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1 University of Vale do Rio dos Sinos - UNISINOS University

2FEEVALE University

william r f@hotmail.com, rigo@unisinos.br, martabez@feevale.br

Abstract. Stress is one relevant cause of diseases nowadays, and prolonged ex-
posure to stress can cause a disturbance in the allostatic load. Alternatives
have been sought to deal with this situation and verify the impact of this allosta-
tic load disorder. Wearable sensors are an option for automatically identifying
acute stress since they can measure signs such as electrocardiogram, heart rate,
electroencephalogram, electromyogram, or galvanic skin response. All these
signals have intrinsic characteristics in a normal state and change if associated
with stress occurrence. The literature presents Machine Learning Approaches
and Deep Learning Models as alternatives to pattern detection in physiological
signals. Nevertheless, we identify a gap regarding the allostatic load impact
identification and the real-time classification when using these models. this ar-
ticle aims to acquire data in stress induction experiments in clinical and non-
clinical patients, train a machine learning model, and, in sequence, carry out
a new experiment to evaluate the classification in near real-time. The classifi-
cation experiment presented results with accuracy above 92.72%. When it co-
mes to real-time classification experiments we obtained an accuracy of 78.93%.
Evaluating participants in experiments divided into clinical and non-clinical
groups, a decrease of 5% in precision was identified. Based on the results ob-
tained, we verified that the allostatic load can present challenges for real-time
stress classification.

1. Introduction
Stress is a serious challenge as a public health problem associated with several diseases.
Stress tends to generate impacts on the most varied areas of our lives, as reported by
[Farias et al. 2011] and [Can et al. 2019]. Due to this issue, currently, several researchers
seek ways to identify stress, as a way to monitor and present an intervention proposal
as soon as possible. Closely related to stress detection, a point that has been studied in
the psychological area recently is the influence of allostatic load on the behavior of the
signals of individuals.

[Corrigan et al. 2021] highlight the use of Heart Rate Variability (HRV) as a way
to monitor stress and allostatic load. The allostatic load consists of metabolic energy com-
posed of biological measures. It captures the dysregulation of multiple physiological sys-
tems due to chronic exposure to stress [Guidi et al. 2021] [Wang et al. 2022]. Heart Rate
Variability decreases in response to a stressful situation, whether physically or cognitively.
They observed that HRV recovery is usually slow in response to higher-magnitude stres-
sors. They also conclude that people with allostatic load disorder usually have a lower



standardization HRV response. The authors [Corrigan et al. 2021] emphasize that further
studies are needed to further the usefulness of HRV in assessing allostatic load and other
physiological signs.

As an alternative to broad support this integration and evaluation of physiological
signs, we have observed the use of the Internet of Things (IoT) and Artificial Intelli-
gence (AI). According to [Mbunge et al. 2021], smart healthcare systems comprise the
IoT, AI, cloud computing, wearables, and electronic medical records (EMR). The IoT
applied to the hospital context offers the best solutions for patient follow-up, intelligent
medical records, device integration, and improved diagnostics. These integrated devi-
ces aim to improve health systems, speed up diagnoses, and facilitate patient follow-up
[Mukati et al. 2021].

[Iqbal et al. 2021] explain that wearable sensors are devices that allow the acqui-
sition of physiological signals through small and practical devices that do not need to be
attached to large equipment or inserted into the body. [Sharma et al. 2021] highlights the
importance of wearable sensors in facilitating patient follow-up. Through wearables, we
can follow in a non-intrusive way different biosignals, biomarkers, and even hormones.
Wearables are an alternative to streamline hospital routines, in which the health profes-
sional needs to access the participants for frequent measurements of their vital signs. In
addition, the measurement process of some signals may vary depending on the profes-
sional who performs the measurement, something that does not occur with continuous
monitoring [Costa et al. 2018].

this article aims to describe stress induction experiments using a new architecture
for signals acquisition to evaluate the impact of allostatic load on predicting stress in pa-
tients with disturbed allostatic load. The architecture comprises a single-board computer
(SBC) and a wearable sensor. It allows the acquisition of physiological data and the com-
position of a dataset, including performing pattern prediction in almost real-time in cases
with a trained machine learning model.

The experiments were approved by the ethics committee and carried out by psy-
chology professionals. As a way of evaluating the experiments, the participants of the
experiments are classified into two groups, clinical and non-clinical. Clinical partici-
pants have some psychological support for treatment and, therefore, some impact on the
allostatic load. Non-clinical participants are those who do not have any psychological
follow-up or previous diagnosis. We performed the stress induction experiment to com-
pose the dataset of physiological patterns and evaluate the results. The next step involved
data processing and training of the machine learning model. After training the model, we
performed a new round of experiments to evaluate the prediction in near real-time.

According to the allostatic load theory [Corrigan et al. 2021], people with some
mental disorders may present different behavior in stressful situations. Furthermore, cli-
nical people may not feel anything in a stressful situation. Alternatively, after starting a
stressful situation, they can take more time to return to a normal state or even not return.
This was one of our motivations in this article since, as verified in the literature, few works
have evaluated the impact of allostatic load on patients. Therefore, our work has as its
main differential to evaluate the impact of allostatic load on stress classification in near
real-time.



The article is organized as follows. Section 2 presents the main works developed
with a focus on pattern detection using AI. Section 3 describes the Material and methods.
Section 4 presents details on the experiments and evaluates the results. Section 5 presents
the conclusion and future work.

2. Related Works
Several works have shown good results in pattern detection using AI, either machine le-
arning or deep learning. A challenge still widely faced is the detection of stress due to
several factors [Corrigan et al. 2021], [Mbunge et al. 2021], and [Alanazi 2022]. Among
the main challenges that arise from the use of AI for stress detection is the difficulty
of differentiating stress from other anomalies in physiological signals, such as increased
heart rate and sweating due to physical activity [Guidi et al. 2021] [Wang et al. 2022].
[de Souza et al. 2022] presents research that developed a new pipeline for stress predic-
tion based on data collected from wearable devices. The authors have used the WESAD
dataset for the experiments obtaining 86% accuracy in three classes: baseline, stress, and
amusement. Moreover, when the experiment uses only the categories stress or not, the
accuracy goes up to 96.5%.

[Ali et al. 2021] elaborated a work for integrating wearable sensors and social
networking for data collecting. The authors defend the efficiency of healthcare moni-
toring. The developed system classifies patients’ health status using physiological data,
such as blood pressure (BP), diabetes, social networking data, and drug review. They
obtained an accuracy of about 79 % and 89 %, using only Long Short-Term Memory
(LSTM). Moreover, 90 % to 94 % combine LSTM and ontologies. The authors perfor-
med experiments with CNN (70 %), MLP (80 %), SVM (73 %), and Fuzzy Logic (83
%). The PhysioNet MIMIC-II dataset got an accuracy of 88 % with this dataset applied
to training.

[Hammad et al. 2022] developed a work that uses deep learning models (DLMs)
of convolutional (CNN) and long-term convolutional neural networks (ConvLSTM) to
identify and detect arrhythmia for IoT applications. The authors provided Electrocardi-
ogram (ECG) signals in a 2D format to the model. The search yielded results for four
different datasets, the MIT-BIH dataset having an accuracy of 97%, the compressed MIT-
BIH dataset yielding 98%, the PhysioNet 2016 dataset yielding 94%, and the PhysioNet
2018 dataset reached 91%. They got all these results using CNN.

3. Materials and Methods
This section will describe the materials and methods used in this article. We initially
described the architecture used in the stress induction experiments (Subsection 3.1). The
sequence describes the protocol used in the experiment (Subsection 3.2), a protocol ela-
borated by the health professionals responsible for the experiment. In the third subsection
(3.3) we present a brief account of the experiment participants. Next, in subsection 3.4 we
present the process of data preparation and model training. Finally, we present the stress
induction process for classification in near real-time (Subsection 3.5).

3.1. Architecture ATHENA I
For the stress induction experiments, we used the ATHENA I architecture. ATHENA I
is acronymous of Architecture for Healthcare reinforced by Artificial Intelligence. This



architecture aims to acquire, process, store, and classify physiological signals. The ar-
chitecture is characterized by flexibility, as it focuses on the possibility of replacing the
devices that make up the architecture. The architecture’s functionalities are distributed in
blocks to allow the distribution of tasks of the architecture into many devices.

The architecture comprises a set of components responsible for interacting with
external devices and generating pattern identification. The architecture uses the wearable
sensor BITalino Model PsychoBIT, which measures the external device data in the ac-
quisition component. The wearable generates the signals and sends them via Bluetooth
to a Single-board Computer (SBC), a Raspberry Pi 4, Model B + chosen due its pro-
cessing power. The next step involves the processing component dedicated to filtering
and processing data. This step is essential to remove noise and obtain the signal in the
desired format. After the data processing, the architecture stores the data based on in-
formation defined by the user. The storage can occur in two ways. First, as soon as the
architecture reads the text file, it stores the data without filtering or processing directly in
comma-separated values (CSV) files. Then, the architecture store the processed data in a
database.

The architecture has two operation possibilities, the Offline Mode and the Online
Mode. The first one refers to the mode used for the dataset acquisition. This option is
valuable whether the user does not have a dataset. In these cases, the user can use the ar-
chitecture to compose a dataset following some specific acquisition protocol. This mode
is used also to perform the machine learning model training, after the composition of the
dataset. The second operating mode is the Online mode. In this mode, the architecture
must have a Machine Learning (ML) or Deep Learning (DL) model previously loaded.
The data stored by the storage block is sent to the prediction block and analyzed; if the ar-
chitecture classifies the sign as altered, it sends an alert message. However, if it evaluates
the signal as regular, the architecture continues to operate normally.

3.2. Protocol
The protocol developed for this experiment is based on inducing stress based on negative
thoughts. All the experiments received the permission of the ethics committee (CAAE
number 40555420.0.0000.5344), and psychologists conducted the experiments. We car-
ried out experiments with two participant groups, clinical and non-clinical. Clinical parti-
cipants are those who have some prior psychological monitoring by psychologists. Non-
clinical participants are those who have no previous follow-up or diagnosis. The first stage
of the protocol is the coupling of the wearable sensor. We decided to place the electrodes
at the beginning of the experiment for the participants would get used to using the sensors.
In the next step, participants filled in sociodemographic and relevant data for inclusion in
the model as the social context and physiological information.

After completing the sociodemographic data, the pre-stress meditation process
begins, in which the participant remains looking at a white screen, oriented to try not to
think about anything specific. The participant remains that way for five minutes. After
completing the five pre-stress minutes, the white screen changes to a screen with the
phrase ”Think about a recent situation that has made you distressed or upset ...”(Figure
1). In this stage, the induction of stress occurs through negative thinking. The participant
spends one minute thinking about the current situation that has made him go through some
unpleasant moments.



Figura 1. Photos of the participants during the stress induction experiment with
the sensors placed

After completing this minute of stress induction, the screen returns to a white
screen, in which the participant again tries to ward off any thinking, constituting a post-
stress stage. In this stage, as in pre-stress, it occurs for 5 minutes to return to a neutral
state. When completing the period time of the post-stress stage, the participant performs
a self-report. He explains what he thought and what was the feeling he felt during the
process.

3.3. Participants

We have performed the initial experiments with 27 participants, 12 non-clinical and 15
clinical cases. Of these 27 participants, 66.67% of the participants were women ages 18
and 38. Male participants represent 33.33%, aged between 19 and 38 years. In this second
round of experiments, we performed 20 acquisitions; eight participants were clinical and
twelve non-clinical participants. Male participants represent 25% of the second experi-
ment, the remainder comprising women between 19 and 38 years old. Of the analyzed
participants, seven were in the first experiment, and 13 we acquired for the first time.

3.4. Machine Learning Training

In the preparation of the data, we first separate the ranges of values used in training, and
then we apply the windowing technique to reinforce the characteristics of the data. This
step has relevance because it is crucial for proper training that all categories provide the
same amount of data. The dataset has 13 minutes of acquisition for each participant.

Removing these values from the first and last minutes, we have 11 minutes of
data, of which the initial 5 minutes refer to pre-stress, 1 minute to stress, and the last
5 minutes to post-stress. We defined that the data we would use for pre-and post-stress
would be the third minute because, in an evaluation carried out, these points correspond
better to the objective of the classifier step. In other words, of the 11 minutes acquired
in the experiment, we selected the third, sixth, and ninth minutes. Thus, the data we
used during the AI experiment comprises 3 minutes of acquisition per participant, with
27 participants.

The windowing process aims to reinforce the characteristics of physiological sig-
nals. For this, the data, after going through the filtering process, are arranged into matri-
ces. Each column is a signal, and the lines represent its instant in time. As seen in Figure



2, we split the data into 600 ms windows, and windowing occurs by overlapping these
windows by sliding one over the other. For example, the first window occurs from 0 ms
to 600 ms, so we relocate these selected data to the new dataset. The second window has
an overlapping of 50%. This overlapping of 50% means that the window advances 300
ms, thus forming a time window of 300 ms to 600 ms. We relocate this second window
again into the new dataset, repeating 300 ms of data. This technique tends to reinforce the
characteristics of the trained data. This process repeats for the entire dataset.

Figura 2. Example of Data Windowing Technique

We performed a series of ML experiments using five different classification al-
gorithms. Among the algorithms used, we can mention Decision Tree (FDT), k-near
neighbors (kNN), Random forest (RF), Ada Boost, and Multilayer Perceptron (MLP).
Furthermore, it is essential to evaluate broadly the results obtained. In the evaluation
step, we used the accuracy, precision, F1, and Recall metrics. In addition to the before-
mentioned metrics, we also used the confusion matrix to assess how the model classified
the data. Moreover, we use a cross-evaluation method to evaluate the possible overfitting.
We selected the kFold method for the cross-evaluation.

3.5. Near Real-time Detection

To evaluate the real-time detection, we performed additional experiments for stress in-
duction. The new experiments followed the same inducting stress protocol (described
in Subsection 3.2). The experiment’s first step is placing the wearable electrodes on the
participant, after which the participant fills in the sociodemographic data. As in the first
experiment, we instructed the participant to remain relaxed for 5 minutes. After this pe-
riod, we again instruct the participant to think about a situation that has recently made
him/her distressed or upset to acquire the stress stage. After 1 minute, we instruct the
participant to return to their normal state; this step lasts 5 minutes.

After carrying out the experiments, we analyzed the data obtained. The developed
code considers the start of the experiment and, according to the time, evaluates whether



the architecture classified the signals correctly. Finally, we performed new training and
classification experiments using Machine Learning for the data from both stress induction
experiments. Again, we conducted the experiments using the algorithms Decision Tree,
kNN, Random Forest, Ada Boost, and Multilayer Perceptron.

4. Results and Discussion
In this section, we will present the results obtained in the experiments and discuss the
results evaluating some points analyzed. We performed a series of Machine Learning
training experiments evaluating classification approaches and exploring the results with
the acquired dataset. In subsection 4.1, we present the experiments with static data. The
first experiment includes all participants classified into three classes. Predicted classes
were pre-stress, stress, and post-stress. The second and third experiments divided the
dataset into non-clinical and clinical participants using the same three classes. Subsection
4.2 described experiments with the trained model used for classification approaches for
real-time acquired data. These acquired data were also used in a new training experiment,
described in subsection 4.3.

4.1. Machine Learning Model training
We separated the results obtained in the Machine Learning experiments according to the
set of participants used and the type of classification. In the experiment with all partici-
pants classifying three classes, predicted classes were pre-stress, stress, and post-stress.
The results verified (Table 1) the Decision Tree (DT) and Random Forest (RF) classifica-
tion algorithms stand out, with results above 90%. Algorithms tested, such as kNN and
Ada Boost, showed regular results in the range of 60%.

Tabela 1. Results from all participants - First Experiment — Classes: Pre-stress,
Stress, and Post-stress

Algorithm Accuracy F1 Precision Recall kFold
DT 90.522 90.521 90.521 90.522 86.341
kNN 72.046 72.075 72.136 72.046 69.992
RF 92.720 92.724 92.725 92.725 89.697
Ada Boost 57.605 57.279 57.273 57.605 58.042
MLP 33.551 18.173 33.357 33.551 33.806

Another way to evaluate the values obtained in training is by using confusion
matrices. We selected the algorithm Random Forest Classifier with three classes for this
verification. In Figure 3, we can observe the predicted values in each class in percentage
terms using the DT algorithm.

In another experiment, we divided the dataset into non-clinical and clinical par-
ticipants using the three classes. This division aimed to identify whether any of these
two sets impacted the trained values obtained. According to the allostatic load theory, we
expected lower results with the clinical participant set. The experiment with non-clinical
participants (Table 2) showed better values when compared to training values with all
participants. The accuracy for DT and RF was above 93%.

Lastly, we carried out with clinical participants, and the values obtained were
lower than non-clinical ones, according to Table 3. We expected this range of values,



Figura 3. Confusion Matrix Percentage Values of all participants — Classes: Pre-
stress, Stress, and Post-stress

Tabela 2. Results of non-clinical participants - First Experiment — Classes: Pre-
stress, Stress, and Post-stress

Algorithm Accuracy F1 Precision Recall kFold
DT 93.035 93.036 93.037 93.035 90.532
kNN 80.861 80.898 80.962 80.861 79.536
RF 94.564 94.564 94.564 94.564 92.845
Ada Boost 64.917 64.703 64.817 64.917 65.157
MLP 41.428 39.836 43.532 41.428 39.561

as the signals of clinical participants tend not to respond in a standard way in stressful
situations. Therefore the model presents difficulties in classifying these individuals cor-
rectly. Even though the values obtained are lower than those of the previous experiments,
the accuracy and precision values for Decision Tree and Random Forest remained above
90%.

Tabela 3. Results of clinical participants - First Experiment — Classes: Pre-
stress, Stress, and Post-stress

Algorithm Accuracy F1 Precision Recall kFold
DT 90.081 90.081 90.083 90.081 86.547
kNN 70.276 70.289 70.322 70.276 68.407
RF 92.083 92.081 92.083 92.081 88.940
Ada Boost 60.140 59.986 60.071 60.140 59.046
MLP 36.344 30.248 35.039 36.344 34.242

4.2. Real-time Detection

In real-time detection experiments, we performed acquisitions with 20 participants; 8 par-
ticipants were clinical and 12 non-clinical participants. Seven participants were in the first
experiment, and 13 were acquired for the first time. For each 30-second data acquisition,



the architecture generates a unique overall rating. For this unique classification to be ge-
nerated, the architecture evaluated the signals in this period, classifying them from 300
ms windows. This generated ratings each 300 ms. These ratings are integrated to generate
the overall rating for the period. In order to be classified as a given class, the values must
be at least 70% of the classified results.

We can verify the classification accuracy values in the second stress induction
experiment in Table 4. The Table presents the participant reference number in the first
column, starting with the participants in the first stress-inducing experiment. The second
column presents information about whether the participant is a clinical or non-clinical
case. The third column highlights the data if the participant is new to the experiment or
if he is participating again in the experiment. Finally, in the fourth column, we have the
accuracy value obtained for each participant.

Tabela 4. Real-time Classification

Participant Clinical New Part. Accuracy
Part. 01 No No - 27 64.52
Part. 02 No Yes 47.12
Part. 03 No Yes 31.51
Part. 04 No Yes 53.29
Part. 05 No No - 2 73.67
Part. 06 No Yes 52.32
Part. 07 No No - 6 60.13
Part. 08 Yes No - 15 71.52
Part. 09 Yes No - 9 62.97
Part. 10 Yes No - 18 78.93
Part. 11 Yes Yes 61.51
Part. 12 Yes Yes 38.63
Part. 13 No Yes 21.78
Part. 14 No Yes 46.31
Part. 15 No No - 21 71.29
Part. 16 Yes Yes 31.37
Part. 17 Yes Yes 52.94
Part. 18 No Yes 43.39
Part. 19 No Yes 59.51
Part. 20 Yes Yes 57.82

In the near real-time prediction experiment, we verified an accuracy trend of
around 53.5 %, with the best results being 78.93 % and 73.67 % for clinical and non-
clinical participants, respectively. We also verified a tendency for non-clinical participants
to present better results in near real-time prediction compared to clinical participants, a
result within the expected range considering the behavior of the allostatic load.

4.3. Machine Learning Model Update

After performing the second induction experiment, we performed new Machine Learning
training to update the model with the additionally acquired data. The new experiments
followed the previous approach, training the model using five different Machine Learning



algorithms and comparing the values. Finally, we performed tests with all participants
of both stress-inducing experiments using the three classes. Classes are pre-stress, stress,
and post-stress. The verified results (Table 5) showed greater accuracy than previously
presented. The results with the best accuracy remain Decision Tree and Random Forest,
with 91% and 93% of correct answers, respectively. To evaluate the classified values,
we can analyze Figure 4, which presents the confusion matrices for classification using
Random Forests. Figure 4 the confusion matrix presents the classification for Pre-stress,
Stress, and Post-stress.

Tabela 5. Results from all participants - Second Experiment — Classes: Pre-
stress, Stress, and Post-stress

Algorithm Accuracy F1 Precision Recall kFold
DT 91.478 90.521 90.521 91.478 89.617
kNN 72.046 72.361 72.375 72.046 70.620
RF 93.648 93.648 93.649 93.648 91.761
Ada Boost 54.278 54.043 54.030 54.278 55.692
MLP 34.667 20.702 49.006 34.667 36.883

Figura 4. Confusion Matrix - Second Experiment - Classes: Pre-stress, Stress,
and Post-stress

4.4. Results Analysis and Discussion

We justified the difference between the values obtained in the ML test experiments and
the real-time detection experiments due to the participants in the first experiment not
knowing what the experiment would be. In the second experiment, the participants who
had participated in the first experiment no longer had the exact expectations, which could
affect the classification result. In addition, there is a one-minute period before and after
the stress induction, which tends to present more uncertain signals. In a new training of
the model, this time adding the second experiment participants, the model showed a slight
improvement in the classification, with values of 98,68% for binary classification and
93,64% for classification using three classes, both using the Random Forest algorithm.



The different values verified for clinical and non-clinical participants are also
worth mentioning. If we compare the training model with the clinical and non-clinical
participants, the values obtained with non-clinical participants were significantly better.
However, the values are distributed accordingly with the allostatic load theory. We ex-
pected clinical participants to have slightly different physiological signal behavior than
non-clinical people. Clinical participants tend to have a naturally higher (non-stress) ba-
seline and do not return to baseline as quickly.

5. Conclusion
this article presented two experiments based on stress-inducting to evaluate the prediction
of stress in near real-time for patients with disturbed allostatic load. We have used an
architecture called ATHENA I to perform the acquisition, processing, storage, and classi-
fication of physiological signals supported by artificial intelligence. We carried out stress
induction experiments conducted by psychology professionals. The ethics committee ap-
proved these experiments based on inducing stress through repetitive negative thinking.

According to the results, we can highlight clinical participants’ aspect impact on
the machine learning model. When comparing the model training results with clinical
and non-clinical participants, the obtained values with non-clinical participants were sig-
nificantly better. Nonetheless, the values are distributed accordingly with expectations
based on health literature [Corrigan et al. 2021], [Wang et al. 2022], [Guidi et al. 2021].
According to the allostatic load theory, clinical participants tend to behave differently
toward physiological signals than non-clinical people. Clinical participants may have a
naturally higher basal (non-stress) level. Alternatively, their physiological signal levels
do not return to normal without intervention during a stressful situation.

We can also cite the results obtained with the real-time detection experiments.
We performed experiments with 20 participants following the same protocol in the first
experiment. Seven of these 20 participants were present in the first experiment, and we
used their data to train the model. The average accuracy obtained in the experiments
with all 20 participants was 52.33%. However, if we only analyze the participants in
the first experiment, the average accuracy goes up to 69.00%. These results indicate
the importance of adjusting the model for new participants’ data, directly impacting the
model’s performance. Based on the results obtained, we can verify the allostatic load’s
impact on the model’s generalization.

In future work, we intend to increase the number of participants to make the
machine-learning model more robust and able to perform the prediction more efficien-
tly. We assess the impact of participants with disorders on the load in groups with more
participants. In addition, we will look for artificial intelligence techniques that can colla-
borate with our work, presenting a better performance for stress prediction.
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