A hierarchical model for automatic Neoplasm ICD coding
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Abstract. International Classification of Diseases (ICD) codes are used for
different management activities in hospitals. Previous researches employed
Machine Learning (ML) models for automatic coding to simplify the disease
code assignation process, nevertheless, model performance was compromised
due to problems with label imbalance and the high number of labels. In the
present research, a Support Vector Machine (SVM) model for Neoplasm ICD
coding was trained with a dataset previously treated by applying re-sampling
methods to mitigate label imbalance issues and increase the model sensitivity.
To mitigate the issue with the high number of labels, human body location
information contained in the medical records and ICD code descriptions were
employed to build a hierarchical model, which improved the performance of a
base non-hierarchical model by up to 15%.

1. Introduction

ICD is a standard that organizes and classifies diseases using a system of codes; the
convention is used in hospitals to help estimating the complexity of procedures and, thus
estimate the consumption of hospital resources.

In general, in Brazilian hospitals, the task of coding secondary diagnosis is
performed by specialists that review laboratory results, medical annotations and the
medical supplies employed for each procedure. Due to the large number of patients and
medical data, diagnosis coding is an error-prone and time-consuming task, thus affecting
the quality of the information.

Studies were carried out to automatize the process by applying ML algorithms
with a supervised learning focus. Even though a number of them obtained acceptable
results regarding accuracy, precision and sensitivity, the authors recognized that
the performance is affected by the large number of diagnosis codes and the high
imbalance of labels, besides the poor data quality of diagnosis due to the complexity
of texts [Kavuluru et al. 2015, Lee and Muis 2017, Zhong et al. 2018, Xu et al. 2018,
Liet al. 2019, Azam et al. 2020, Gupta et al. 2021, Jain et al. 2020].

The goal of the present study is to automatize the neoplasm diagnosis coding
prediction, employing medical reports of anatomic pathological laboratory results.



For this, a hierarchical classifier was developed, exploiting the logic on how
Neoplasm ICD codes are grouped by organ location in the human body. To overcome
the class imbalance issue, a re-sampling method was performed using the ICD code
description to generate artificial reports.

The outcomes of the predictive model are the first three digits of the codes from
the ICD 10th version - Chapter II, which corresponds to neoplasm diseases.

This paper is divided as follows: Section 2 discusses previous works. Section
3 describes the data used and the re-sampling method developed for label balancing.
Section 4 details the experiments carried out to evaluate the performance of the model.
Section 5 analyzes the results of the prediction and the performance of the models.
Finally, Section 6 presents the research conclusion.

2. Related work

[Lee and Muis 2017] trained a SVM and a Multi Layer Perceptron (MLP) model for
diagnosis code prediction. The results showed that the SVM model got a higher micro-
averaged F1 score because of the better Term Frequency - Inverse Document Frequency
(TF-IDF) values obtained for the input, compared to the Bag of words introduced into the
neural network. Some difficulties identified for the classification were the large number
of labels and the high class imbalance.

[Zhong et al. 2018] compared the performance of FastText model, Random Forest
and SVM models, limiting the classification to the first digit category of the ICD code
due to the lack of data. The results showed that SVM models are more suitable for the
proposed task, but performance is affected by the poor quality of text and the imbalanced
data.

[Xie and Xing 2018] built a neural network model for automatic diagnosis coding;
they combined diagnosis descriptions and ICD code descriptions using adversarial
learning methods, thus improving the predictions. Although the model was capable of
recognizing relevant codes, it did not perform well with low frequency codes and treating
abbreviations in the text.

[Xu et al. 2018] developed an ensemble model to classify diagnosis, taking a
subset of 32 ICD codes. The author employed structured and unstructured data with
different ML models to ensure the interpretability of the results. In order to mitigate class
imbalance issues, they applied a label regularization technique that prevented the over-
fitting in more frequent classes. As future work, they proposed adding human knowledge
to help models in the code prediction.

[Azam et al. 2020] developed a hierarchical classifier based on Long Short Term
Memory (LSTM) neural networks, exploding the natural character level of the codes.
They noticed a lower value in macro metrics due to the high class imbalance.

Past studies evidenced that label imbalance is a common issue in medical
data used for model training. Therefore, inspired by the research conducted by
[Xie and Xing 2018], we developed a balancing procedure applying re-sample activities
in which artificial data were created using the ICD code descriptions.

Due to the good results in [Lee and Muis 2017, Zhong et al. 2018] and the small



quantity of data available, the SVM model was the most suitable for the present study. A
hierarchical architecture was adopted, as for the model proposed by [Azam et al. 2020],
but instead of using the character level of codes, we introduce human knowledge, as
suggested by [Xu et al. 2018], taking advantage of the ICD Neoplasm group by the
location of the disease in the human body (piece).

3. Training data

ICD codes consist of four characters; the first is related to a chapter in the standard, the
second and the third together with the first correspond to a category of disease, and the
fourth indicates a subcategory. Chapter II of the 10th version of the ICD includes codes
related to Neoplasms, which are grouped by the location of the neoplasm in the human
body. For example, codes from C00 to C14 are related to neoplasms of lip, oral cavity
and pharynx; codes from C15 to C26 are related to neoplasms of digestive organs, and so
on. Because of the great quantity of neoplasm codes, the models were trained to output
only the first three digits of the code.

The data employed for the research was obtained from the anatomic pathology
department of a Brazilian hospital. It comprised of 115 coded medical reports structured
in two principal sections: (1) the piece, which contains the human body location analyzed,
and (i1) the conclusion, containing the final diagnosis annotated by the doctor. The
diagnosis codes present in the records corresponded to secondary codes; these were given
by hospital specialists that review all patients medical reports after their discharge from
the hospital. Figure 1 shows an example of the content of a medical report (in Portuguese),
which was coded as C43: Malignant melanoma of skin.

PECAS

PELE — PRODUTO DE RESSECCAO DE LESAO EM
BRACO ESQUERDO (LESAQ MAIOR).

CONCLUSAO

MELANOMA MALIGNO TIPO EXTENSIVO SUPERFICIAL

EM FASE DE CRESCIMENTO VERTICAL (TUMORIGENICO),
INFILTRANDO ATE DERME INTERMEDIARIA (CLARK 1V)

EM LESAO MAIOR DE BRACO ESQUERDO.

PRESENCA DE EXTENSO COMPONENTE “IN SITU" PERI-
FERICO A AREA INVASIVA. MARGENS CIRURGICAS LIVRES
DE NEOPLASIA.

Figure 1. Example of a medical record content

The 115 medical reports were splitted in two groups: the training dataset, having
the 80% of data and the testing dataset, with the remaining 20%. The quantity of reports
by diagnosis code for both datasets is shown in Figure 2:
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a) Train dataset b) Test dataset

Figure 2. Train and test datasets

3.1. Text treatment

Data Quality (DQ) affects the operational process because it can result in data
inconsistency, data misunderstanding, incorrect data and other data problems, affecting
the value of the information. DQ is characterized by fitness for use. Thus,
the DQ assessment is based on the user’s requirement and the application context
[Barbosa et al. 2019]. DQ dimensions are used both to evaluate and to qualify the data.
Text quality can be assessed by using the following quality dimensions: (i) accuracy
that is defined by the proportion of words that belong to a reference vocabulary; (ii)
readability which refers to the easiness of reading, which is related to the size of the
words and the length of phrases; (ii1) accessibility that captures the user’s understanding
ability [Batini et al. 2009].

There were problems related with the accuracy dimension in the medical reports
employed in the research. The other two dimensions were left out as automatic coding
did not show difficulties in handling them.

Based on previous researches [Gupta et al. 2021, Jain et al. 2020], we performed
some of the most common text treatment activities for ML and improved the text accuracy
as follows:

1. Tokenization: process of splitting the text in tokens (words, numbers, dates and
symbols); in this stage, all the punctuation symbols were replaced with blank
spaces.

2. Noise data treatment: process of filtering the words from other tokens; in this
stage, all tokens containing a number or a symbol were excluded, except those
containing a dash so as not to exclude composite words as pseudo-hipertrdfica.

3. Accuracy correction: the hunspell ! tool was used to detect and correct spelling
errors. The accuracy was corrected by employing the tool suggestions and an
implementing heuristics to treat accents and word distance. All the words that
could not be corrected were excluded.

"http://hunspell.github.io/



4. Stop words exclusion: taking as a reference a list of common stop words from
the tool NLTK?.

5. Stemming: the hunspell tool was employed to transform each word into its stem,
reducing problems of accessibility due to word inflections.

The exposed treatment was performed both in the training and the testing datasets.

3.2. Label balancing

Due to the small quantity of data and the label balance issues, we used the ICD code
description to create artificial reports. For example, code C17 - Malignant neoplasm of
the small intestine was used to generate an artificial report with Piece: small intestine and
Conclusion: Malignant neoplasm of small intestine.

To obtain balanced data, we performed in the training dataset the procedure as
follows:

1. append artificial reports to original medical records;

2. calculate the frequency of each label in the set of records;

3. determine if label distribution is uniform applying the statistical y? test for
uniformity with a p,4,e = 0.10. Finish if the test passes;

4. choose the label with the highest frequency and remove records until obtaining
the expected ratio given by frequency_of label = 1/number_of codes

5. return to step 2

In the fourth step, we prioritized keeping real records, initially removing artificial
data. This procedure resulted in a sample containing 81 records. Figure 3 shows the final

result from the balancing process, in which the artificial reports are represented by the
darker squares.
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Figure 3. Data balancing process

Zhttps://www.nltk.org/index.html



4. Experiments

4.1. Trained models

Automatic disease coding is, from a ML point of view, a text classification task. When
classifying texts, a ML model should be able to handle great dimensionality and sparse
data. The texts present both characteristics, as they contain large vocabularies and words
may appear a few times in the text records.

For this type of problems the SVM model has shown to be a good alternative, as
it reduces the bias and the variance in the data [Aggarwal 2018].

The SVM is a classifier that receives a vector of predictors as input -texts are
commonly represented as TF-IDF vectors-, and outputs the predicted label. For this
prediction, the SVM applies a mathematical function that maximizes the distance of the
vectors to hyper-planes built to separate the classes in a hyper-space.

A SVM model was selected for the diagnosis coding, because it does not need
a large quantity of data for training and it’s linear kernel is suitable to handle high
dimensional sparse data [Aggarwal 2018].

As afore mentioned, the most common text representation for SVM models is
the TF-IDF, which calculates the vector by normalizing the frequency of each word per
record, against the quantity of records in which the word is present [Aggarwal 2018,
Eisenstein 2018].

The standard process of receiving the input and immediately outputting the result,
is referred to as a one-step or non-hierarchical classification by [Azam et al. 2020]. A
hierarchical model consists of multiple classifiers organized in levels, in which the model
at level ¢ receives a input X; along with the outputs from previous levels, making possible
to reduce the quantity of labels at each level. It is possible to explode the character
structure of ICD-v10 codes and build a hierarchical model that predicts the next character
at each level, as proposed in [Azam et al. 2020].

The hierarchical model developed had two levels: the first one was a SVM model
that classified the group of the disease using the disease body location information;
the second level, another SVM model, received the output of the first model, plus the
information of the disease diagnosis producing the final three-digit code. Figure 4 shows
the architecture of the hierarchical model. For comparison purposes, a non-hierarchical
SVM model was trained employing the same data.

Disease group

Medical record:
Piece — | SWM—Levell ™

SVM — Level 2 [—® ICDv10

Medical record:
Conclusion ——————

Figure 4. Architecture of the hierarchical model

4.2. Test performed

Model metrics were calculated using three samples of testing data:



* Sample 1: keeping the original frequency distribution of labels. This would be
the scenario whereby the hospital treated the same type of diseases in the future;

* Sample 2: using label-balanced test data; this scenario is unreal, albeit important,
because it allows measuring the performance of the models with unbiased data;

* Sample 3: employing a test data with a random distribution in the code frequency;
it represents a possible real scenario but different from the current one.

5. Results and discussion

ML model performance is measured by different metrics which can be more or less
suitable depending on the model output. For classification tasks the most common metrics
are: (i) precision, which measures the fraction of the predictions that are correct; (ii) recall
or sensitivity, which measures the fraction of correct predictions against the real data; (ii1)
FI-score is the harmonic mean of precision and recall.

High precision means that the model made few mistakes overall, but it may fail
showing how the model behaves with the rarest labels. In turn, the recall evaluates
the model giving the same weight to all labels and without being influenced by their
frequency. The F1-score attempts to balance both metrics by taking their harmonic mean.

As in the diagnosis coding we are interested in making few mistakes, but being
able to predict the less frequent codes, the models were evaluated calculating the
precision, recall and f1-score metrics, for both hyper parameter tuning and testing.

In the SVM model, hyper parameter C and kernel must be tuned empirically to
achieve better performance of the model. SVM models were built using the Scikit-learn
library [Pedregosa et al. 2011], the kernel and hyper parameter C were tunned applying
grid search and cross validation with 5 folds in the train dataset. The candidates were the
following:

» Kernels: Linear and Radial Basis Function (RBF).
* C:[0.1,0.2,0.3, ... ,09]UI1, 2, 3, ..., 9]U[ 10, 20, 30, ... , 90]U[100, 200, 300, ...

, 900].

Figure 5 shows the performance of the non-hierarchical SVM model by kernel
against the value of C. The selected configuration was a Linear kernel with C' = 5, as the
model metrics stabilize at this value.

C c

a) Linear kernel b) REF kernel

Figure 5. C tuning for non-hierarchical SVM



For the hierarchical model it was necessary to tune the value of C and the kernel
at the first and the second levels of the hierarchy. Figure 6 shows the performance of the
first level by kernel against the values of C and Figure 7 for the second. For both cases

the kernel selected was Linear, C for the first level was 2 and for the second was 5.
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Figure 6. C tuning for hierarchical SVM - Level 1
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Figure 7. C tuning for hierarchical SVM - Level 2
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The hierarchical model outperforms the non-hierarchical model in the all samples,
by 8% to 15%. Table 1 lists the evaluation metrics of both models.

Sample 1 Sample 2 Sample 3
SVM Model Precision | Recall F1 Precision | Recall F1 Precision | Recall F1
Non-hierarchic 0.7412 | 0.7895 | 0.7404 0.6883 | 0.6096 | 0.6174 0.6715 | 0.6235 | 0.6125
Hierarchic 0.8947 | 0.9211 | 0.8930 0.7751 | 0.7500 | 0.7214 0.7570 | 0.7727 | 0.7207
Improvement 0.1535 | 0.1316 | 0.1526 0.0868 | 0.1404 | 0.1040 0.0855 | 0.1492 | 0.1082

Table 1. Evaluation metric results for models




6. Conclusion and limitations

We here demonstrated the importance of label balance for ICD code prediction and
proposed an efficient method to overcome this issue using code descriptions. It was hence
possible to build more robust models, improving the sensitivity for infrequent classes.

To overcome text quality issues related to accuracy dimension, we applied a set
of frequent text treatment activities for the ML model training. Problems concerning
readability and accessibility dimensions were not relevant in the medical records, as they
did not affect the performance of models.

Another contribution was our innovative hierarchical classification model, which
exploited the logical grouping of neoplasm codes by human body location and the
structure of laboratory exam documents. The results showed an improvement of 8% to
15% in the performance of the models for code category classification.

One limitation of the study was the small quantity of coded medical records.
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