
How feasible is it to segment human glomerulus with a model
trained on mouse histology images?

Luiz Souza1,6, Jefferson Silva1,5, Paulo Chagas1,
Angelo Duarte3, Washington LC dos-Santos2,4, Luciano Oliveira1

1IVISION Lab, Universidade Federal da Bahia, Bahia, Brazil

2Universidade Federal da Bahia, Bahia, Brazil

3Universidade Estadual de Feira de Santana, Bahia, Brazil

4Fundação Oswaldo Cruz – Instituto Gonçalo Moniz, Bahia, Brazil
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Abstract. Many genetic, physiological and structural characteristics of inter-
nal organs are shared by mice and humans. Hence, mice are frequently used in
experimental model of human diseases. Although this is an indisputable truth
in medicine, there is an avenue to go in computational pathology, where digi-
tal images are the main objects of investigation. Considering the lack of study
about knowledge transfer between mice and humans concerning machine learn-
ing models, we propose investigating if it is possible to segment glomeruli in
human WSIs by training deep learning models on mouse data only. Three differ-
ent semantic segmenters were evaluated, which had their performance assessed
on two data sets comprised of 18 mouse WSIs and 30 human WSIs. The results
found corroborate our hypothesis validation.

1. Introduction

A common approach in scientific medical studies is to perform animal experiments before
clinical tests in humans. Some of these studies includes histological analysis of represen-
tative tissue samples. Mice are frequently selected for these animal studies, not only
for their genetic and physiological similarities with humans [Kim et al., 2007], but also
because the rodents are inexpensive to breed and their tiny size takes less space in the lab-
oratory facilities [Smith and Corrow, 2005]. That preemptive mouse experimentation also
benefits the nephropathology, which is the domain of this work. Kidney biopsies may be
required for diagnosing renal diseases. The renal samples are processed and scanned into
whole-slide images (WSI), which are easier to share and analyze [Barisoni et al., 2013,
Farris et al., 2017, Santos et al., 2019].



We define the glomerulus as a network formed by tiny blood capillaries respon-
sible for blood filtration. Given its primary function, the location and segmentation of
glomeruli are valuable information that pathologists often extract from a kidney WSI. As
locating glomeruli is time-consuming and error-prone, a promising alternative arises with
developing an automatic glomerular segmentation approach, providing fast and reliable
supportive information for the pathologists’ decision-making pipeline. In this context, a
challenge comes out in gathering a large amount of annotated data, which can be even
harder to obtain if one considers human biopsies. Bearing all that in mind, a question
naturally arises: how feasible is it to segment human glomerulus with a model trained on
mouse histology images?

When addressing automatic segmentation, deep learning techniques have stood
out in the literature, achieving state-of-the-art results in several domains, including medi-
cal imaging and, more specifically, WSI segmentation task [de Bel et al., 2018, Gadermayr
et al., 2019, Ginley et al., 2020, Jiang et al., 2021]. Nonetheless, deep learning techniques
require a reasonable amount of data to train the model from scratch or to have it fine-tuned
to a specific domain. This limitation motivated our study.

Although there is some works using mouse and human species outside the domain
of histology [Chater et al., 2021, Hossain et al., 2021], only a few deep learning studies on
histological images have been exploring samples of these species. Bouteldja et al. [2021]
developed a custom U-Net network for automated multi-class segmentation of glomeru-
lar images of different mammalian species, not only mice and humans. In another study,
Simon et al. [2018] modified local binary patterns (LBP) feature extractor to train a sup-
port vector machine (SVM) model for glomerulus detection in WSIs. For classification
and segmentation, Ginley et al. [2019] proposed a deep-learning-based approach to quan-
tify some kidney structures (nuclei, capillary lumina, and Bowman spaces); the authors
defined a set of features that describe the structural progression of diabetic nephropathy,
feeding a recurrent neural network for classification; finally, a DeepLabV2 network is
used for glomerular segmentation on WSIs. In another approach, [Lutnick et al., 2019]
applied a DeepLabV2 network to segment glomerulus and internal glomerular structures
from human and mouse renal tissue slides.

From the histology perspective, it is worth noting that there is no obstacle to mix-
ing mouse and human samples. The renal histological structures are similar across these
species, despite the difference in size. So far related studies have addressed human and
mouse data sets in isolated (same specie for training and testing) or combined evaluation
(mix the species for both training and testing). Considering all that, the main contribution
of our paper is the investigation of the cross-species compatibility of human and mouse
data for glomerulus segmentation. In words, our main goal is to investigate if a deep
learning model, training on mouse data, is able to segment human glomerulus.

2. Materials and methods

The analytical protocol depicted in Fig. 1 shows the outline of the proposed study split
as follows: (i) glomerulus annotation, (ii) patch generation, (iii) training of the selected
architectures, (iv) model prediction, and (v) stitching the predicted patches. The first
step consists in the extraction of kidney biopsy sections with 40× magnification and
stained with hematoxylin and eosin (HE), periodic acid-Schiff (PAS), and periodic acid-
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Figure 1. Protocol proposed for this study. From (i) to (v): glomeruli are manually
annotated from sections of kidney biopsies; each section is divided into
patches; three different types of architectures are selected for training; the
best model of each architecture is selected to predict glomerulus or non-
glomerulus pixel in each patch; finally, the resulting masks are stitched to
compose the final segmented WSI mask.

methenamine silver (PAMS), subsequently the Cytomine1 software was used to perform
manual annotation of the glomeruli to support the training of the network models. In
the second step, the WSIs were divided into patches of 1024×1024 pixels with padding
size of 256 pixels; each patch is resized to 320×320 pixels due to high-memory footprint
with the goal of increasing training speed. In the third step, the generated patches are
used to train the following networks: U-Net [Ronneberger et al., 2015], DeepLabV3+
[Chen et al., 2018], and MA-Net [Fan et al., 2020], all using the EfficientNet-b1 [Tan and
Le, 2019] encoder. In the fourth step, the best prediction model was selected for each
architecture, and the segmentation performance was assessed by means of the dice coef-
ficient (Dice) metric. Finally, in the fifth step, the resulting patches are simply stitched
to compound the final semantic segmentation mask.

1https://cytomine.com/



Table 1. Summary of the data sets. Lutnick’s data set comprises only mouse
data, while WSI Fiocruz 2’s only human data.

Data set Stain # WSI # Glom. Average dimension (pixels)Train Test Train Test
Lutnick‘s HE 14 4 634 171 19,511 × 20,044

WSI Fiocruz 2’s
HE 6 4 78 72 23,216 × 10,356
PAS 6 4 95 40 22,566 × 10,972

PAMS 6 4 86 53 22,706 × 11,691

2.1. Data sets

The collection of WSIs used in this study originated from two data sets: Lutnick’s
and WSI Fiocruz 2’s. Lutnick’s data set contains 18 kidney sections from mice, while
WSI Fiocruz 2’s contains 30 kidney sections from humans. Table 1 summarize the de-
tails of the two data sets.

Lutnick’s data set. According to [Lutnick et al., 2019], all histological sections were
collected by following protocols approved by the Institutional Animal Care and Use Com-
mittee at the University at Buffalo, obeying the guidelines and specifications of the Amer-
ican Veterinary Medical Association guidelines on euthanasia. C57BL/6J mice were eu-
thanized, and their kidneys were perfused, extracted, and embedded in paraffin. Mice
were either treated with streptozotocin (STZ) to induce diabetic nephropathy or with an
STZ vehicle for control. The renal biopsies were sliced from the paraffin-embedded kid-
ney. Sections at 2 �m thick were stained with HE and bright-field imaged at 0.25 �m
per pixel resolution using an Aperio ScanScope slide scanner (Leica Biosystems) in 40×
magnification. This data set consists of 18 HE-stained images.

WSI Fiocruz 2’s data set. The human data set consists of histopathology images of
kidney WSIs, 30 gigapixels in size. Each WSI contains 3 to 6 sections of kidney biop-
sies. This digital image library was built by Dr. Washington LC dos-Santos at Gonçalo
Moniz Institute (FIOCRUZ), for the diagnosis of glomerular diseases in referral nephrol-
ogy services of public hospitals of Bahia State, Brazil. The renal biopsies were fixed
in formalin-acetic acid-alcohol to preserve their histological structure, later included in
paraffin. Sections of 2 �m were stained by HE, PAS, and PAMS. The WSIs were cap-
tured using a VSI-500 Olympus scanner with 40× magnification. The selected images
contain 10 WSIs stained with HE, 10 WSIs stained with PAS, and 10 WSIs stained with
PAMS.

2.2. Semantic segmentation networks

We selected three types of segmentation networks: U-Net [Ronneberger et al., 2015],
DeepLabV3+ [Chen et al., 2018], and MA-Net [Fan et al., 2020]. Each network relies
on a different deep learning segmentation paradigm. The U-Net is a typical encoder-
decoder architecture, in which the encoder extracts features of different spatial resolu-
tions, and the decoder receives these features as input to define the segmentation mask;
each layer of the encoder is connected with each layer of the decoder, forming a U shape.



Table 2. Intra-dataset comparative results, considering three types of segmenta-
tion networks over the train and test data sets described on Table 1.

Data set Stain Network �Dice
U-Net 0.847(±0:078)

Lutnick’s HE DeepLabV3+ 0.875(±0.042)
MA-Net 0.773(±0:098)
U-Net 0.791(±0:046)

HE DeepLabV3+ 0.818(±0.053)
MA-Net 0.014(±0:004)
U-Net 0.581(±0:176)

WSI Fiocruz 2’s PAS DeepLabV3+ 0.789(±0.033)
MA-Net 0.050(±0:019)
U-Net 0.718(±(0.130)

PAMS DeepLabV3+ 0.660(±0:162)
MA-Net 0.334(±0:109)

The DeepLabV3+ is a deep learning architecture designed for semantic image segmen-
tation, created from improvements on DeepLabV3. Even though the encoder can pro-
cess multi-scale contextual information by applying dilated convolution at multiple scales,
DeepLabV3+ was not properly designed to obtain long-range dependencies in the deep
learning process. The multi-scale attention net (MA-Net) is a network architecture that
consists of a self-attention mechanism for adaptive feature extraction using two stages:
(i) position-wise attention block (PAB), which covers feature inter-dependencies between
pixels in spatial dimensions and (ii) a multi-scale fusion attention block (MFAB), which
captures the channel dependencies between any feature map by multi-scale semantic fea-
ture fusion.

2.3. Implementation details of the network architectures

U-Net, DeepLabV3+, and MA-Net architectures were implemented using the Pytorch
framework [Paszke et al., 2019] version 1.9.1, initially loading all networks with weights
pre-trained on the Imagenet-1k data set [Russakovsky et al., 2015]. The models were
trained across 50 epochs with a batch size of 16, a warm-up learning rate scheduler with
a maximum of 0.0001, and weight decay of 0.00001, using a loss that combines binary
cross-entropy (BCE) [Yi-de et al., 2004] and Lovasz [Berman et al., 2018] loss function.
All experiments were run in a computer with AMD EPYC 7742 64-Core Processor, 1TB
RAM, and an A100-SXM4 NVIDIA GPU containing 40GB of memory. In addition,
the time spent took about 3 hours to train and test sets for three selected architectures.
The pre-trained weights were fine-tuned on the top layers only, aiming to keep the rich
features learned previously. In order to improve the variability of the input data, we
used the following online training data augmentation techniques: resizing, vertical and
horizontal flip, random rotation in intervals of 90 degrees, shift scale rotation, Gaussian
noise, Gaussian blur, random brightness contrast, random hue saturation value, optical
distortion, grid distortion, and piece-wise affine.

3. Experimental results
The sizes of the train and test sets were thought to keep the test set size similar for both
human and mouse evaluations, thus assessing the different domains on the same quantity



of images (check Table 1). As the human data set contains two sections per patient out of
5 patients, we decided to group 3 patients (6 WSIs) in the training set and 2 patients (4
WSIs) in the test set. We also adopted 4 WSIs for Lutnick’s test set, thus leaving 14 WSIs
for training. The selection of the WSI splits on both data sets was adequately randomized
to avoid selection bias.

Our first analysis was based on an intra-dataset evaluation, which consisted of
training and testing the models on the same data set. The goal was to provide a baseline
to compare when training on mouse data while testing on human data. Table 2 sum-
marizes our findings considering the three selected semantic segmentation networks. It is
noteworthy that most networks achieved satisfactory results on the mouse and human data
sets, independently, especially when evaluating with the DeepLabV3+, which returned the
highest marks on the Lutnick’s test set (0.875), and on HE- and PAS-stained WSI Fiocruz
2’s test set (0.818). The U-Net architecture was the very best model on PAMS-stained
WSI Fiocruz 2’s test set (0.718), although it reached results close to DeepLabV3+ on the
other stains. As attention-based models require a large amount of high-variability data,
MA-Net only performed well on Lutnick’s test set (0.773) because the mouse training
data is the largest and more diverse one.

Table 3. Comparative results considering training the network models on
Lutnick’s train set (TL), which contains only HE-based images, and on
WSI Fiocruz 2’s train set (TA), which contains HE, PAS and PAMS. Predic-
tion was performed on WSI Fiocruz 2’s test set (see Table 1 for data set
split information).

Stain Network �Dice
(TL) (TA)

U-Net 0.785(±0:050) 0.791(±0.046)
HE DeepLabV3+ 0.773(±0:069) 0.818(±0.053)

MA-Net 0.804(±0.037) 0.014(±0:004)
U-Net 0.362(±0:415) 0.581(±0.176)

PAS DeepLabV3+ 0.606(±0:142) 0.789(±0.033)
MA-Net 0.370(±0.358) 0.050(±0:019)
U-Net 0.664(±0:113) 0.718(±(0.130)

PAMS DeepLabV3+ 0.687(±0.168) 0.660(±0:162)
MA-Net 0.548(±0.193) 0.334(±0:109)

Given the results found in the intra-dataset evaluation, we could make sure that
the selected models performed the glomerular segmentation from our current data sets
regardless of the numerical differences. As a matter of fact, if we had more data for
training, surely it would guarantee higher scores as the data trend has shown in Table 2.
Then we moved forward to the main focus of this work: the cross-species experiments.

As we ultimately desire to segment human glomeruli, the following evaluation
was to compare the results of the deep learning models, separately trained on human and
mouse training sets, testing these models on the WSI Fiocruz 2’s test set. Table 3 summa-
rizes the evaluation on the WSI Fiocruz 2’s test set, considering models trained on Lut-
nick’s (L) and WSI Fiocruz 2’s train (TA) sets. The overall best result was achieved by a
TA-trained DeepLabV3+ evaluated on HE-stained WSI Fiocruz 2’s test set (0.818). This
achievement is justifiable due to the domain maintained across training and test sets and
DeepLabV3+’s robustness. However, one good point to highlight is that the second-best



Table 4. Comparative results considering training the network models
with Lutnick’s train set (stained on HE). Prediction was performed
on WSI Fiocruz 2’s test set (Atest)1 and WSI Fiocruz 2’s train and test sets
(Aentire) (see Table 1 for data set split information).

Stain Network �Dice
(Atest) (Aentire)

U-Net 0.785(±0:050) 0.810(±0.047)
HE DeepLabV3+ 0.773(±0.069) 0.760(±0:039)

MA-Net 0.804(±0.037) 0.707(±0:068)
U-Net 0.362(±0:415) 0.625(±0.149)

PAS DeepLabV3+ 0.606(±0.142) 0.549(±0:174)
MA-Net 0.370(±0:358) 0.522(±0.154)
U-Net 0.664(±0.113) 0.656(±0:186)

PAMS DeepLabV3+ 0.687(±0:168) 0.694(±0.186)
MA-Net 0.548(±0:193) 0.564(±0.197)

1Note that this column comes from Table 3.

result was achieved by an L-trained MA-Net evaluated on HE-stained WSI Fiocruz 2’s
test set (0.804). Considering the color stains, Lutnick’s training set containing only HE-
stained images explains the stable and competitive results on HE-stained WSI Fiocruz 2’s
test set. We can also observe other reasonable results in different stains and training sets.
Still, the HE-stained samples presented the high scores between humans and mice across
all architectures for glomerular segmentation. This makes us validate our hypothesis to
segment human glomerulus with a model trained on mouse histology images, at least
considering a reasonable amount of mouse data stained on HE. Overall, the TL-trained
models outperformed the TA-trained models on 4 out of 9 tests, which is a favorable result
but not enough to conclude that our hypothesis applies to all stains.

As we have a limited human data set, we opted to use the TL-trained models for
evaluating both WSI Fiocruz 2’s test set and the entire (train and test) sets. Our goal with
this analysis is to test our hypothesis in a more significant group, verifying whether the
earlier results were biased by the test set random choice. Table 4 summarizes the test
versus entire set comparison where, as expected, the networks obtained the best results
on HE-stained samples. It is interesting to note that the results on Aentire were greater
or very close to the Atest results for most cases. The one exception was the combination
of MA-Net assessing HE-stained samples, where the �Dice decreased but also remained
competitive (dropped from 0.804 on Atest to 0.707 on Aentire). These results corroborate
our hypothesis validation, strengthening the assumption that human-mice compatibility
occurs in HE-stained samples. In addition, the Atest and Aentire proximity shows that the
experiments are not biased on the aleatoric train/test set creation. It is important to note
that the columns TL in Table 3 and Atest in Table 4 are the same.

The quantitative results should be read under the perspective of the results of Ta-
ble 4 being compared against the results summarized in Table 2. In this regard and taking
as an assumption that each Dice score of a segmenter expresses its “opinion”, if one
calculates the mean of these “opinions”, it is possible to generate baselines to be cross
compared. From Table 2, we have the following means plus standard deviations of the
Dice values on WSI Fiocruz 2’s test set (across all networks for each stain), respectively
for HE, PAS, and PAMS stains: 0.541 (±0.457), 0.473 (±0.381), and 0.571 (±0,207).
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Figure 2. Samples of expected results from U-Net, DeepLabV3+, MA-Net, when
trained on Lutnick’s train set, predicting on WSI Fiocruz 2’s entire data set.
Glomeruli in yellow are false positives (very few examples), in red are false
negatives, and in green are true positive.

Contrasting these values with the means of the “opinions” from Table 4 in each stain, we
have: 0.787 (±0.016), 0.446 (±0.139), and 0.633 (±0.075), respectively. Disregarding
the difference in the standard deviations between the two sets of means and the very low
Dice score of MA-Net in the HE-stained images of Table 2, one might firmly state that
the segmenters follow the same trend in both sets of results. It is worth noting that the
differences presented in the standard deviations comes from the problem found with MA-
Net when trained on WSI Fiocruz 2’s train set (containing a small amount of data). As
a matter of fact, all results keep almost the same or were improved in Table 4 when con-
sidering a larger set of human data, which finally gives a hint that we achieved favorable
results even for different stains.

3.1. Qualitative analysis

Figure 2 illustrates a visual comparison of the segmentation results over some samples of
the WSI Fiocruz 2’s data set when trained on Lutnick’s train set. All the segmenters show
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Figure 3. Samples of missing detection from U-Net, DeepLabV3+, MA-Net when
trained on Lutnick’s train set, predicting on WSI Fiocruz 2’s entire data
set. Note that there is only one small false-positive region on PAMS stain
predicted with MA-Net.

similar visual results on the samples shown in the figure. As expected, on HE-stained
images, all segmenters present good visual results with only true-positive segmentation
(in green), as they were also trained over HE-stained images. Also on PAS, one can
notice a reasonable generalization of all segmenters. However, MA-Net still presents a
false positive (in yellow) on this stain while all segmenters fail to detect one glomerulus
(in red). DeepLabV3+ slightly showed more pixels in the true-positive zone on this stain.
On PAMS, the three segmenters perform almost the same, but again with DeepLabV3+
presenting marginally better results.

In Figure 3, some of the visual worst results are depicted. Most results are missing
detection (false negatives), but MA-Net produced a false positive on the PAMS-stained
image. In fact, very few false positives can be found in the segmentation of the U-Net and
DeepLabV3+ over the entire WSI Fiocruz 2’s data set.




