder algorithm, is built upon sub-algorithms

(also designed by us) able to map specific contents.

At the core of DatasetBuilder algorithm, the sub-algorithms GetFileName,

ExtractVariants, ExtractTables and BuildDataset performs the main tasks

independently. As the main algorithm iterates over the set of PDF filepaths provided by

user, the GetFileName just manipulate such string in order to return the filename from

an inputted filepath. The ExtractVariants algorithm is an OCR-based algorithm which

converts each page in the PDF file into images, compute all text blocks coordinates

throughout the document, performs the conversion from image to text (i.e., the OCR-

procedure itself) and, from the obtained set of strings, find Variant text blocks, returning

it as its output. The ExtractTables algorithm is a wrapper for the tabula-py and

camelot python libraries. Both libraries present the computational function

read_pdf(), which parses file contents and returns the found tables. For a detailed

description of the algorithms underling these third party functions, please refer to the

respective projects documentation (https://tabula-py.readthedocs.io/en/latest/index.html,

for tabula-py; https://camelot-py.readthedocs.io/en/master/ for camelot). In a fourth

step, the BuildDataset receives the output objects from the previous three algorithms

and operates on them, in order to restructure such data structures into a single one

(specifically, a matrix-like data structure). In tandem, these algorithms are able to extract

the interested data from an ACR guideline PDF file, returning it as a single, structured

tabular data for that file. Finally, the final output from DatasetBuilder is a dictionary,

in which the keys are filenames and the values are tabular data structures bearing the

interested contents for each respective file. A diagrammatic representation of our pipeline

is shown in Figure 2.

Figure 2. Diagrammatic representation of the proposed pipeline,
showing the component algorithms and indication of data
structures.

4. Experiment

In order to accomplish the evaluation of the proposed pipeline, our first step was to

produce a reference dataset for benchmark. Thus, we randomly selected 10 PDF files at

ACR Appropriateness Criteria website (https://acsearch.acr.org/list). The interested

contents were manually parsed to a usual CSV file and located in a convenient directory

in our project file system.

Our benchmark algorithm iterates over each column name found in the benchmark

dataset. This is necessary to constrain our analysis focused on the interested contents,

teasing apart possible failures regarding other ACR guidelines content, beyond the scope

of our research. Future work should be carried out on this topic. For each column, all of

its row contents were concatenated into a single textual data structure. Then, our

benchmark algorithm performs the comparison of such aggregated column data by the

means of comparing the strings for the dataset produced by the pipeline against the

respective ones in the benchmark dataset. For the measurements of the level of match, the

Levenshtein distance were used. Also, we compute a percentual error, by dividing the

Levenshtein metric value by the total number of characters in the reference string (for

each column). The values were registered along with PDF filename, column name and

number of characters in the reference string for that column.

To consistently evaluate the proposed pipeline, the benchmark algorithm was structurally

encapsulated into an iterative algorithm tailored specifically for this task. This algorithm

is responsible for running experiment replicates. These replicates were designed to make

it possible to evaluate the time complexity of the proposed pipeline, the performance with

different combinations of PDF files, the table extraction core methods (i.e., tabula-py

and camelot), and the stability of the computational implementation. All data referring

to iterations were also registered along with the metric value, as described in the

paragraph above. The Algorithm 1 (BenchmarkExperiment) provides the pseudocode

representation for our benchmark algorithm (note that RandomSelectFiles,

ReadBechmarkData, DatasetBuilder, GetColumns, GetStringForColumn,

Levenshtein, AgregateData are auxiliary functions – for the full implementation,

please refer to https://github.com/AndersonEduardo/pipeline_acr_guidelines).

All the implementations were conducted using python version 3.8.8, in a personal

computer with an Intel® Core™ i5-10210U, 1.60GHz-2.11GHz CPU and 16GB

RAM. The data produced by the experiment was analyzed graphically, using Matplotlib

Algorithm 1: The BenchmarkExperiment algorithm

1: niterations ← user input for the number of iterations

2: nmax ← user input for the max number of PDF files to be
 processed in the experiment

3: l ← string inputted by the user, informing the path to
 the directory containing the PDF files

4: 𝑎⃗ := [tabula-py, Camelot]
5: o := an empty tabular data structure

6: for each a ∈ 𝑎⃗ do
7: for each n ∈ {1, ..., nmax} do
8: for each i ∈{1, ..., niterations} do

9: 𝑝⃗ ← RandomSelectFiles(l, n)
10: B ← ReadBechmarkData(𝑝⃗)
11: M ← DatasetBuilder(𝑝⃗)
12: 𝑐 ← GetColumns(B)
13: for each c ∈ 𝑐 do
14: sreference ← GetStringForColumn(B[c])

15: stest ← GetStringForColumn(M[c])

16: d ← Levenshtein(sreference, stest)

17: o ← AgregateData(o, d, c, i, n, a)

18: end for

19: end for

20: end for

21: end for

22: return o

version 3.3.4 and Seaborn version 0.11.1. All the implementation code is provided

via a dockerized project, available at

https://github.com/AndersonEduardo/pipeline_acr_guidelines.

5. Results and Discussion

Experimental results show that the proposed pipeline was able to recover up to 100% of

our benchmark dataset for the columns Relative Radiation Level and Category. Also, a

high performance was observed for the other columns, especially Procedure and

Appropriateness Category. Strictly speaking, the lower performance was observed for

Subcategory (Levenshtein distance of ~4), but it must be noted that the percentual error

was <0.10% (Figure 3). By inspectioning the experiment outputs, we verify that just a

small fraction of characters was not correctly captured by the pipeline in such top tier

results.

Figure 3. Experiment results for comparison between output
datasets, produced using the proposed pipeline, and the
benchmark dataset. All comparisons were performed in terms of
whole column contents. The percentual error is computed dividing
the Levenshtein value by the total number of characters in the
reference dataset (details in the text). Note that y-axes are in
different scales.

The core function employed in the ExtractTables algorithm strongly affected the

pipeline output. The best performance was observed only when camelot is employed.

Using tabula-py, the whole performance decays to critical levels, with the interested

contents being only loosely recovered. In the worst cases, whole tables were not

recovered, compromising the final pipeline output. In fact, camelot is built upon

tabula-py, improving many of its algorithms. Despite of that, the performance results

for tabula-py do not resembles the one observed for camelot, meaning that the

relatedness between these python libraries is not translated in terms of similar

performance for our pipeline.

Figure 4. Results of time complexity for the proposed pipeline.
The two core functions (i.e., tabula-py and camelot) for table

extraction are compared. A very similar, linear pattern is
observed for both versions of the pipeline.

For the range of input files considered in our experiment, the empirical time complexity

shows a linear pattern (Figure 4). Moreover, it was very similar for both camelot and

tabula-py, being only sensitively lower for the second one. We attribute such

observations to the fact that tabula-py loses some tables, thus it is prone to parse

slightly less data from de PDF files. In other words, the better performance provided by

camelot does not take additional time cost, in relation to tabula-py. Future work

should be carried out on this topic, in order to explore a wider range of input-files number

(ideally, in terms of hundreds of PDF files).

6. Conclusion

In this work, we proposed an experimental pipeline designed to form tabular datasets

from online Appropriateness Criteria guidelines of ACR. Combining authoral and third-

party algorithms (open source), our proposed pipeline relies on NLP and computer vision

concepts and technics, being able to successfully parse PDF files from ACR guidelines.

Taken together, experimental results shown that our approach recovered the contents of

our benchmark dataset with a percentual error of <0.1%, when camelot is employed for

table extraction. Through the pipeline, the Appropriateness Criteria data from ACR

becomes readily accessible for machine learning and data analytics studies. The python

implementation is available, and it shows a good computational performance even in an

ordinary personal computer.

Future work should focus on making the pipeline algorithms more flexible, in view of

stability in the face of changes or updates to PDF templates by ACR.

References

Akturk, C. (2021). “Bibliometric analysis of clinical decision support sys- tems”. In Acta

Informatica Pragensia 10(1), pages 61–74. doi: 10. 18267/J.AIP.146.

Barchard, K. A. and Pace, L. A. (2011). “Preventing human error: The impact of data

entry methods on data accuracy and statistical results”. In Computers in Human

Behavior 27(2011), pages 1834–1839. doi: 10.1016/j.chb.2011.04.004.

Baviskar, D. et al. (2021). “Efficient automated processing of the unstructured documents

using Artificial Intelligence: A systematic literature review and future directions”. In

IEEE Access 9(2021), pages 72894–72936. doi: 10.1109/ACCESS.2021.3072900.

Bellatreche, L., Valduriez P. and Morzy T. (2018). “Advances in Databases and

Information Systems”. In Information Systems Frontiers 20(2018), pages 1–6. doi:

10.1007/s10796017-9819-2.

Doyle, D. et al. (2019). “Clinical decision support for high-cost imaging: A randomized

clinical trial”. In Plos One 14(3-2019), e0213373. doi: 10.1371/journal.pone.0213373.

Harman, D. (2019). “Information Retrieval: The Early Years”. In Foundations and Trends

in Information Retrieval 13(5), pages 425–577. doi: 10.1561/1500000065.

Geewook, K. et al. (2021). “Donut: Document Understanding Transformer without

OCR”. In ArXiv (Nov. 2021). doi: 10.48550/arxiv.2111.15664. url:

http://arxiv.org/abs/2111.15664.

Greenes, R. A. et al. (2018). “Clinical decision support models and frameworks: Seeking

to address research issues underlying implementation successes and failures”. In

Journal of Biomedical Informatics 78, pages 134–143. doi:

https://doi.org/10.1016/J.JBI.2017.12.005Parsania, V. and Jani, N. (2015).

“Reviewing and Modeling Clinical Decision Support System”. In International

Journal of Technology and Science 7 (Dec. 2015), pp. 15–17.

Roh, Y. et al. (2021). “A Survey on Data Collection for Machine Learning: A Big Data-

AI Integration Perspective”. In IEEE Transactions on Knowledge and Data

Engineering 33(4), pages 1328–1347. doi:

https://doi.org/10.1109/TKDE.2019.2946162

Shiffman, R. N. (1997). “Representation of Clinical Practice Guidelines in Conventional

and Augmented Decision Tables”. In Journal of the American Medical Informatics

Association 4(5), pages 382–393. doi: https://doi.org/10.1136/jamia.1997.0040382

Shiffman, R. N. and Greenes, R. A. (1994). “Improving Clinical Guidelines with Logic

and Decision-table Techniques”. In Medical Decision Making 14(3), pages 245–254.

doi: https://doi.org/10.1177/0272989X940140030Sutton, R. T. et al. (2020). “An

http://arxiv.org/abs/2111.15664
https://doi.org/10.1109/TKDE.2019.2946162
https://doi.org/10.1136/jamia.1997.0040382
https://doi.org/10.1177/0272989X940140030

overview of clinical decision support systems: benefits, risks, and strategies for

success”. In NPJ Digital Medicine 3(1), pages 17-29. doi: 10.1038/s41746-020-0221-

y.

Towbin, A. J. (2019). “Collecting Data to Facilitate Change”. In Journal of the American

College of Radiology 16(2019), pages 1248–1253. doi: 10.1016/j.jacr.2019.05.032.

Zhang, Q. and Segall, R. S. (2008). “Web mining: a survey of current research,

techniques, and software”. In International Journal of Information Technology &

Decision Making 7(2008), pages 683–720. doi: 10.1142/S0219622008003150.9.

Yin, A. L. et al. (2022). “Comparing automated vs. manual data collection for COVID-

specific medications from electronic health records”. In International Journal of

Medical Informatics 157, page 104622. doi:

https://doi.org/10.1016/j.ijmedinf.2021.104622

Zhang, Y., Chen, M. and Liu, L. (2015). “A review on text mining”. In 6th IEEE

International Conference on Software Engineering and Service Science (ICSESS),

pages 681–685. doi: 10.1109/ICSESS.2015.7339149.10.

