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Abstract. Interproximal caries is a bacterial infection that occurs in the oral
cavity, causing structural lesions between teeth. Diagnosis typically involves
using radiographic techniques to capture images, but the use of Cone Beam
Computed Tomography (CBCT) is still under-explored. This study explores
CBCT, which acquires three-dimensional radiographic images, and employs two
different image acquisition protocols to identify potential lesions. We developed
a set of image processing techniques to segment three dental structures and
accurately identify interproximal caries. Our results using classical metrics
indicate an AUC of 0.928, a sensitivity of 87.33%, a precision of 88.50%, and
a Jaccard Index of 0.7037. Our method effectively identifies lesions in dental
structures, with the potential for practical assistance in diagnosing this disease.

1. Introduction
Dental caries is a chronic infection that destroys dental tissues by fermentation of free
sugars, resulting in a dynamic disease that causes demineralization and remineralization
of dental hard tissues [Pitts et al. 2017]. Untreated dental caries can induce a risk of
dental sepsis [Pine et al. 2006], which can cause intense pain and discomfort. Therefore,
early diagnosis of this disease is essential to prevent tooth loss.

The cone beam computed tomography (CBCT) is a technique for capturing
radiographic images in three dimensions (3D) [Gaalaas et al. 2016]. This imaging
modality is used to diagnose and treat dental canals, demineralize teeth, low bone
formation, and surgical treatment planning [Setzer et al. 2017]. Additionally, this
technique can aid caries diagnosis when a radiologist identifies as an incidental finding
[Felemban et al. 2020]. Therefore, incidental and suspicious caries lesions may be part
of the final CBCT report issued by radiologists.

In the literature, the localization and classification of other diseases in computer
tomography have been proposed in [Ezhov et al. 2021, Chen and Zhang 2017, Ahmed
et al. 2017]. The authors of [Ezhov et al. 2021] proposed a method that used the
individualization of teeth and segmentation. The caries were detected using U-Net
[Ronneberger et al. 2015]; however, the method did not evaluate the segmentation results,
but only the presence or absence of the disease. [Chen and Zhang 2017] proposed a
segmentation process of dental disease employing image processing techniques. The
method’s final step used a threshold to identify the injured region. This work did
not show metrics and focused only on the method. [Ahmed et al. 2017] combined
unsupervised machine learning techniques using the mean threshold method and k-means
to generate a segmentation. The study presented specific metrics to evaluate the results of
segmentation; however, the work used computer tomography, unlike CBCT.



Although some approaches have been proposed in the literature for detecting and
identifying caries, most studies do not have specific metrics for caries segmentation.
Additionally, these articles do not thoroughly explore factors such as caries’ severity.
Therefore, our work aims to obtain specific segmentation metrics and present the results
obtained at different levels of caries severity while also considering two CBCT imaging
protocols.

This article aims to present a method based on image processing to segment dental
structures and identify caries. In a previously published systematic review, [Schwendicke
et al. 2019], it is possible to observe that most of the methods that processed CBCT
images considered other objectives, such as the detection of periodontal diseases and
tooth segmentation. However, these studies were not designed for caries segmentation.
CBCT was mostly used as a complementary exam. Consequently, we proposed a new
approach to aid the diagnosis of caries lesions, which can provide additional information
from slices of CBCT, with the potential of expanding the diagnosis. Our method combines
techniques to separate different portions of the tooth. With these portions separated, we
used processing image techniques to identify evidence of caries.

2. Related work

Interproximal cavities develop in the areas of contact between teeth and their detection can
be challenging, for accurate diagnosis the use of radiographic techniques is recommended
[Braga et al. 2010]. Currently, image processing and deep learning have been used as the
main methods for identifying interproximal caries.

The study conducted by [Naebi et al. 2016] employed image processing and
particle swarm optimization methods to detect caries and dental restorations in 2D
radiographic images. The [Bhan et al. 2016] research used pre-processing of bitewing
images, including edge detection, thresholding and connected component labeling.

In caries detection using deep learning, the authors of [Srivastava et al. 2017] used
a deep, fully convolutional neural network to identify the lesion in bitewing radiographic
images. [Kumari et al. 2022] applied different techniques to enhance contrast and used
Heuristically Modified Fusion-based Fuzzy C-Means for caries segmentation in dental x-
ray images. The study of [Imak et al. 2022] used a multi-input deep convolutional neural
network and reported an accuracy score of 99.13% for lesion detection on periapical
radiography.

The authors of a systematic review [Mohammad-Rahimi et al. 2022] analyzed
studies that aimed to detect caries using deep learning. The only paper that proposed
the detection of caries using CBCT images was the study by [Ezhov et al. 2021]. The
other works selected in that systematic review used different radiography modalities,
such as panoramic radiography, bitewing radiography, and periapical radiography. These
techniques offer a two-dimensional view, unlike CBCT images, which offer three-
dimensional volumes.

As observed, several techniques have been proposed for caries segmentation using
other radiographic modalities. However, CBCT images are not commonly used. With this
gap in mind, we developed an image processing method to identify interproximal caries
and achieve dental segmentation in this type of radiographic modality.



Figure 1. Examples of teeth with different scores based on the International
Classification Caries Detection (ICDAS), figures with and without manual
segmentation. The red region indicates the caries.

3. Material and Methods
We applied image processing techniques in our approach to segment CBCT images and
identify caries in the image slices. In section 3.1, we explained our private dataset.
We detailed our methodology for segmenting interproximal caries in sections 3.2, 3.3,
3.3, and 3.4. Finally, in section 3.5, we elucidated how we generated metrics from the
segmented images.

3.1. Dataset

The data set contains 4008 images obtained from eight teeth with caries ex-vivo, and
each tomography has 501 images (slices). Each tooth was classified according to
the International Caries Detection and Assessment System (ICDAS). The CBCT was
produced by using an Accuitomo 170 [Morita 2022] equipment, which offered two types
of protocols: High Fidelity (HF), recommended for performing zoom reconstructions, and
High Resolution (HR), recommended for delicate bone structures, such as the ossicular
chain [Morita 2022].

Examples from images of the dataset are shown in Figure 1. The slices were
manually segmented by an expert to generate a segmented ground-truth image set to
evaluate the results of the techniques developed. The image base used in the experiments
of this project was provided by the Faculty of Dentistry of Bauru (FOB) of the University
of São Paulo.

3.2. Segmentation of tooth regions

A CBCT exam generates a 3D volume I3D(x, y, s), composed of two-dimensional (2D)
images (slices) (Figure 2A), where (x, y, s) represents the intensity of the pixel in line x
and column y, located in slice s.

The segmentation of structures aimed to develop a technique to verify the enamel
discontinuity and the presence of concavities in the teeth. The distribution of pixels from
CBCT changes according to the equipment. Considering this scenario, we applied a
multimodal threshold [Tsai 1995] to all slices that compose I3D.



The first step applied a Gaussian kernel Gσ convolution to I3D. The acquisition
of CBCT images captures ionizing radiation on the tissues, such that some noise can be
also captured. Therefore, Gaussian Kernel was applied to I3D(x, y, s) to reduce the noise
(Figure 2B). Besides, the application of the Gaussian kernel helps with the composition
of the histogram [Tsai 1995] observed in Figure 3.

The next step was to segment each slice, considering three tooth structures. As
the distribution of pixels is variable, we applied the multimodal thresholding technique.
A histogram over the distribution of pixels from I3D was calculated. We computed two
locals minimums in this histogram corresponding to T0 and T1 (Figure 3). With these two
local minimums, we applied a multimodal thresholding using T0 and T1, and segmented
the resulting structures according to Equation 1.

Figure 2. Segmentation of the dental structures. A) Representation of a CBCT
exam. B) Application of the Gaussian filter. C) Initial separation of dental
structures using multimodal thresholding. D) Application of growth region
in the tooth pulp F) Application of morphological operation onto enamel.
E) Final representation of the structure St.

Before applying Equation 1 to the I3D(x, y, s), we defined the element of the
segmentation tooth. Where St is a 3D volume and represents the tooth segmentation. The
values from St are respectively: 0.0 is the number that represents the background, 1.0
corresponds to the dentin material, 2.0 indicates the tooth enamel, and finally, value 3.0
denotes the pulp of the tooth.

St(x, y, s) =


0.0 if I3D(x, y, s) < T0

1.0 if I3D(x, y, s) >= T0 and I3D(x, y, s) < T1

2.0 if I3D(x, y, s) >= T1

(1)

After applying the multimodal thresholding (Figure 2C), we segmented the tooth
pulp. This step is fundamental because the material has a low density and, consequently
when we applied the algorithm for area delimitation (Section 3.3), this region could
interfere. We first calculated the tooth center in each slice to determine the region where
the root of the tooth is. For this, we calculated the image moment using the intensity of the
pixels; it was determined x and y by Equation 2, where Mij represents the moments from
the x and y plane, and xiyj is the influence of x or y in the computation of the moments.



Figure 3. Distribution of pixels of a CBCT. We considered pixels larger than
one hundred for visualization for this illustrative graphic since their
representation would be impossible due to the unbalanced values.
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We applied a region growing technique considering the center of the tooth as the
initial seed, being delimited by the dentin material, as represented in Equation 3. The final
process attributes value 3.0 to pixels related to the tooth pulp, resulting in the operation
shown in Figure 2D.

St(x, y, s) =

{
3.0 if St(x, y, s) ̸= 1.0

1.0 else
(3)

When multimodal thresholding is applied, the method can generate some
segmentation failures, especially in the enamel region. Thus, in this scenario, we apply the
morphological operation dilation in the regions whose pixels have values 2.0, according
to Figure 2F. The next step is to join the dilated structure with St obtaining the result
corresponding to Figure 2E.

In order to apply the techniques developed to extract caries considering
concavities (Section 3.3) and discontinuity of dental enamel (Section 3.4), we created
a region of interest (ROI). We computed the ROI in the slices in which tooth enamel is
present. Thus, we went through slices from 0 to 501. We started searching for the first
slice in which the enamel dental occurred (smin) and the last slice in which tooth enamel
appeared (smax). Therefore, we had a range of slices smin and smax, to which the methods
would be applied to extract regions of interproximal caries.

3.3. Caries extraction by concavities
The formation of caries causes the destruction of tooth enamel and of the structure of
dentin. Our method searches for regions in which this material has been demineralized.
We applied the techniques according to Figure 4 to identify evidence of caries.



Figure 4. Caries extraction by concavities. A) Segmented Structures. B)
Points generated by the region algorithm for area delimitation C) Region
generated by the Hull convex method D) Application of growth region. F)
Mask generation

We developed a method to get points that delimit the region in all slices from the
CBCT images (Figure 4B). The Algorithm 1 shows the steps of our method, having as
inputs St corresponding to the elements of the segmented structures and the center of the
tooth (x, y). The algorithm starts searching at the midpoint (x, y), traversing a straight
line with an angle that we change 0 to 360 degrees. This search occurs until it finds a
value corresponding to St = 0.0, ending the search and storing the corresponding point
as shown in Figure 4B. The method iterates over the ROI, returning the delimiter points
(Pd) over all the slices in the ROI.

Algorithm 1 Algorithm for Area Delimitation
Input: x , y , St

Output: delimitersPoints
Initialization :

1: delimitersPoints← {}
2: for angle = 0 to 360 do
3: x← x, y ← y
4: i← 0
5: while St(x, y) ̸= 0.0 do
6: x← cos(angle) ∗ i+ x
7: y ← sin(angle) ∗ i+ y
8: i← i+ 1
9: end while

10: delimitersPoints.append({x, y})
11: end for
12: return delimitersPoints

The next step was to apply the convex hull [Sklansky 1982] method to Pd. The
convex hull technique returns the intersection of all convex sets of Pd. The points
not considered in Pd are stored as possible signs of caries (PS). With points Pd we
created a delimited area (DA), which is the region corresponding to Figure 4C. Region
DA corresponds to the bounded area whereby the region growing technique can iterate.
Therefore, we controlled how far the region could expand.

To generate the segmentation of caries, we applied the region growing method to
PS (Figure 4D), delimited by the region corresponding to DA. In addition, we changed



the DA scale since the original area would cover all the points and regions that are not
caries when we apply the region growing method. Parameter scale is a value in the
[0,1] interval, which allows increasing or decreasing the area considered for the region
growing technique. Thus, when the scale value is high, it can encompass regions that
are not caries due to deformities or natural tooth wear. In turn, low values of scale can
restrict the region growing algorithm, which iterates over a smaller number of regions.
Consequently, it is possible to reduce the value of false-positives, while increasing the
value of false-negatives. Therefore, finding an ideal value of this parameter is necessary
to obtain regions that correspond to caries. In section 3.5, we obtained a ROC curve and
selected the best parameter for scale.

The area generated by the region growing method corresponds to the caries
segmentation, as shown in Figure 4D. This area is added to the St structure (Figure 4F),
thus generating the segmentation of this damaged region.

3.4. Caries extraction enamel by discontinuity

The method previously developed includes cases in which demineralization of dentin and
enamel occurs. However, there are cases whereby the enamel material may not have been
damaged enough to be very evident in CBCT images. Thus, in this phase, our method
proposes identifying the regions where this dental enamel discontinuity occurred.

Figure 5. Segmentation of caries by enamel failure. A) Input St for the technique
B) Subtraction of regions. C) Application of median filter D) Final result

The first step is based on iterating over ROI. In each iteration, the method seeks
to verify if the dental enamel ring has already formed to identify signs of enamel
discontinuity.

We used the depth-first search algorithm (DFS) to verify if the enamel ring
formation occurred in a slice. We start the process by iterating over the ROI, starting
the search at x and y, which corresponds to the tooth center. The search algorithm moves
to neighboring pixels; case S(t) is different from 2.0, which corresponds to the enamel
material. At the end of the search, it is possible to verify if the algorithm reached the
edges of the image. If this condition is true, this slice has a discontinuity in the enamel
and the slice is marked as strue. Otherwise, the slice is marked as sfalse.

We subtracted between the continuous and discontinuous regions to get the lesion
region (Equation 4). Thus, in all the slices where this condition is true (strue), we
subtracted the last slice where the condition did not occur (sfalse), returning the difference
region (Rd) according to Equation 4.



Rd = Se(sfalse)− Se(strue) (4)

The subtraction between the regions will be the area segmentation, providing the
injured region. However, the subtraction of these regions can cause some noise, according
to the result shown in Figure 5B.

The next step of the method consists in removing the noise caused by this
subtraction. We used a median filter with a 5x5 window applied to Rd (Figure 5C). The
last step was to combine the segmentation generated from the previous technique with St,
according to Figure 5D.

3.5. Experimental setup
The final segmentation is generated by combining the masks described in Sections 3.3
and 3.4. This combination produces a 3D segmentation that allows the evaluation of
the severity of the lesion. We considered the segmentation generated for each slice to
evaluate our method, comparing the results with the manual segmentation. In addition,
we use CBCT exam with two types of protocols, HR and HF, to generate these images.

For each slice, we consider whether the caries segmentation corresponds to
manual segmentation, generating for each tomography slice the values corresponding to
a result of true-positive, false-positive, true-negative, and false-negative.

To evaluate the segmentation, we used the Jaccard index defined as Equation
5, where S corresponds to expert manual segmentation, and G corresponds to method
segmentation. The Jaccard index has values between 0 and 1. If Jaccard = 1, this means
that all pixels were correctly classified by the method developed.

J(S,G) =
|S ∩G|

|S|+ |G| − |S ∩G| (5)

To generate the Receiver Operating Characteristics (ROC curve), we defined a
parameter named scale in the Section 3.3. In this scenario, we generated an area in which
the Region Growing Method will iterate according to section 3.3. Therefore, we modified
this area with the scale parameter as follows from zero to one, with the step of 0.01.

4. Results and discussion
Figure 6 shows the ROC curve obtained from the variation provided by the scale
parameter. We sought to choose a value to reduce the false-positive rate and ensure a
high true-positive rate. For this, we chose the value of scale = 0.91 for the HF protocol
and scale = 0.92 for the HR protocol, which corresponds to an elbow in both ROC curves
(indicated in the black rectangles in Figure 6).

In Tables 1 and 2, we present the results of the application of our method to
eight decayed teeth with different International Caries Classification (ICDAS) and two
protocols, HR and HF. The mean of all metrics was higher in the execution of the HR
protocol, as can be seen in Table 1.

Only tooth 6 obtained better results in the HF protocol among all teeth. In general,
the HR protocol provided a better structure for caries segmentation. The difference found



Figure 6. ROC curve generated from two protocols, High resolution (HR) and High
Fidelity (HF). The black rectangle corresponding points with scale = 0.91 in
HF and scale = 0.92 in HR.

in both protocols occurs in the separation of structures. Before we apply the multimodal
thresholding, the pixel intensities have a difference; therefore, when we get two minimum
locals in histograms, it directly affects the separation of structures and, consequently, the
final segmentation of the method. Furthermore, the HR protocol had a better AUC value,
as shown in Figure 6. The results are consistent with the manufacturer’s specifications
for providing images with delicate bone structures, which can be extended for caries
identification.

None of the three studies that used 3D volumes differentiated carious lesions
[Ezhov et al. 2021, Ahmed et al. 2017, Chen and Zhang 2017]. Additionally, these
studies do not provide classic segmentation metrics that could allow a comparison. In
our study, we present the differences between caries levels and highlight the difficulty of
detecting caries in the initial stages, since they have a smaller injured region, as can be
seen in Figure 1. The HR and HF protocols results show a lower sensitivity in ICDAS
scores 1 and 2. In addition, the Jaccard index showed results higher in ICDAS scores 3
and 4. In [Ezhov et al. 2021], 4398 teeth were used to train a model with a context area.
That model obtained sign caries with a sensitivity of 72.85% and specificity of 99.53%.
Compared to [Ezhov et al. 2021], it is possible to observe that our study obtained similar
specificity and sensitivity.

Deep learning has been proposed in works such as automatic caries detection
[Srivastava et al. 2017, Kumari et al. 2022, Imak et al. 2022], but in other types of
radiographic modalities (images 2D). The lack of data is one of the significant problems,
since using deep learning approaches requires a dataset with a considerable quantity of
samples. It is not possible to compare the results obtained in these approaches due to the
difference between the 2D and 3D modalities

In this work, the use of image processing presented metrics such as AUC of
0.928, 88.50% of precision, and 99.58% of specificity, obtaining good results even with



Table 1. Table with results with scale = 0.92, using high resolution protocol.
Highlights of the two best results.

Tooth ICDAS Accuracy Sensitivity Specificity Precision F1-Score Jaccard index
1 1 99.6 77.78 100.00 100.00 87.50 58.01
2 1 99.0 93.55 99.36 90.62 92.06 71.23
3 2 98.6 75.00 98.99 54.55 63.16 50.67
4 2 99.4 80.00 99.80 88.89 84.21 50.71
5 3 99.6 90.00 100.00 100.00 94.74 78.47
6 3 99.2 100.00 99.17 84.00 91.30 83.41
7 4 99.8 100.00 99.79 96.67 98.31 80.61
8 4 98.4 82.35 99.57 93.33 87.50 69.91
Mean (sd) 99.20 ± 0.50 87.33 ± 9.91 99.58 ± 0.37 88.50 ± 14.79 87.34 ± 10.74 70.37 ± 15.59

a reduced number of samples. However, image processing involves some limitations,
such as obtaining specific techniques for separating these structures and creating methods
based on understanding the problem. Even if there are limitations, we show that a pipeline
of image processing techniques can be enough to identify caries in CBCT images when
the dataset contains few samples.

Table 2. Table with results with scale = 0.91, using high fidelity protocol.
Highlights of the two or three best results

Tooth ICDAS Accuracy Sensitivity Specificity Precision F1-Score Jaccard index
1 1 99.2 55.56 100.00 100.00 71.43 50.00
2 1 98.6 87.10 99.36 90.00 88.52 65.37
3 2 97.8 62.50 98.38 38.46 47.62 47.37
4 2 99.0 50.00 100.00 100.00 66.67 22.78
5 3 99.6 90.00 100.00 100.00 94.74 70.24
6 3 99.4 100.00 99.38 87.50 93.33 92.43
7 4 99.4 96.55 99.58 93.33 94.92 79.13
8 4 98.2 80.00 99.57 93.33 86.15 76.86
Mean (sd) 98.90 ± 0.64 77.71 ± 19.22 99.53 ± 0.53 87.82 ± 20.51 80.42 ± 17.01 65.52 ± 23.4

5. Conclusions
In this work we present a method based on the use of image processing techniques for
caries segmentation. We obtained good results: 88.5% of precision 87.33% of sensitivity
and 70.37 of Jaccard Index. It is possible to consider that the use of the method can
be extended to other types of applications, such as the detection of other types of caries
besides the interproximal and segmentation of the dental canal.

The results generated provide evidence that image processing techniques can
segment and identify the injured region related to caries in CBCT images. The approach
used was able to identify cases of interproximal caries. With the necessary adaptations,
the project can provide the segmentation of each tooth.

The cited contributions can potentially achieve a technological impact since the
system developed, after being validated, can be implemented in the clinical routine of
dentists. Thus, the project results may also provide social and economic impact, as more
accurate diagnoses may contribute to earlier interventions.

In future work we intend to use supervised learning to classify the slices involved
in the segmentation process, providing a method capable of identifying and classifying the



lesion considering the ICDAS score. Providing accurate information about the severity
of the lesion and determining whether immediate treatment or periodic monitoring is
necessary is essential for ensuring the proper treatment of patients.
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