
Machine Learning and Cloud Enabled Fall Detection System
using Data from Wearable Devices: Deployment and

Evaluation

Italo Araújo1, Marciel B. Pereira2, Wendley Silva3,
Igor Linhares3, Vitor Marx3, André M. Andrade2,

Rossana M. C. Andrade1, Miguel F. de Castro1

1 Departamento de Computação – Universidade Federal do Ceará (UFC)

2Campus Crateús - Universidade Federal do Ceará (UFC)

3Campus Sobral - Universidade Federal do Ceará (UFC)

Abstract. In recent years, the popularization of devices to monitor people in
combination with Machine Learning (ML) in the context of Internet of Things
(IoT) has grown significantly. Then, the number of applications to solve many
health issues that require data collection and processing has increased. One
of the common concerns by Health institutions is human falls, which can lead
to severe health damages or death. Thus, it is crucial to detect quickly when a
fall occurs, to reduce the possible sequels. One way to identify potential falls
is using data collected from wearable devices as input of an IoT system using
ML models, which is the solution proposed in this work using Cloud computing.
Thus, we present this solution and its deployment and evaluation that consists
of three modules: data acquisition and transfer, intelligent cloud application,
and notification service. The best result of the ML models presented is 94.4% of
accuracy, considering a low rate of false negatives of 4.3%.

1. Introduction
The Internet of Things (IoT) enables everyday objects to connect to the

Internet [Gubbi et al. 2013] providing new services to the users in several domains,
such as health applications. These health devices are also known as Internet of Health
Things (IoHT) [Rodrigues et al. 2018] objects, with the ability to exchange and process
data. These devices are employed to improve patient health [da Costa et al. 2018] by
monitoring body sensors of users to health problems and sending alerts to interested
people, such as family members or caregivers. In health applications, it is crucial to
have a reliable system to avoid the false detection of health risk events and a low delay
and response time solution to reduce severe sequels in risk events.

One of the IoHT contributions is the fall detection, which are the second leading
cause of non-intentional injuries that can also lead to death [WHO 2021]. In this context,
one of the goals of IoHT is to prevent risk events related to falls by detecting more quickly
when a fall occurs [de Araújo et al. 2018] towards the reduction of possible sequels for
monitored users.

According to [Ramachandran and Karuppiah 2020], there are three kinds of
architectures used to identify or prevent falls: i) Environmental sensing-based systems, ii)



Vision-based systems, and iii) Wearable sensor-based systems. Any of these architectures
is known as a Fall Detection System (FDS).

Analyzing these three possible architectures, environment, and vision-based
sensing requires the presence of users; thus, it is not possible to perform monitoring
outside sensed location. Vision-based also might present limitations due to privacy issues,
i.e., installing cameras in private rooms. Moreover, wearable-based solutions could attain
good outcomes compared with environmental-based and video-based FDS. This kind of
monitoring can be executed in different environments and circumstances.

Wearable-based FDS are widely explored in the academy and industry, where the
solutions can be developed considering different wearable positioning in users’ bodies
[Wang et al. 2020]. The employment of ML is also widespread but can produce different
results depending on chosen models. Thus, it is essential to train and test each ML
possible model because results might differ from each other based on data used to generate
a new model [Linhares et al. 2020]. Also, the deployment of part of the solution in cloud
nodes adds the criterion of response time, which is very important considering the desired
performance of FDS.

This paper proposes the development of a Wearable-based FDS that uses ML
models, which are deployed in two environments: cloud and edge nodes. Then, the
system is composed by mobile applications that collect data from wearables devices and
send data to be processed in the Cloud servers and notify the users and the family when
a risk is detected. To evaluate the system, we analyzed the metrics of ML models, and
inference and response time.

The remaining of this paper is organized as follows. In Section 2, we present the
related work found in the literature. Section 3 shows the methodology applied during
the execution of our work. Then, we define the proposal of the FDS and the details for
obtaining metrics for ML models and architecture in Section 4. In sequence, Section 5
presents the major results and discussion regarding the proposed models and architecture.
Finally, we present the main conclusions of this paper in Section 6.
2. Related Work

In [Saleh and Jeannès 2019] the authors collect data from a Tri-axial
Accelerometer (3DACC) sensor placed in the volunteer’s waist. A flow-based algorithm
with a sliding time window extracts from data the mean and standard deviation as features,
generating a 12 component vector based on 1st and 2st order moments. The Suport Vector
Machine (SVM) model employed in the prediction process reached 99.9% accuracy and
93.05% sensitivity using radial basis kernel.

The authors in [Fáñez et al. 2020] designed a FDS from accelerometer data with
calibration for each user in three steps: i) Activity of Daily Living (ADL) data collection
for device calibration and train the first classifier; ii) passing the data through the first
classifier, which serves as a filter or threshold; and iii) passing the data for a second trained
classifier with the public dataset. Two different SVM models were used in first and second
classifiers, as well as a two-class Convolutional Neural Networks (CNN). Although
the proposed model generated promising results, the system’s primary limitation is the
dependency of knowledge of users’ behavior.

The work of [Linhares et al. 2020] presented learned lessons on the development



of a FDS integrating smartwatches and a mobile application with ML models. They
evaluated several ML algorithms considering three dataset configurations: original,
original with SMOTE technique, and original with two features. Random Forest (RF)
presented the best results in original data with SMOTE technique configuration, reaching
an accuracy of 95.13%, a sensibility of 95.13%, and 94.8% of specificity. Also, the
authors created a dataset with five volunteers and 13 scenarios, including falls, resulting
in 426 samples.

The work of [Sarabia-Jácome et al. 2020] proposed an edge-computing
architecture for fall detection with Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) models. The proposed LSTM model presented an accuracy of
98.75%, trained with the SisFall dataset, that contains two 3DACC and one gyroscope.
The model input is composed of a 15 sec-length sample.

The authors in [Zurbuchen et al. 2021] proposed Gradient Boosting Decision
Tree (GBDT) as one of ML architectures for their FDS. This work has also demonstrated
the sample rate of 20Hz was sufficient to produce high accuracy of 98.73% and 98.52%
for GBDT and RF., respectively.
3. Methodology

The research described in this paper is the result of an industry-academia
partnership and followed a methodology divided into three fronts, as shown in Figure
1. The first consisted of the research conception, followed by the data analysis front,
ending with developing the solution itself. We started our project with the research front,
and the other two were executed in parallel with the research results.

In the research design, we defined the scope of the research since there are
alternatives for creating IoHT solutions, such as the use of environmental sensors,
cameras, or wearable devices. Thus, we decided that the initial scope would be to use
wearable technologies to monitor a patient for fall detection in several environments.
Next, we conducted a literature review to discover the latest solutions created for the
defined context.

In sequence, we performed two activities in parallel, and they are related to the
search for datasets that could be applied in the generation of machine learning models
for our context and the specification of FDS architectures to be used in the development
front. As for the datasets, we found several, but only three met the requirements of our
solution, these being UmaFall [Casilari et al. 2017], UpFall [Martı́nez-Villaseñor et al.
2019], and [Özdemir and Barshan 2014].

In the data analysis front, we concatenated those previously-established datasets
to create a more robust one containing accelerometer and gyroscope data. As the authors
collected them differently, we need to make adjustments to standardize to train and test
the models. After this, we extracted five features based on sensors data after several
tests, which we will explain better in Section 4. In sequence, we analyzed the features to
identify those that best fit our context.

The development front starts with two sub-processes running in parallel, one for
generating the machine learning models from the results of the data analysis front. The
second is related to developing the solution itself, including the mobile applications.
Finally, this front is finished with the integration of the results of the two sub-processes:



models and applications.

The model generation sub-process comprises three activities, where the first
receives as input the features defined in the previous step. Then, training is performed on
the machine learning algorithms, aiming to generate models that meet the best measures
for the project context: i) sensitivity and ii) specificity. These measures evaluate the hit
rate of the algorithms regarding fall situations and daily activities, respectively. Then,
these models are compared with values found in the literature, trying to verify if they
present better results. This model generation and evaluation process are cyclical until a
satisfactory model is obtained.

The other sub-process aims at developing the FDS, which was defined to be an
integration between two applications – one for the monitored user and the other for
the caregivers – which is better described in the section 4. This sub-process consists
of the software development process of Software Engineering, which begins with the
requirements specification – already started in other steps – the software design, based on
the architecture previously defined, the development itself, and the tests to ensure that the
software is working correctly. We used an incremental process, so it is cyclical until there
is stable, ready-to-use software.

Figure 1. Methodology of this work

4. Fall Detection System Proposal

We propose the development of a FDS consisting of three layers architecture based
on [Hiremath et al. 2014]: i) wearables devices; ii) gateway; and iii) cloud/edge server. In
this section, we will address the architecture and the modules of our FDS, especially the
ML models generation, which involves the standardization of data, performing training,
and tests.



Figure 2. Layers of our Fall Detection System (FDS) Internet of Things (IoT)
solution, adapted from [Hiremath et al. 2014]

4.1. Architecture Summary

The wearable application executes on the smartwatch by collecting data from an
embedded 3DACC sensor and sending data packages to the patient mobile application in
the smartphone, which is responsible for sending the collected data to the Cloud server.
Finally, if the result of inference server present in Cloud is fall detection, the system
answers to the monitored patient and the caregiver mobile application. We present a
detailed description of these modules as follows:

The Wearable Application was developed in Android to be executed in devices
compatible with WearOS, which is an optimized operating system designed by Google for
wearable devices. This module is responsible for gathering data from the accelerometer
present in the device and send to the mobile application of the monitored user. The sample
rate of collected data must be equal to the frequency used to produce intelligent models
to detect falls.

The Monitored User Mobile Application, also developed using Android, is
used to handle data obtained from wearable over a Bluetooth connection. Therefore,
the application constructs a data window with the same size as the produced models
in the inference module. We also developed a login system to identify different users
with their consecutive caregivers. The login system is crucial to identify the samples of
each monitored user and relate these users to their respective caregivers, according to the
agreement of monitoring between caregivers and monitored users.

The Cloud Server layer contains four components: i) listening; ii) database
server; iii) audit server; and iv) ML inference service. The three first modules are
responsible for the user’s management, data receiving and storage, and notification service
using Message Queuing Telemetry Transport (MQTT) protocol to notify the monitored
user and the caregiver. The inference service module predicts a fall using the sensor data
as input of the pre-trained ML model.

The Caregiver Mobile Application is the final layer composed by a mobile
application that receives MQTT notifications from Cloud server. By receiving a fall
notification, the caregiver application will display a set of possible actions to be taken
by the agent. This application is different than the application of monitored users because
caregivers can monitor more than one user simultaneously.

4.2. Inference Module using Machine Learning

In order to produce the inference module, we adopted a typical pipeline for the
development of a ML model: data acquisition from datasets, preprocessing, feature



extraction, model processing and training, and evaluation, described in the following
Subsections.

4.2.1. Datasets

We performed research on datasets that present 3DACC data collected from wrist
devices, which we initially considered compatible with the signals that we collected
from wearable devices. The selected public datasets were [Özdemir and Barshan 2014],
[Casilari et al. 2017] (UMAFall), and [Martı́nez-Villaseñor et al. 2019] (UPFall),
described as follows:

Dataset 1: [Özdemir and Barshan 2014] dataset was collected from 17 volunteers,
where each volunteer performed 20 Falls and 16 ADL with five trials for each activity. It
resulted in 3060 samples, of which 1700 are falls—the data collected from the volunteer’s
right wrist present a sample rate of 25Hz.

Dataset 2: [Casilari et al. 2017] UmaFall dataset presents data obtained from 531
simulated activities performed by 17 users, from which 208 represent falls. The sample
rate of left wrist 3DACC signals was 20Hz.

Dataset 3: In the [Martı́nez-Villaseñor et al. 2019] UpFall dataset, the wearable
3DACC sensors are placed on the wrists, with a sample rate of approximately 18Hz. The
17 volunteers produced three trials of five different simulated falls and six ADLs. The
dataset presented 561 windowed samples, of which 255 are falls.

4.2.2. Data preprocessing

To construct a single dataset from the three works described in Subsection 4.2.1,
we performed a data preparation by removing malformed samples from the dataset and
converting the signal data to the default unity of degrees per second (deg/s). We also
resampled the data to the same sample frequency of 25Hz, which is greater than the
minimum recommended for 3DACC-based FDS using ML techniques, according to [Liu
et al. 2018]. In the Table 1 we show the characteristics of the final dataset we adopted for
training ML models. The data format is timestamp, sensor data, sensor type.

Table 1. Datasets selected in this research.

Parameter Dataset 1 Dataset 2 Dataset 3 Final Dataset
Sample Rate (Hz) 25 20 18.4 25
Number of ADLs 1700 208 255 2553
Number of Falls 1360 323 306 2326
Total of Samples 3060 531 561 4879

The Data Version Control (DVC) is a useful resource that allows organizing
datasets by name and version, considering the necessity of working with newly acquired
data in the future. In this work, we adopted DVC for the final dataset in order to guarantee
robustness considering the reproducibility of experiments.

4.2.3. Feature Extraction and Selection

This step consists in selecting a data window containing the feature space of
original data provided by 3DACC considering many time-domain statistics, which helps
extract information that better characterize each activity [Zurbuchen et al. 2021]. The



metrics we chose for extract features were: mean, median, minimum, maximum, kurtosis,
and skewness. Our goal is to find a small set of new features to be used as input
for ML models. Thus, we measured the performance of each proposed ML technique
considering a subset of new features, so the features that produce the best results are also
hyperparameters of our model.

We evaluate the new features previously described over all samples in the dataset;
thus, we call this step feature extraction. The new data will be used as input in the
ML models. We use all features in the hyperparameter optimization step. Afterward,
we evaluate the models with existing optimized hyperparameters for all combinations of
features. Therefore, for each model, we choose features which models attain the best
performance.

4.2.4. Model Processing and Training
According to the related work in Section 2, there are a set of common techniques to

be adopted in the development of ML models for producing a FDS. Thus, we investigated
six ML techniques described as follows:

Decision Trees (DTs) are classifiers based on simple decision rules from data
features where the top node, known as the root, represents the data, and the bottom node,
known as the leaves, represents classes [Kerdegari et al. 2012]. The training process
consists of finding thresholds for each tree level according to input data. The common
hyperparameters to be optimized are the maximum depth, maximun number of features,
minimum samples in the leaves and minimum samples to split internal nodes.

Random Forest (RF) is an ensemble of DTs classifiers, where each DT classifies
the incoming data, and these classifications are accounted as votes to choose the most
popular class. The common hyperparameters to be optimized are the same as the DT, in
addition to the number of estimators. The model inference depends on the majority of
estimators’ output, and this strategy reduces the variance of estimators compared to the
bagging strategy in DT.

Gradient Boosting Decision Tree (GBDT) is also an ensemble of DTs that uses
lifting algorithm AdaBoost [Ning et al. 2019], the gradient descend and the loss
function to optimize the model, depending on the number of classes of input data. Some
hyperparameters for GBDT are also the same as the RF, including the loss function and
its optimization criterion.

Suport Vector Machine (SVM) is a ML technique that performs a quadratic
optimization to find the decision surface over a k−dimensional feature space. New data
is classified depending on which side it is placed [Kerdegari et al. 2012] For model
tunning, the common hyperparameters to be optimized are the penalty parameter C,
kernel function and the gamma coefficient.

Long Short-Term Memory (LSTM) is an architecture for Recurrent Neural
Networks (RNN) that presents units composed of a cell, an input gate, an output gate and
a forget gate, which the data flow is controlled. Some hyperparameters to be optimized in
this architecture are activation function, dimension of layers, optimizer, number of epochs
and batch size.

Gated Recurrent Unit (GRU) is also a RNN-based architecture, similar to LSTM,



but uses the hidden state instead of the cell state to transfer information between units.
The learning process is made by tuning the weights of each gate [Dey and Salem 2017].
The common hyperparameters for GRU are similar to LSTM.

We split the data into two groups of train and test with 70% and 30% of
samples each, respectively. The training group is also used to perform hyperparameter
optimization. After finding the best hyperparameters, we proceed to the train-test step for
all ML models. Finally, we store performance metrics of each ML technique for the test
set to compare models.

4.2.5. Machine Learning Evaluation Metrics
We evaluated the models of our FDS by adopting three common metrics:

accuracy, sensitivity, and specificity, described in Eq. 1, Eq. 2, and Eq. 3, respectively.
These metrics depend on the rates for True Positives(TP), True Negatives(TN), False
Positives(FP) and False Negatives(FN), as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(1)

sensitivity =
TP

TP + FN
(2)

specificity =
TN

TN + FP
(3)

We aim to reach models that produce the highest sensitivity since we want to
guarantee the correct prediction of most falls. The second performance parameter for
comparing models is the specificity to check the hit rate of daily activities. We also use
accuracy to analyze the general results compared to all events.

4.3. Cloud Nodes
We deployed the system on the Cloud server and ran the applications in this layer,

in which the environment settings will be presented in Section 5. Also, we collect the time
performance of Cloud nodes by measuring the latency between data send and the received
inference response in the mobile application. The overall response time (tr) is composed
by the network delay (tn) between applications and Cloud nodes, and ML inference and
data preprocessing time for received data (tML), as shown in Eq. 4.

tr = tn + tML (4)

5. Results and Discussion
In this section, we present the major results provided by ML models for FDS

in comparison with the related work we selected for this paper. Also, we discuss the
performance evaluation of our solution in the Cloud/Edge environments.

Regarding the hardware requirements for the ML pipeline, we trained and tested
our models in a machine with 16 GB of RAM, 512GB of SSD storage, and a 10th
generation Intel Core i7 processor. All the experiments were executed in a computer with
Ubuntu 20.04 LTS and the models were developed using ML the libraries scikit-learn,
PyTorch and TensorFlow, compatible with Python 3.6, under the virtual environment
pipenv. We adopted DVC to version the ML artifacts – datasets and models.



The Cloud environment must support the modules described in Subsection 4.1.
This environment was deployed in HuaweiCloud using a dual-CPU ECS virtual machine,
with 8GB of RAM and Ubuntu 18.04 LTS as the operating system, and the ModelArts
inference service that executes pre-trained models in Python.
5.1. Machine Learning Models’ Performance

We performed data training and test according to the procedure described in
Subsection 4.2.4 using the ML models: DT, RF, GBDT, SVM, LSTM and GRU.
We collected best hyperparameters for each model according to a grid search method.
Therefore, we present in Table 2 the best hyperparameters found after optimization
process. The LSTM and GBDT models were optimized in 100 epochs using sigmoid
activation function and dropout of 5%.

Table 2. Best hyperparameters for each developed ML model.

Model Hyperparameter Value Hyperparameter Value

DT Max. depth 40 Max. features 0.6
Min. samples leaf 30 Min. samples split 0.001

RF
Max. depth 11 Max. features 0.6

Min. samples leaf 30 Min. samples split 0.001
N. of estimators 80

GBDT
Max. depth 5 Loss function exp.

Criterion MSE Min. samples split 0.01
N. of estimators 100

SVM penalty C 5 Kernel Function poly.
gamma 0.1

LSTM
Batch Size 100 Dim. Layer 1 20
optimizer Adam Dim. Layer 2 4

GRU
Batch Size 100 Dim. Layer 1 10
optimizer Adam Dim. Layer 2 4

In sequence, we show the evaluation of new features as explained in Subsection
4.2.3 considering the best set of hyperparameters of models. We evaluated this step over
only the train set, which results are shown in Table 3. Considering the new feature subset
obtained in the feature extraction step, we performed model training and test considering
also the best hyperparameters of Table 2, as described in Subsection 4.2. In Table 4 we
show the reached performance for each ML model in their respective test set regarding
evaluation metrics shown in Subsection 4.2.5.

Table 3. Minimum set of new features for each model.
Model Features Accuracy Sensibility Specificity
DT Mean, Std., Skw. 0.933 0.897 0.916
RF Mean, Std., Skw. 0.993 0.962 0.978
SVM Mean, Std., Skw. 0.976 0.975 0.975
GBDT Mean, Std., Kurt. 0.912 0.915 0.908
LSTM Mean, Max., Min., Skw., Kurt. 0.890 0.879 0.901
GRU Median, Max., Min., Skw., Kurt. 0.879 0.886 0.873

The reached metrics in Table 4 are worse than those presented in Table 3 because
of the evaluation with the test set, regarding we used hyperparameters obtained in model
training. Regarding the accuracy and sensibility, the GBDT model presented the best
performance. We adopted sensibility as an important criterion because we want to reduce
as much as possible the rate of False Negativess (FNs). The second-best model, the RF,



Table 4. Performance metrics for best ML models.
Model DT RF GBDT SVM LSTM GRU
Accuracy (%) 86.3 91.6 94.4 89.5 89.7 88.1
Sensibility (%) 87.8 93.6 95.7 90.5 89.5 88.0
Specificity (%) 84.8 90.0 93.0 88.5 89.8 88.3

is another well-known algorithm for fall detection according to the literature. Although
GBDT and RF were introduced in other FDS, there is no generalization for a group of
datasets simultaneously. In Table 5 we summarize the results we obtained in our work
compared to the literature.

Table 5. Comparison of developed FDS with related word.

Work Dataset Size Model accbest (%) sensbest (%) specbest (%) Proposal
[Saleh and Jeannès 2019] 4500 SVM 99.85 99.72 99.85 Only model
[Fáñez et al. 2020] 531 CNN 90.23 90.9 87.26 Only model
[Linhares et al. 2020] 627 RF 95.13 94.80 95.27 Model, wearable
[Sarabia-Jácome et al. 2020] 4497 LSTM 98.75 97.6 97.44 Model, wearable, Edge
[Zurbuchen et al. 2021] 4505 GBDT 98.73 98.26 99.21 Only model

Our Work 4879 GBDT 94.4 95.7 93.0 Model, wearable, Cloud

5.2. Cloud Performance

We deployed four different models that presented the best metrics in both proposed
environments. The ModelArts service provided an endpoint to handle new incoming data
for model inference in the Cloud. In the Edge, we developed a nginx HTTP application
to process incoming data in the same way as the Cloud.

The response time represents the overall system delay, which depends on the
network connection and model inference time, as shown in Eq. 4. Our proposed system
must pursue the lowest interval between the event and the response because it could
involve a risk of death depending on the practical case. Moreover, the inference time
also depends on the complexity of ML models and computing resources demanded by
intelligent services. We show in Table 6 the average time performance considering models
deployed in Cloud, except LSTM and GRU models, which were incompatible with the
intelligent service in Cloud used in this work.

Table 6. Time performance of tested models in Cloud Environment.

Models Train Time (sec.) Inference Time (sec.) Network Time (sec.) Response Time (sec.)
DT 1.7 0.113 1.702 1.815
RF 16.9 0.118 1.741 1.859
GBDT 95.3 0.099 1.723 1.822
SVM 43.9 0.101 1.660 1.761

All models deployed in Cloud presented similar average inference and response
time. The GBDT presented the smallest inference time, thus, considering this model
presented the best performance through models’ metrics, we adopted GBDT as main
model for our FDS. The DT has the advantage of a smaller train time, which allows a
fast model improvement when working with new samples for training. Also, the number
of users that send requests to FDS service impacts the performance of models due to the
high demand.



6. Conclusion
In this paper, we presented the proposal of a Cloud-based FDS solution,

considering an architecture that uses wearable devices and smartphones to monitor users.
We successfully employed a combination of three publicly available datasets as training
data or our proposed models.

Considering the ML models performance, GBDT presented best sensibility and
accuracy. Although our proposed model did not present performance as better as the
related work, we evaluate the deployment of ML models in a Cloud environment, in
which input data is collected from wearables.

We choose the wearable approach in this work because of the premise that users
will be more likely to adopt a wearable solution through their privacy and portability. The
system has the potential to become a viable product because it is not necessary for the user
to be in a restricted environment to the system work, as well as it depends on only one
wearable. As future work, the proposed a set of improvements for our FDS considering
new models, datasets, and the inclusion of environmental sensors and cameras.

Acknowledgements
We would like to thank CNPq for the Productivity Scholarship of Rossana

Andrade DT-1 (No 306362/2021-0) and Huawei for supporting this research under the
Brazilian Informatics Law (No 10.176 of 1/11/2001) incentives.

References
[Casilari et al. 2017] Casilari, E., Santoyo-Ramón, J. A., and Cano-Garcı́a, J. M. (2017).

UMAFall: A multisensor dataset for the research on automatic fall detection. Procedia
Computer Science, 110:32–39.

[da Costa et al. 2018] da Costa, C. A., Pasluosta, C. F., Eskofier, B., da Silva, D. B., and
da Rosa Righi, R. (2018). Internet of health things: Toward intelligent vital signs
monitoring in hospital wards. Artificial Intelligence in Medicine, 89:61–69.

[de Araújo et al. 2018] de Araújo, I. L., Dourado, L., Fernandes, L., d. C. Andrade, R. M.,
and Aguilar, P. A. C. (2018). An algorithm for fall detection using data from
smartwatch. In 2018 13th Annual Conference on System of Systems Engineering
(SoSE), pages 124–131.

[Dey and Salem 2017] Dey, R. and Salem, F. M. (2017). Gate-variants of gated recurrent
unit (GRU) neural networks. In 2017 IEEE 60th International Midwest Symposium on
Circuits and Systems (MWSCAS), pages 1597–1600.

[Fáñez et al. 2020] Fáñez, M., Villar, J. R., de la Cal, E., González, V. M., Sedano, J.,
and Khojasteh, S. B. (2020). Mixing user-centered and generalized models for fall
detection. Neurocomputing.

[Gubbi et al. 2013] Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M. (2013). Internet
of things (iot): A vision, architectural elements, and future directions. Future
Generation Computer Systems, 29(7):1645 – 1660.

[Hiremath et al. 2014] Hiremath, S., Yang, G., and Mankodiya, K. (2014). Wearable
internet of things: Concept, architectural components and promises for



person-centered healthcare. In 2014 4th International Conference on Wireless
Mobile Communication and Healthcare (MOBIHEALTH), pages 304–307.

[Kerdegari et al. 2012] Kerdegari, H., Samsudin, K., Ramli, A. R., and Mokaram, S. (2012).
Evaluation of fall detection classification approaches. In 2012 4th International
Conference on Intelligent and Advanced Systems (ICIAS2012), volume 1, pages
131–136.

[Linhares et al. 2020] Linhares, I., Andrade, R., Junior, E. C., Almir, P., Oliveira, B., and
Aguilar, P. (2020). Lessons learned from the development of mobile applications for
fall detection. In The Ninth International Conference on Global Health Challenges,
pages 18–25.

[Liu et al. 2018] Liu, K.-C., Hsieh, C.-Y., Hsu, S. J.-P., and Chan, C.-T. (2018). Impact
of sampling rate on wearable-based fall detection systems based on machine learning
models. IEEE Sensors Journal, 18(23):9882–9890.

[Martı́nez-Villaseñor et al. 2019] Martı́nez-Villaseñor, L., Ponce, H., Brieva, J.,
Moya-Albor, E., Núñez-Martı́nez, J., and Peñafort-Asturiano, C. (2019). Up-fall
detection dataset: A multimodal approach. Sensors, 19(9).

[Ning et al. 2019] Ning, Y., Zhang, S., Nie, X., Li, G., and Zhao, G. (2019). Fall detection
algorithm based on gradient boosting decision tree. In 2019 IEEE International
Conference on Signal Processing, Communications and Computing (ICSPCC), pages
1–4.

[Özdemir and Barshan 2014] Özdemir, A. T. and Barshan, B. (2014). Detecting falls with
wearable sensors using machine learning techniques. Sensors, 14(6):10691–10708.

[Ramachandran and Karuppiah 2020] Ramachandran, A. and Karuppiah, A. (2020). A
survey on recent advances in wearable fall detection systems. BioMed research
international, 2020.

[Rodrigues et al. 2018] Rodrigues, J. J., Segundo, D. B. D. R., Junqueira, H. A., Sabino,
M. H., Prince, R. M., Al-Muhtadi, J., and De Albuquerque, V. H. C. (2018). Enabling
technologies for the internet of health things. IEEE Access, 6:13129–13141.

[Saleh and Jeannès 2019] Saleh, M. and Jeannès, R. L. B. (2019). Elderly fall detection
using wearable sensors: A low cost highly accurate algorithm. IEEE Sensors Journal,
19(8):3156–3164.

[Sarabia-Jácome et al. 2020] Sarabia-Jácome, D., Usach, R., Palau, C. E., and Esteve, M.
(2020). Highly-efficient fog-based deep learning aal fall detection system. Internet of
Things, 11:100185.

[Wang et al. 2020] Wang, X., Ellul, J., and Azzopardi, G. (2020). Elderly fall detection
systems: A literature survey. Frontiers in Robotics and AI, 7:71.

[WHO 2021] WHO (2021). Falls - world health organization. http://www.who.int/
news-room/fact-sheets/detail/falls. (Acessed on 06/08/2021).

[Zurbuchen et al. 2021] Zurbuchen, N., Wilde, A., and Bruegger, P. (2021). A machine
learning multi-class approach for fall detection systems based on wearable sensors
with a study on sampling rates selection. Sensors, 21(3).

http://www.who.int/news-room/fact-sheets/detail/falls
http://www.who.int/news-room/fact-sheets/detail/falls

	Introduction
	Related Work
	Methodology
	Fall Detection System Proposal
	Architecture Summary
	Inference Module using Machine Learning
	Datasets
	Data preprocessing
	Feature Extraction and Selection
	Model Processing and Training
	Machine Learning Evaluation Metrics

	Cloud Nodes

	Results and Discussion
	Machine Learning Models' Performance
	Cloud Performance

	Conclusion

